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The choice of control structures for distillation columns is an important issue for

practical industrial operation. There is no single “best” structure for all columns,

so some authors feel that each column should be treated independently. Neverthe-

less, the objective of this work is to find for a structure that is “reasonable” for

all columns. In this paper, we consider the steady-state deviations in product com-

position, assuming that we only have available flows and temperatures for control.

By using local methods, including the exact local method and the minimum singular

value rule, we search for two “self-optimizing” variables, which when held constant

result in small deviations in the presence of disturbances. We find that for most

columns, a good choice is to keep a constant reflux to feed ratio L/F and keep a

constant temperature in the middle of the bottom section of the column. Especially

for multicomponent separations, it does not help to control two temperatures.

KEYWORDS: distillation column, multicomponent distillation, control structure

selection.

INTRODUCTION
For a distillation column, the “original” degrees of freedom are u0 ¼ [L V D B], where
we have assumed that pressure is tightly controlled (Shinskey, 1984). However, levels
need to be controlled. This consumes two degrees of freedom and, since the level set
point has no steady-state effect, we are left with two steady-state degrees of freedom.
For the further analysis it does not matter what these are, so let us choose them as
u ¼ [L V]. For this study, the main assumptions are:

1. Consider steady state only.
2. Two-product column with given feed and fixed pressure.
3. Two-point product composition control is desired, but the composition measurements

are not available (at least not for fast control).
4. Variables available for control: all temperatures and flows (including flow ratios L/D,

L/F, etc.) A reasonable cost function for the composition control problem is

J ¼ (XD � XDs)
2 þ (XB � XBs)

2 (1)
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The question is: What should we use the two degrees of freedom for, that is, what are
the controlled variables c? Should L be kept constant or maybe L/D? Should a temperature,
in order to minimize J, be kept constant? To analyze this we consider product composition
variations in response to disturbances. Any control structure which controls two intensive
variables (e.g. L/D and V/B, or two temperatures) will have perfect disturbance rejection
for feed flowrate disturbances. Therefore, as pointed out by Luyben (2005), the key factor to
consider is feed composition disturbances.

Two common approaches for identifying controlled variables are (Luyben, 2005a):

1. Look for variables with a small optimal variation in response to disturbances (Luyben,
1975);

2. Look for variables with a large steady-state gain, or more generally, large minimum
singular value (s (G)), from the inputs u to temperatures c (Moore, 1992).

These approaches may yield conflicting results, and Skogestad (2000) proposed
to combine them by considering the minimum singular value of the scaled gain matrix
(s(G0)). The optimal variation here enters into the scaling factor, together with the
implementation error. This approach has a theoretical basis, but there are some assump-
tions, like assuming a unitary Hessian matrix Juu. To improve on this, one may considers
s(G0J0�1=2

uu ), but also this is not exact. In this paper, we therefore mainly use the
exact method of Halvorsen et al. (2003). A local method is numerically much more
effective than numerically computing the loss for all possible structures and disturbances.
To solve this self-optimizing problem, a scalar cost function J to be minimized must
defined.

SELF OPTIMIZING CONTROL
“Self-optimizing control” is when keeping the selected variables c constant, indirectly
gives optimal operation. Skogestad (2000) derived some desirable properties (require-
ments) can be derived for the controlled variables c:

1. We want small optimal variation in the selected variables (as used by Luyben
(2005a)).

2. We want to be able to control the selected controlled variables tightly (small
“implementation” error).

3. We want flat optimum with respect to the selected controlled variables.

MINIMUM SINGULAR VALUE RULE
Interestingly, it turns out that these desirable properties may be combined into the
“maximum gain rule”: Select controlled variables c such that we maximize the minimum
singular value s of the scaled gain matrix G (from u to c; here u’s are the “original”
degrees of freedom). This requires that the candidates c’s have been scaled with respect
to their span, where

Span ¼ optimal variationþ implementation error (2)
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The derivation of this rule is given by Halvorsen et al. (2003). Although this rule is
not exact, especially for plants with an ill-conditioned gain matrix like distillation
columns, it is very simple and it works well for most processes (Halvorsen et al.,
2003). As the minimum singular value has the monotonic property, we can use the
“Branch and Bound” algorithm to obtain the configuration with largest minimum
singular value, avoiding the evaluation of all possible configurations (Cao, 1998).

MODIFIED MINIMUM SINGULAR VALUE RULE
According to Halvorsen et al. (2003), the worst-case loss can be estimated as:

max
ke0ck2�1

L ¼
1

2
�s(J01=2uu G0�1)
� �2

¼
1

2

1

½s (G0J0�1=2
uu )�2

(3)

where G0 and J0uu are scaled matrices. So, we want to select the combinations that gives the
largest value of s (G0J0�1=2

uu ): This method has the advantage of not been limited to systems
where Juu is a unitary matrix. As we have the monotonic property, we can apply Branch
and Bound algorithm. Using the modified minimum singular value rule, we can select a set
of possible best solutions. Afterwards, we can calculate the exact loss to obtain the real
optimum solution.

EXACT LOCAL METHOD
The exact local method was presented by Halvorsen et al. (2003). This method utilizes a
Taylor series expansion of the loss function. The steady-state model used is:

y1 ¼ G1uþGd1d

y2 ¼ GuþGdd (4)

where y1 and y2 are the primary variables and the measurements, respectively.
The exact value of the worst-case local loss is:

max
k½d0ny0 �Tk2�1

L ¼ �s (M)2=2 where M ¼ ½Md Mn� (5)

Md ¼ J1=2
uu (J�1

uu Jud �G�1Gd)Wd (6)

Mn ¼ J1=2
uu G�1Wn (7)

The gains G and Gd and the derivatives Juu and Jud were obtained numerically apply-
ing small variations in the inputs. Consider the special case where the cost function can be
represented by:

J ¼ yTQyþ uTRu (8)
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where Q and R are symmetric positive-definite matrices. We can easily show that the
derivatives Juu and Jud are:

Juu ¼ 2(GT
1 QG1 þ R) and Jud ¼ 2GT

1 QGd1 (9)

DISTILLATION COLUMN
The variable selection methods were applied to a distillation column separating an ideal
4-component mixture (A, B, C, D). The column has 41 stages (including reboiler and
condenser) and the feed in middle of the column (stage 21). The stages are numbered
from the bottom, with stage 1 as the reboiler and stage 41 as condenser (see Figure 1).
All relative volatilities are equal to 1.5 (aAB ¼ aBC ¼ aCD ¼ 1.5). The disturbances are
the feed flow rate (F), fraction of liquid in the feed (qF) and feed compositions (zF).

The temperatures, for simplicity, are assumed to depend linearly on liquid
composition and calculated as:

Ti ¼ 10xB,i þ 20xC,i þ 30xD,i (10)

F

stage 2 

stage 21 

stage 40 L D

V

B

Figure 1. Distillation column
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The model used is represented by Eq. 4, where u ¼ [L V]T, d ¼ [F zF qF]T and
y1 ¼ [xD xB]T. The implementation errors used were: 15% for flow ratios, 10%
for flows and 0.5 K for temperatures.

BINARY MIXTURE
The first example is a binary mixture of B and C with feed composition of 50% each. The
column operates with 99% of B in top and 99% of C in bottom.

The results using the exact local method are given in Table 1. Only the results with
the best temperature are shown. The smallest loss of 28 � 1026 is obtained when we
control temperatures on stages 12 and 30, that is, with one temperature in the middle of
the top section and one in the middle of the bottom section. The best choice with a flow
and a temperature is to use L/F and T15, which has a loss of 83 � 1026, followed by
V/F and T16 with a loss of 131 � 1026. The best combination of two flows is L/D and
V/B, with a loss of 25100 � 1026. Keeping L and V constant gives a loss of
402200 � 1026. Perhaps surprisingly, the loss with L/F and V/F constant is twice as
large. The reason is the implementation error, which is larger with ratios than single flows.

Several configurations were compared by simulation (see Figure 2). The controllers
were tuned using SIMC rules (Skogestad and Postlethwaite, 2005), with tc � 1 and we
applied the following disturbances:

1. F changes from 1 to 1.1 at t ¼ 0.
2. qF changes from 1 to 0.9 at t ¼ 40.
3. zF changes from 0.5 to 0.55 at t ¼ 60.

Figure 2 confirms that the configuration T12–T30 is the best choice.

Table 1. Losses of several possible configurations for binary mixture

Configuration

Exact loss

(�1026) Configuration

Exact loss

(�1026)

T12–T30 28 L–B 44300

T15–L/F 83 D–V 45000

T16–V/F 131 L/D–V 53400

T19–L 149 T40–B/F 62800

T15–L/D 174 T40–D/F 62800

T22–V 216 T40–B 89200

T24–V/B 292 T40–D 89200

L/D–V/B 25100 L–V 402200

L/F–V/B 34600 L/F–V/F 810600
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MULTICOMPONENT DISTILLATION COLUMN
The feed has 25% of each component (A, B, C, D). First we consider separation between
components B and C (key components). As we want 99% recovery of B and C, then the
bottom product must have 0.005% of B and the top product 0.005% of C.

Table 2 presents the values of the losses for several different possible control con-
figurations, using the same criterion as Table 1. In this case, the loss with two temperatures
(T15–T26) is 73 � 1026, which is significantly larger than in the binary case. This is not
surprising, as temperature is generally less reliable as a composition measure in the multi-
component case. On the other hand, the configuration with L/F and a single temperature
(T15) constant has a loss of only 77 � 1023, which is less than for the binary case. Other-
wise, the results for the multicomponent case (Table 2) are very similar to the binary case
(Table 1). The results are confirmed by the simulations in Figure 3 for the following
disturbances:
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Figure 2. Comparing control structures for binary mixture

Table 2. Losses of several possible configurations for multicomponent mixture for B/C

separation

Configuration Exact loss (�1026) Configuration Exact loss (�1026)

T15–T26 73 L–B 45800

T19–L/F 77 D–V 46400

T20–L 88 L/D–V 54300

T16–L/D 91 T40–B/F 88100

T20–V/F 102 T40–D/F 88100

T21–V 123 T40–D 131500

T23–V/B 169 T40–B 131500

L/D–V/B 25500 L–V 211700

L/F–V/B 33300 L/F–V/F 378800

SYMPOSIUM SERIES NO. 152 # 2006 IChemE

595



BK1064-ch56_R2_250706

1. F changes from 1 to 1.1 at t ¼ 0
2. zF changes from [0.25 0.25 0.25 0.25] to [0.3 0.2 0.25 0.25] at t ¼ 50
3. qF changes from 1 to 0.9 at t ¼ 100
4. zF changes from [0.3 0.2 0.25 0.25] to [0.3 0.25 0.2 0.25] at t ¼ 250
5. zF changes from [0.3 0.25 0.2 0.25] to [0.3 0.25 0.25 0.2] at t ¼ 300

In Table 3, we show similar results for the two multicomponent separations (A/B
and C/D separation). For these cases, the control of two temperatures is not the best.
For the A/B separation, the best is to control V/F and T29 (in the middle of the top
section) with a loss of 27 � 1026. For the C/D separation, the best is to control a temp-
erature in the middle of the bottom section (T10) and L/D or L/F. These structures have a
loss of 30 and 35 � 1026, respectively.

COMPARING METHODS FOR VARIABLE SELECTION
In this section we compare the three different methods presented for variable selection:
exact method, minimum singular value rule and its modified version. The minimum singu-
lar value rule can give a completely wrong result, as can be seen by Table 4. The best
configuration (for binary mixture) obtained using exact local method is T12–T30, but
the minimum singular value rule indicates that the best choice would be L/F–V/B.
Figure 2 confirms that the configuration T12–T30 is the best choice, while L/F–V/B is
not. Halvorsen et al. (2003) had already reported that the minimum singular value rule
fails when the matrix G1 is ill-conditioned, as it is for this system, where the condition
number is 145.6. However, if we compare similar cases, for example, two temperatures,
one temperature and one flow, or two flows, then the minimum singular value gives the
right order in most cases.

The modified minimum singular value rule (maximize s (GJ�1=2
uu )) is not exact, but

according to Table 4, this method produces results very similar to the exact method. Also,
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Figure 3. Comparing control structures for multicomponent mixture
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Table 3. Losses of several possible configurations for multicomponent mixture

for A/B and C/D separations

Configuration

(A/B separation)

Exact loss

(�1026)

Configuration

(C/D separation) Exact loss (�1026)

T29–V/F 27 T10–L/D 30

T30–V/B 28 T10–L/F 35

T28–V 28 T11–L 41

T29–L/F 28 T10–V/F 50

T28–L 29 T11–V 70

T27–L/D 70 T9–T27 100

T19–L/F 92 T13–V/B 309

T16–T21 99 L/D–V/B 84900

L/D–V/B 51200 L/F–V/B 88400

L/F–V/B 111800

Table 4. Comparing selection methods for a binary mixture

Configuration

Exact loss

(�106) s (G) Loss ¼
�s (Juu)

2s(G)2
s (GJ1=2

uu )

Loss ¼
1

2s(GJ�1=2
uu )2

(� 106)

T12–T30 28 1.5079 1.7115 78.3172 82

T12–T29 29 1.4418 1.8720 75.1663 88

T14–T28 35 1.2411 2.5263 64.4779 120

T9–T32 46 1.5478 1.6242 79.1531 80

T15–T26 50 0.9562 4.2559 49.9123 201

T15–L/F 84 1.5305 1.6612 60.7430 136

T16–V/F 132 1.1249 3.0753 49.8319 201

T19–L 150 0.8145 5.8649 40.0200 312

T15–L/D 174 0.7267 7.3689 34.2050 427

T22–V 216 0.6392 9.5253 30.4771 538

T24–V/B 293 0.5714 11.9191 26.0734 735

T1–T41 2500 0.2709 53.0150 14.1421 2500

L/D–V/B 25100 0.8780 5.0480 3.9703 31700

L/F–V/B 34600 1.6025 1.5152 2.7602 65600

L–B 44300 0.8045 6.0128 2.0097 123800

D–V 45000 0.6344 9.6686 2.0128 123400

L/F–V/F 810600 1.5963 1.5270 0.6503 1182500
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it has the advantage of not requiring the evaluation of all possible configurations because,
as it has the monotonic property, we can apply Branch and Bound algorithm (Cao, 2005).

DEPROPANIZER CASE STUDY
The above results are based on idealized mixtures with constant relative volatility, and
assuming constant molar flows.

However, similar results have been obtained for a depropanizer case study, that has
7 components (C2, C3, i-C4, n-C4, i-C5, n-C5, n-C6).

We found also here that the smallest composition loss is obtained using two-
temperatures or a constant L/F and temperature in the middle of the bottom selection
(the same as obtained for the ideal multicomponent case).

CONCLUSIONS
Overall, for binary and multicomponent separations, a good control structure for “indirect
composition control” is to control a temperature in the middle of the bottom section
and keep a constant reflux to feed ratio (L/F). For both binary and multicomponent mix-
tures, the temperature sensor needs to be located away from the column end. A common
heuristic is to select a tray where the change in temperature from tray to tray is the largest
(steep temperature profile) (Luyben, 2005b). The heuristic is confirmed for binary mix-
tures, but not for multicomponent mixtures, which have a steep profile towards the
column ends. Control of two temperatures gives better composition control (smaller
loss) for binary mixture, but not for multicomponent mixtures, mainly because of the
effect of implementation error (measurement noise). Note that the results are for steady
state and are independent of how we do the level control. For example, it is possible to
use L for condenser level control, and then adjust D at a slower time scale to “reset”
L to a desired steady-state value. Also note that with good indirect composition control,
we get less variation in levels because we avoid redistribution of components in the
columns. So, the configuration of L/F and a temperature in the bottom section is good
for all multicomponent cases.

The minimum singular value rule is a very simple tool to use, but it does not necess-
arily give the best solution, as was shown in the example above. It fails when the plant is
ill-conditioned (has large condition number).
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