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In this work rigorous dynamic model of batch reactive distillation is replaced by a

neural network based model which can predict the column dynamics very well in

few CPU seconds. Also a neural network based optimisation framework is developed.

A simple esterification reaction system is used in the batch reactive distillation

column to demonstrate the ideas. The proposed tool can forecast profitability, pro-

ductivity, batch time, energy cost and can give optimal operating policy in few

CPU seconds for changing product specifications, raw material and energy costs

and products prices, which is highly needed in this new era of fast changing

market environment.
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INTRODUCTION
During the last decade considerable interest has been generated in new hybrid processes
carrying out reaction and separation simultaneously in one single operation. These new
processes, called reactive separation processes, combine the benefits of traditional unit
operations with a substantial progress in reducing capital and operating costs and environ-
mental impact (BP Review, 1997). While Wilson (1987) considered design and operation
of batch reactive distillation, Doherty and Buzad looked at similar issues for continuous
reactive distillation. Taylor and Krishna (2000) provided a comprehensive review of
research in both batch and continuous reactive distillation. Sorensen and Skogestad
(1994) developed control strategies for batch reactive distillation.

This work focuses on batch reactive distillation which is inherently a dynamic
process. In a competitive environment where the prices of raw materials, products,
energy and utility and product specifications (as dictated by the customers) change fre-
quently, the business decision in the area of batch reactive distillation has to be based
on a number of key interdependent factors. These are conversion of reactants to main pro-
ducts, amount of unwanted or environmentally damaging side products and associated
recovery and disposal cost, raw material and energy cost, product quality and prices,
batch size, batch time, productivity, etc. An optimum combination of all these factors
will lead to a desired objective of the business which is often the maximisation of
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profit. A maximum profit problem can be formulated as follows:

P1 Max P

tf ;C; rðtÞ;D1

subject to: product purity constraints

DAE model equations etc.

Mujtaba and Macchietto (1997) defined a typical profit function P for batch reactive
distillation as:

P ¼
CD1D1 � CBOBO � ChQR

t
(1)

where D1 is the amount of desired product (kmol), B0 is the amount of raw material (kmol),
QR is the total heat input (kJ), t is the batch time (hr), CD1 is the product price ($/kmol),
CB0 ($/kmol) is the raw materials cost and Ch ($/kJ) is the energy cost for heating
(operating cost).

Using the above profit function, the solution of problem P1 will automatically deter-
mine the optimum batch time (tf), conversion (C ), reflux ratio (r) and the amount of
product (D1). However, as the cost parameters (CD1, CB0, etc.) and product purity can
change from time to time, it will require a new solution of the dynamic optimisation
problem P1 (as outlined in Kerkhof and Vissers, 1978), to give the optimal amount of
product, optimal batch time and optimal reflux ratio. And this is computationally expens-
ive. To overcome this problem Mujtaba and Macchietto (1997) calculated the profit of the
operation using the results of a maximum conversion problem which were obtained inde-
pendent of the cost parameters.

In the past, dynamic optimisation framework using rigorous models (Albet et al.,
1991; Mujtaba and Macchietto, 1997) have been developed to obtain optimal operating
policies that will minimise time, maximise conversion, maximise profit, etc. All these
approaches require excessive computation time (in the case of dynamic optimisation).
However Mujtaba and Macchietto (1997), after solving a series of cost independent
maximum conversion problem for different batch times, used polynomial curve fitting
techniques to develop time dependent maximum conversion, optimal distillate, reflux
ratio and energy usage profiles for two different product purities.

These were:

(a) Maximum Conversion: C ¼ g1(t) (2)

(b) Optimum Amount of Distillate (kmol): D1 ¼ g2(t) (3)

(c) Optimum Reflux Ratio: r ¼ g3(t) (4)

(d) Total Reboiler Heat Load (KJ): QR ¼ g4(t) (5)
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where, g1(t), g2(t), etc. are polynomial functions. The profit function (equation 1) now
simplifies to:

P ¼
CD1g2(t)� CB0B0 � Chg4(t)

t
(6)

which is a function of only one variable (t) for a given set of values of (CD1, CB0, Ch). The
dynamic optimisation problem would now become a single variable algebraic optimis-
ation and the solution of the problem does no longer require full integration of the
dynamic model equations.

FREQUENTLY CHANGING MARKET PRICES
For a fixed product specification but under frequently changing market prices of (CD1, CB0,
Ch) the method will solve the maximum profit problem very cheaply and will thus deter-
mine new optimum batch time for the plant. The functions represented by equations (2–5)
can then be used to determine optimal values of C, D1, r, QR, etc. Note the profit maximi-
sation using the results of maximum conversion problem via the polynomial functions does
not require solution of the dynamic maximum profit optimisation problem, every time the
market prices change.

FREQUENTLY CHANGING PRODUCT SPECIFICATIONS
For every product specification, a series of dynamic maximum conversion optimisation
problem will have to be solved to obtain the functions (2–5).

In recent years neural network techniques have been found to be computationally
less expensive in dynamic modelling and optimisation (Greaves et al., 2003). In this
work rigorous dynamic model of batch reactive distillation is replaced by a neural
network based model which can predict the column dynamics very well in few CPU
seconds. Also a neural network based optimisation framework is developed. A simple
esterification reaction system is used in the batch reactive distillation column to demon-
strate the ideas. The proposed tool can forecast profitability, productivity, batch time,
energy cost and can give optimal operating policy in few CPU seconds for changing
product specifications, raw material and energy costs and products prices, which is
highly needed in this new era of fast changing market environment.

THE BATCH REACTIVE DISTILLATION PROCESS
Let us assume that Ethyl Acetate (lowest boiling component) is to be produced at a specified
purity (x�D) using the reversible esterification reaction: Acetic Acid 1 Ethanol <5> Ethyl
Acetate 1 Water in a batch distillation column. The problem is defined by the data in
Table 1. The kinetic and thermodynamic models are given in Mujtaba and Macchietto (1997).
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NEURAL NETWORK BASED DYNAMIC MODEL AND OPTIMISATION
For a given set of inputs, Neural Networks (NNs) are able to produce a corresponding set
of outputs according to some mapping relationship. This relationship is encoded into the
network structure during a period of training (also called learning), and is dependant upon
the parameters of the network, i.e. weights and biases. Once the network has been trained
(on the basis of known sets of input/output data), the input/output mapping is produced in
a time that is orders of magnitude lower than the time needed for rigorous deterministic
modelling. Therefore, the resulting NN model is particularly suited for optimisation
studies (Greaves et al., 2003).

Most recently Greaves et al. (2003) has developed NN based dynamic process model
and optimisation framework for batch distillation column with middle vessel. The model
was validated using experimental pilot plant data. The NN based maximum profit optim-
isation was at least 10 times faster compared to rigorous model based optimisation. In
this work we use NN based optimisation framework of Greaves et al. in batch reactive dis-
tillation producing ethyl acetate by esterification of ethanol and acetic acid. Also here, the
profit maximisation is done using the results of maximum conversion problem and the NN
based functions (2–4) instead of a polynomial based functions. This greatly reduces the
computation time compared to that by existing tool (Mujtaba and Macchietto, 1997).

THE MAXIMUM CONVERSION PROBLEM
The maximum conversion optimisation problem (P2) can be written as:

P2
Max
r(t) C

subject to t ¼ t�f

xD(tf ) � X�D (inequality constraint)

and f (t, _x, x, u, v) ¼ 0 (model equation, equality constraints)

with f (t0, _x0, x0, u, v) ¼ 0 (initial conditions, equality constraints)

Linear bounds on reflux ratio (inequality constraints)

where xD(tf) is the composition of distillate at the end of the operation (tf). In this work the
number of specified purities are extended from two (as used by Mujtaba and Macchietto,

Table 1. Input data for ethanol esterification using batch distillation column

No. of ideal separation stages ¼ 10, Total fresh feed, B0 (kmol) ¼ 5

Feed composition (acetic acid, ethanol, ethyl acetate, water)

xB0 (mole fraction) ¼ 0.45, 0.45, 0.0, 0.1

Column holdup (kmol): Condenser ¼ 0.1, Internal Plates ¼ 0.0125

Condenser vapour load (kmol) ¼ 2.5, Column pressure (bar) ¼ 1.013
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1997) to five using x�D ¼ [0.6, 0.7, 0.75, 0.8, 0.85] to cover a wider product range within 5
to 30 hrs of batch time operation. For each product purity the optimal profiles (C, D1, Rf

and QR) are generated by solving the full dynamic optimisation problem (P2). These
results are used to develop NN based dynamic models for maximum conversion,
maximum distillate, and optimal reflux ratio and energy consumption.

NN BASED MODEL
The input/output specification for the NN based dynamic model is shown in Figure 1a. A
multi-layered feed forward network is used which is trained with the back propagation
method using a momentum term as well as an adaptive learning rate to speed up the
rate of convergence, as found in the Mathworks MATLAB Neural Network toolbox.
The error between the actual variable value (obtained from DAE Model) and that predicted
by the network is used as the error signal to train the network (Greaves et al, 2003).

As can be seen (Figure 1a) the prediction at any time t is only dependent on Z0 and
not any other value of Z. Three data sets were used to train and validate the neural
networks, two for training and one for validation. The data sets were made up from the
following data for each network:

Training Set 1 – x�D ¼ [0.6, 0.7, 0.8, 0.85] for each NN (C, D1, Rf, QR)
Training Set 2 – x�D ¼ [0.85, 0.7, 0.6, 0.8] for each NN (C, D1, Rf, QR)
Validation Set – x�D ¼ [0.75] for each NN (C, D1, Rf, QR)
A sample data set for x�D ¼ 0.6 is shown in Figure 1b for all the NNs. During training

and validation only the values corresponding to the NN (C, D1, Rf, QR) under investigation
are used as the set points for the error signal. The final configuration of each of the NNs can
be seen in Table 2 as well as the final errors associated with Training and Validation.

NN Inputs

(a)

  NN Output
x*D, t1   Z1

x*D, t2   Z2

.

.

.
x*D, tf   Zf

{ }|
1RF11 Q,R,DC,Z tt==

{ }| tt== RF1t Q,R,DC,Z

x*D tf (hr) Neural Networks Setpoints (Z) 
  QR (kJ/hr) D1 (kmol) Rf C 

0.6 5.0 4.61 1.180 0.9056 0.540
0.6 7.5 6.93 1.968 0.8950 0.611
0.6 10.0 9.25 2.348 0.9061 0.659

0.6 12.5 11.55 2.562 0.9180 0.693
0.6 15.0 13.86 2.698 0.9280 0.719
0.6 17.5 16.16 2.795 0.9361 0.739
0.6 20.0 18.46 2.866 0.9427 0.755

0.6 22.5 20.76 2.920 0.9481 0.768

0.6 25.0 23.06 2.966 0.9525 0.778

0.6 27.5 25.36 3.003 0.9563 0.787
0.6 30.0 27.65 3.034 0.9595 0.794

(b)

Figure 1. (a) Input and output specifications for each ANN; (b) A sample data set member for

x�D ¼ 0.6
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NN BASED OPTIMISATION
Functions g’s in the profit function (equation 6) can now be replaced with the NN based
models for C, D1, Rf and QR and the optimisation problem P1 can be solved for different
cost parameters. The only parameter to be optimised reduces to just batch time.

CASE STUDY
For the esterification process described in section 2, comparison between the predictions
of C, D1, Rf and QR obtained by using rigorous dynamic model and those obtained using
NN based model are shown in Figure 2 (note, Ha ¼ D1) for two product specifications (one
used for training and the other used for validation). The results clearly show that NN based
models predict the dynamics of the column very well for both product specifications. From
Chemical Market Reporter, January 2001 the price for 99% (mole fraction) pure ethyl
acetate was found to be 2335 $/kmol and it seemed a fair assumption that for 85%
(mole fraction) pure ethyl acetate a price of 500 $/kmol was reasonable. The prices for
ethyl acetate with other purity values assuming an exponential trend are as follows:

Table 3 shows the optimum values of batch time (tf), amount of product (D1), total
heat load (QR), maximum conversion (C) and reflux ratio (Rf) for each purity specification
to achieve the maximum attainable profit for the operation. Table 3 shows that for all the
purity specifications the operation will make a profit except when the purity x�D ¼ 0.6. This
makes sense, as it is more profitable to make a higher priced product than a lower priced
product and it is cheap to dilute a product than it is to concentrate a product in practical
terms. It is important to note here that once trained the NN based model can generate
optimal C, D1, Rf, QR profiles for any specified purity between x�D ¼ [0.6, 0.85] in

Table 2. Neural network configurations and final errors

NN

Layer Transfer

Functions

No. of Hidden

Layer Nodes

Errors

Hidden Output Training Validation

C logsig tansig 6 5.54E-07 2.24E-06

D1 logsig satlin 4 7.26E-04 2.53E-05

Rf tansig purelin 6 1.95E-06 2.12E-04

QR logsig poslin 6 2.26E-08 1.29E-07

x�D 0.60 0.70 0.75 0.80 0.85

Price ($/kmol) 32 96 166 289 500
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under a second. However, the method proposed by Mujtaba and Macchietto (1997) would
require the solution of full dynamic optimisation problem to generate optimal C, D1, Rf,
QR profiles for any specified purity between x�D ¼ [0.6, 0.85] and this would be compu-
tationally expensive (as mentioned earlier). This is the major strength of this work. A
typical solution of the optimisation problem using rigorous dynamic model approximately
required 600 CPU sec in a SPARC-1 Workstation and about 120 CPU sec in a NN Inputs
NN Output SPARC-10 Workstation. On the other hand, the solution with NN based model
took 10–12 CPU sec using SPARC-10 Workstation.

Table 3. Optimum operation information with single reflux interval

x�D

Product

Price, $/kmol tf (hr)

Profit

($/hr) D1 (kmol)

QR

(kJ/hr) C Rf

0.6 32 30.00 20.79 3.043 27.65 0.794 0.960

0.7 96 12.28 7.20 2.127 11.12 0.700 0.931

0.8 166 13.81 26.87 1.686 12.21 0.699 0.951

0.85 500 18.03 35.81 1.526 15.72 0.706 0.966
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Figure 2. Comparison between the dynamic rigorous model based and the NN based results
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MULTIPLE REFLUX RATIO OPERATION
Mujtaba and Macchietto (1997) and the work presented above only presented a study of
single interval reflux ratio operation, however it is common practice in industry to use
more than one reflux interval to allow higher recovery of the desired product in the shortest
period of batch time (Farhat et al., 1990). This strategy also allows production of high
purity product. As the distillation progresses the purity of the product decreases with
time for a fixed reflux and therefore it is desirable to increase the reflux to maintain the
purity. In this work the single reflux interval NN based optimisation framework is
extended to a two reflux interval strategy of operation to see if the results obtained
could be improved upon.

The dynamic optimisation problem was resolved for all the purity specifications pre-
sented above but with two reflux intervals, the first interval was from time t ¼ [0, tf/2]
and the second interval was from t ¼ [tf/2, tf]. Table 4 shows the optimum values of
batch time (tf), amount of product (D1), total heat load (QR), maximum conversion (C)
and reflux ratio (Rf) for each purity specification to achieve the maximum attainable
profit for the operation for two reflux ratio intervals.

Table 4 shows that for all the purity specifications the operation will make a profit
except when the purity x�D ¼ 0.6. This observation is the same as for one reflux ratio inter-
val operation showing that it is not profitable to produce such low purity product. Table 4
shows that there is a distinct advantage, in terms of profit and batch time, to run using more
than one reflux ratio interval. Apart from purity specification x�D ¼ 0.6, the optimal batch
time was reduced from 5.7% to up to 46%. This has a knock on effect to the profitability of
the operation and the profit is improved for all purity specifications from 1.5% to 30.5%.

CONCLUSIONS
The solution of dynamic optimisation problems using a detailed model is computationally
expensive, as they require many solutions of the detailed model. In this work a NN based
dynamic optimisation framework has been developed for batch reactive distillation using
very little computational effort. The method requires the solution of the dynamic optim-
isation problems (maximum conversion problems for example), independent of cost

Table 4. Optimum operation information with two reflux intervals

x�D tf (hr)

Profit

($/hr)

D1

(kmol)

QR

(kJ/hr) C Rf (1) Rf (2)

%Improvement

tf Profit

0.6 30.00 20.78 3.052 27.49 0.795 0.964 0.961 0.00 1.51

0.7 11.58 7.34 2.090 10.46 0.696 0.954 0.904 25.70 2.01

0.8 9.83 30.03 1.419 8.75 0.658 0.979 0.903 228.85 11.77

0.85 9.72 46.74 1.139 8.56 0.644 0.993 0.911 246.07 30.51
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functions, parametrically for different batch times and purities to generate a region of
feasibility to study. The optimal product yield, optimal heat load, optimal maximum con-
version and optimal reflux ratio profiles are predicted using NN techniques that are only
dependent on purity and batch time inputs. Using these NNs it is possible to formulate
the maximum profit problem for any cost functions, thus making the solution of the
problem very easy and removing the need for full solution of the dynamic optimisation
problem as presented by Mujtaba and Macchietto (1997). This reduces the computational
time down from minutes to under a second. Also the NNs, once trained and validated, are
able to predict other purity specifications within the valid range (x�D ¼ [0.6, 0.85],
tf ¼ [5,30] hrs) instead of one purity specification at a time (Mujtaba and Macchietto,
1997). However it must be stressed that the NNs are unable to accurately predict (with
confidence) results outside of the feasible region.

The framework developed can be applied to other batch processes, with or without
chemical reaction, as long as the data used to train and validate the neural networks is
accurate enough to provide the required degree of confidence.
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