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A non-linear wave model for a distillation column has been extended and then exam-
ined for binary and ternary systems by including enthalpy and hold-up effects, these
being significant for wide boilers and leading to variable molar flows and holdups.
Application of the coherence condition to the system mass and energy balance
equations confirms that, for an n-component system, any disturbance or eventual
steady-state will be resolved into n-1 distinct, coherent waves (involving synchro-
nized variations in composition, temperature, and flow-rate), provided that enthalpy
and hold-up are made functions of composition. For steady states, the predictions
of the wave-model and those of more rigorous plate-to-plate calculations show excel-
lent agreement for the operating conditions required to obtain an optimal steady-state.
In preliminary design calculations, the wave model thus quickly identifies an approxi-
mate, optimal steady state. For disturbance propagation, predictions of the wave
model for the velocities of disturbance waves are in good agreement with those for
the plate-to-plate model. For both models, “asymmetric dynamics” is predicted.
The asymmetry is less than that predicted for a constant molar flow model; this
agrees qualitatively with previous experimental results. In all cases, liquid and
vapour flow variations across the waves are predicted correctly. When fully devel-
oped, wave theory can be used as a quick first step in design and optimisation, and
its simplicity and speed offers good prospects for on-line control applications.

KEYWORDS: distillation dynamics, disturbance propagation, non-linear wave,
variable molar flow, profile control

INTRODUCTION
Distillation columns producing high-purity products exhibit highly non-linear behaviour, par-
ticularly for wide boilers, leading to sharp composition and temperature profiles. Such beha-
viour is known to cause difficulties in column control and design. In particular, non-linear
dynamic phenomena arise, such as high steady-state gains and large response lags, and the
dependence of these on disturbances. Often, the transition in departing from a steady state
is much faster than the return to it. This “asymmetric dynamics” implies desirable steady
states are intrinsically difficult to control and maintain.

Wave theory, originally developed as a framework for the analysis of chromato-
graphy and ion-exchange [7], analyzes steady-state and dynamic composition variations
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in a column in terms of “waves”. Viewing the movement of the composition and tempera-
ture profiles as the propagation of such non-linear waves provides a much simpler, but
nonetheless powerful, model for the dynamics, and an intuitive cause-and-effect analysis
of the non-linear phenomena. Such an approach, developed by Hwang, Helfferich
and Hankins [1,2], has already been applied successfully to fixed-bed processes and to
continuous counter-current separation processes. It elucidates the development of “con-
stant pattern waves” (ones that maintain a constant size and shape) governed by phase
equilibrium, and their development into “standing waves” for the steady-state profiles
as a result of their interaction with column ends. The propagation of feed disturbances
on non-uniform, steady-state backgrounds, their interference, and the phenomenon of
asymmetric dynamics has also been analysed [2] for both binary and multi-component
distillation.

The wave analysis reveals that a multi-component column, when operated continu-
ously at steady state, contains a set of standing (stationary) waves. These waves are sep-
arated by zones with negligible composition variation (i.e. pinched zones), and may sit
balanced within the column (i.e. key waves) or sit bunched up near a column end. Any
disturbance at the entry to such a column results in the triggering of a set of response
waves. These waves travel and interfere with the standing waves of the stationary state.

In principle, the standing waves may be self-sharpening or non-sharpening, depend-
ing on phase equilibrium properties. Distillation systems almost always involve a marked
relative volatility between components, analogous to a convex adsorption isotherm, and
this leads to self-sharpening waves. On the other hand, disturbance waves normally
involve small deviations and can be approximated as steps; they are indifferent to sharpen-
ing properties, but travel over a strongly non-uniform and nonlinear background of the
steady-state pattern of standing waves. Ultimately, they may interfere with the key-
wave, causing it to unbalance. This, in turn, leads to a highly non-linear response in
column end conditions and thus product compositions.

Earlier theoretical work [3—6] on the steady-state and dynamic behaviour of con-
tinuous, counter-current distillation processes in single section operations is specifically
extended here to include enthalpy effects, leading to non-constant molar flow rates and
column hold ups, and reflux and reboil. It represents a further step towards the use of
wave theory for improvements in the design, optimisation and control of multi-
component fractionation columns, especially for wide boilers displaying highly non-
linear behaviour.

THEORETICAL DEVELOPMENT

A differential model is developed here for a packed-bed distillation column, tuning the
mass transfer parameters to select the theoretical number of plates. Such a model is
well suited to a direct comparison with the wave theory, whilst retaining sufficient
rigour to be realistic. For clarity, a single rectifying or stripping section of a distillation
column is considered, and local thermal equilibrium is assumed.
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EQUATIONS FOR PLATE DISTILLATION MODEL
The overall material balance for the liquid and vapour phases within the column is:
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where 7 is time; z is the distance (related to the number of plates) from the top; L and V are
the liquid and vapour molar flow rates per unit cross-sectional area; W and U are the liquid
and vapour molar hold-ups per unit length (or per plate); and x; and y; are the liquid and
vapour mole fractions of component i. The overall enthalpy balance governs changes in
the molar flows:
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where Hjiq and Hy,,, refer to the molar enthalpies of liquid and vapour phases, respectively.
A material balance for component i in the vapour phase is:
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where k;a is a mass-transfer coefficient for i, and the driving force for mass transfer is
taken to be the departure from equilibrium in the vapour phase i.e. it is liquid-film
limited. The number of theoretical plates in the column is then N = ka z../V, where
Zcol 18 column length.

Note also that:
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The volumes of liquid and gas phase hold-up per unit column volume and the liquid
partial molar volumes are assumed to be constant; the gas is assumed to be ideal. Thus:

W, PU,
S R(T, + 273)

(6a,b)
where Tjiq and Ty, are liquid and vapour temperatures in °C, T, is the reference temp-
erature for the molar heat of vaporisation (AH;)yap, (Cpi) 1iq and (Cp;) vapi are liquid and
vapour molar heat capacities for i, W, and U, are the liquid and gas hold-up volumes
per unit column volume, v; is the liquid partial molar volume of i, P is pressure and R
is the universal gas constant. Local thermal equilibrium (Tjq = Ty.p, = T) is assumed.

Thus, for given z, there are 2n + 3 independent equations (1—4) and (5a,b) for the
2n + 3 unknowns L,V,xy, ..., Xy, ..., Y1, ..., ¥Yn and T. For a single section, boundary
conditions are set by feed composition and rate at one end, and the reflux or reboil
condition at the other.

WAVE MODEL

For the purposes of the wave model, local phase and local thermal equilibrium are
assumed, reducing the number of variables to n + 3. To begin with, a binary system is con-
sidered. The equilibrium phase rule then implies that vapour composition, liquid and
vapour enthalpies (with Tj;q = Ty4, = T), and phase molar holdups (under the assumptions
of (5) and (6)) are all functions of liquid phase composition x. This means that the partial
derivatives with respect to time in equations (1), (2) and (3) can all be collected on the
right-hand side in the form R; dx/dt for equation j, where R; is a function of x.

The important condition of coherence is now invoked: all systems tend to shake
themselves down into simple modes, independent of initial conditions. For a full discus-
sion of coherence, see [1—7]. At any point in a coherent wave, the propagation velocities
for all variables are equal. Thus variations, or waves, of temperature, composition and
flow-rate move and remain together relative to each other in a synchronized fashion. At
a given point and time, the velocity of the set of synchronized variables on such a wave
moves at a local wave velocity v, given by:

0z L
=—| =A— 7
Va al, = MW (N

where «; is one of the coherent variables, and A is the local eigenvalue associated with the
wave. Writing an expression for the total differential of ag with respect to z and t, and
taking the derivative under conditions of coherence and tracking of «; (i.e. day = 0) and
finally substituting (7):
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This can be applied to dx/dt in equations (1) to (3) and the whole set of equations
rewritten, under conditions of coherence, in matrix form as follows:

-1 1 RiEA dL
—x y RiEA-—L+Vy) av | =0 )
—H, Hy (Rstix-LH,+VH)) || dx

Here, a dash indicates differentiation with respect to x. Solving for a zero
determinant, it is readily apparent that a linear equation for the eigenvalue A is obtained,
which yields:

_ (W = L)(H, - Hy) + (VHy — LH))(y = %)
E{R\(HLy — Hyx) — Ry(H, — H,) + R3(x — y)}

(10)

The existence of a single eigenvalue demonstrates that the system is monovariant,
such that any disturbance or eventual steady-state will be resolved into a single wave. This
wave will be a synchronized variation of L,V and x. The resulting eigen-vector or so-called
“composition route,” i.e. dL./dx and dV/dx, is obtained by re-substituting (1) into (9). In
the case of constant relative volatility, by analogy with wave theory for fixed bed processes
[7], the wave is expected to be a self-sharpening shock wave [3,6] (see also below). If the
assumption of local composition equilibrium is relaxed by (4), a constant pattern wave is
still expected, over which any disturbances will propagate with velocityA. However, the
natural velocity of a sharp, constant pattern wave in the column under conditions of coher-
ence is derived from integral material balances and an energy balance. For binary systems,
three such equations may be written, according to equations (1) to (3):

dt

_ [dz] CAL-V) Ay —Vy)  A(LH — VHy) an

A= AW +U)  A(Wx; + Uy)  A(WH, + UHy)

where A indicates difference across the wave. This wave will be coherent with respect to
variations in L,V and x. Given a feed rate & composition at one end, and reflux or reboil
conditions at the other, simultaneous solution yields the wave velocity and the values of
the six key variables on either side of the wave. For an optimum design and operation,
this wave sits balanced deep within the column at zero velocity. Movement of this constant
pattern wave to either end tends to lower product purity at that end.

For ternary and n-component systems, there will be n — 1 independent terms associ-
ated with each 9x;/dt in equations (1) to (3); following substitution of equation (8), the
resulting matrix equation in (9) now has order n+ 1. The equivalent of equation (10)
will have n — 1 eigenvalues, and the system therefore has a variance n — 1. Hence, the
variance is not increased by the enthalpy terms (and hence varying molar flows), or by
varying holdups (note that if the assumption of liquid holdup being dependent only on
composition is relaxed in equation (6) to include a liquid-flow dependence (through
plate hydraulics), then the system variance will increase by one). For a ternary system,
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there will be two such waves; the corresponding constant pattern waves of the steady-state
require the simultaneous solution of three integral material balances (one overall and two
for components) and one energy balance. At most, one of these waves will have zero vel-
ocity, and optimum design and operation will aim to place this “key wave” deep within the
column, and thereby ensure key components lie below product specifications at the
column ends.

PERFORMANCE OF WAVE MODEL

The wave model can now be tested by solving equations (9—11) and comparing its predic-
tions with that of the plate model. For this, equations (1—6) are solved using the Numerical
Method of Lines. Spatial derivatives are evaluated using a first-order upwind/downwind
finite difference approximation in (1-4); temporal derivatives (3x;/dt and dy;/dt) are eval-
uated by simultaneous solution of (2) and (4). The latter are integrated using a 4-step, 4th
order Runge-Kutta scheme; at each step in the integration, the new values of L(z) and V(z)
are calculated by solving the discretized set of equations (1) and (3) with the current values
of x;, yj, dx;/0t and dy;/dt. Parameters used for the binary and ternary systems studied are
shown in Table 1.

STEADY-STATE CONDITIONS

Consider distillation of the binary system in Table 1 (methanol and 1-propanol) in a
1-metre rectifying section, with a saturated vapour feed of 0.1 kmol/ m?- sec, a total con-
denser and a reflux ratio of 1.2. Solution of wave equations (11) with u, set to zero predicts
that a feed vapour mole fraction y for 1-propanol of 0.658 is required for a balanced wave
and an optimal steady-state. Figure 1 presents the results of the plate model under these
conditions, for varying plate number (after large time; feed end at z = 1.0). The compo-
sition profile remains stationary, and sharpens with more plates; the wave model (which
assumes local equilibrium) predicts a standing-step wave from y = 0.658 to y = 1.0.
The final position of the wave is determined by the column end-effects; as the ends are

Table 1. Component physical properties

Methanol 1-Propanol 1-Pentanol

Property i=1) i=2) i=3)
(Cp)iig,i (J/mol °K) 81.59 144.4 209.0

(Cp)vap;; (J/mol °K) 43.93 87.45 140.0

(AH)y,p 1 (kJ/mol) 37.57 45.0 52.3

Boiling Point, °C 65.2 97.4 137.3

Relative volatility 1.0 3.8 (binary mix) 15.87 (ternary mix)

with methanol 3.45 (ternary mix)
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Figure 1. Plate-model prediction of optimal steady-state with varying plate number

not perfectly pinched (e.g. see z =0 for N = 5), mass transfer effects tend to push the
wave back inside. Furthermore, vapour rate and liquid rate are predicted to increase by
7 and 13% respectively across the wave, in excellent agreement with the plate model.
In preliminary design calculations, the comparative simplicity of the wave model thus
allows the identification of an approximate optimal state with relatively little effort.

DISTURBANCE PROPAGATION

The optimal steady-state identified in Figure 1 is now subjected to two feed composition
disturbances. In the first, feed mole fraction decreases by 0.05; in the second, it increases
by 0.05 back to the original value. The wave model prediction of the system response is
shown schematically in Figure 2. The predictions of the plate model (N = 15) are shown in
Figures 3a and b. Following the first feed disturbance, a disturbance wave propagates in
Figure 2 (t =t;) at velocity ug, given by equations (7) and (11), of —0.0954 m/s.
In Figure 3a, the initial disturbance moves at velocity —0.05 to 0.15 m/s (exact value
rather uncertain) to merge with the original optimal steady-state, and creates an unba-
lanced constant pattern key wave within 1 second. According to equation (11), the unba-
lanced key wave in Figure 2 (t = t,) then moves to the left with velocity —0.004 m/s; the
constant-pattern key wave in Figure 3a initially moves to the left at a velocity of
—0.004 m/s. However, at 60 secs the constant pattern key wave slows down as it
approaches the product (reflux) end of the column, and at 200 secs it is virtually stationary.
In essence, the convective forces which move the unbalanced wave to the left are balanced
by the column end-effect moving it back to the right: top product purity has dropped to
y = x = 0.95, creating a non-equilibrium mass-transfer driving force. The original feed
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Figure 2. Departure from and return to optimal steady state due to disturbance in binary system

condition is then restored in Figure 2 (t = t3), triggering a new disturbance wave with a
velocity ug;s, given by equations (7) and (11), of —0.0949 m/s. In Figure 3b, the new dis-
turbance propagates at a velocity —0.07 to —0.1 m/s (exact value rather uncertain) to
merge with the key wave currently residing near the column top, and creates a balanced,
zero natural velocity wave within 5 or so seconds (Figure 2, t = t4). This new constant
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Figure 3a. Departure from optimal state: yf..q decreases from 0.658 to 0.608

pattern key wave in Figure 3b initially moves to the right at 0.004 m/s under the unba-
lanced, column top end effect (this is reasonable, since the convective driving force in
Figure 2, t = t, to t3, is equivalent to a similar key wave velocity to the left). However,
this wave soon slows down as it moves away from the top end. By 70 secs, the velocity
has slowed to 0.001 m/s and by 200 secs to 0.0004 m/s. The original, optimal steady-
state is not reached until after 900 seconds. Finally, it is again noted that the wave
model predicts changes in molar flows around the key wave similar to those seen above
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Figure 3b. Return to optimal state: yf..q decreases from 0.608 to 0.658
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for the balanced case (Figure 1), which is confirmed by the plate model predictions. The
shift of molar flow profiles is also synchronized to those of the composition profiles, as
expected above from coherence theory. In summary, the wave model is able to give a
reasonably accurate quantitative prediction of the column dynamic response to disturb-
ance propagation, with the exception that (as a consequence of assuming local equili-
brium) it is unable to predict the velocity of return of the key wave to an optimal
steady-state once it has been restored. It seems likely, however, that a constant pattern
assumption can provide a means of predicting it, as suggested already for constant
molar flow [8] and subsequently demonstrated experimentally [9].

The study of dynamic behaviour in Figures 2 and 3 highlights some important
aspects of non-linear behaviour. First of all, it is apparent that small disturbances lead
to high steady-state gains. A sensor placed in the middle of the column (z = 0.5 m) will
first see a decrease in vapour mole fraction from 0.92 to 0.62 and then an increase back
to 0.92. For a disturbance of +0.05, this represents a gain of 6. The gain increases
further for a larger number of plates. Second, despite the restoration of the optimal feed
condition in Figures 2 (t = t3) and 3b, the time required to achieve the optimal steady-
state of a key wave deep within the column is large. Thirdly, and as a consequence, the
dynamic response to equal and opposite feed disturbances (in this case, of feed compo-
sition) leads to a large asymmetry in response time — in this case, a factor of 5. Indeed,
if constant molar flow is assumed, calculations show that the asymmetry factor increases
further. This latter observation may help to explain why the asymmetry seems to be
smaller in real experiments than predicted from constant flow models [9]. All of these
effects are exacerbated as either the relative volatility (separation factor) or the number
of plates (mass transfer efficiency) increases. This, in turn, suggests a way for improving
on-line column control for such non-linear systems. A possible strategy might be based on
profile control, where compositions are monitored in strategic positions. Furthermore,
response time and asymmetry can be reduced if control can be made proactive rather
than reactive; in this case, by reducing vapour feed rate in Figures 2 (t = t4) and 3b in
order to unbalance the re-established key wave long enough for it to occupy its optimal
position.

TERNARY SYSTEMS

For a ternary system, the three equations in (11), along with an additional component
material balance, were solved simultaneously for arbitrary feed and reflux conditions
and confirmed composition routes as invariant.

CONCLUSIONS

e A non-linear wave model for a multi-component distillation column has been extended
to wide boilers by including enthalpy and hold-up effects, which lead to variable molar
flows and hold-up. Application of the coherence condition shows that, for an
n-component system, the system variance is n — 1 in the absence of hydraulic effects.
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Thus, composition, temperature and molar flow profiles move together in a
synchronized fashion.

A steady-state will consist of n — 1 constant pattern, standing waves, of which at most
one will be a balanced key wave. For the conditions required for optimal steady-states,
the predictions of the wave model agree with those for plate-to-plate calculations. This
is highly useful in preliminary design.

For wave propagation, predictions of the wave model for the dynamic response to feed
disturbances are in good agreement with those of the plate-to-plate model, and demon-
strate the high steady-state gains, large response times and asymmetry expected for
non-linear systems, though the latter is less than calculated for constant molar flow.
The simplicity, calculative speed and intuitive-predictive power of non-linear wave
theory appears to offer a promising basis for both preliminary design and for on-line
control.
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