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Abstract 

Many advances in the development of nano and microchemical systems have occurred in the last decade. 

These systems have significant associated identification and control challenges, including high state 

dimensionality, limitations in real-time measurements and manipulated variables, and significant 

uncertainties described by non-Gaussian distributions. Some strategies for addressing these challenges 

are summarized, which include exploiting structure within the stochastic Master equations that describe 

molecular interactions, manipulating molecular bonds at system boundaries, and manipulating molecules 

and nanoscale objects through magnetic and electric fields. The strategies are illustrated in a variety of 

applications that include the estimation of nucleation kinetics of protein and pharmaceutical crystals 

within fluidic devices, the estimation of two-dimensional concentration fields using DNA-wrapped 

single-walled carbon nanotube-based sensor arrays, the simultaneous control of nanoscale geometry and 

electrical activation during thermal annealing in a semiconductor material, and the control of 

nanostructure formation on surfaces. Promising directions for research and technology development are 

identified for the next decade. 
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Introduction

Remarkable advances have been made in the last 

decade on technologies for nano and microchemical 

systems, which are systems in which chemistry is carried 

out at nano- to microliter volumes (Squires & Quake, 

2005; Marre & Jensen, 2010). The objective of using these 

technologies to manufacture high quality products has 

motivated a growing literature on the identification and 

control of these systems. The focus of this article is on the 

control of chemical systems that have key components with 

dimensions at the nano or microscale.  Atomic force 

microscopy, thin film deposition, and multiscale systems 

are minimally covered, as these topics are already 

described in past reviews (e.g., see Siettos et al., 2006; 

Vlachos et al., 2006; Christofides & Armaou, 2006; Braatz 

et al., 2006ab; 2008; Moheimani, 2008; and citations 

therein). Also, this paper is primarily focused on aspects of 

microscale systems beyond those covered in a previous 

review (Kothare, 2006). A summary of challenges that 

arise when solving control systems tasks for nano and 

microchemical systems is followed by a description of 

promising directions for addressing those challenges. 

Challenges and Requirements 

In a macroscopic system, the measured outputs are 

stochastic due to measurement noise and unknown 

disturbances arising from fluctuations in the environment 

in variables such as temperature and pressure. If the 

measurement noise and unknown disturbances for a 

macroscopic system could be completely removed, the 

measured outputs would be deterministic. This underlying 

deterministic character of the relationships between 

process inputs to states and outputs enables macroscopic 

systems to be described by deterministic models with 



  

 

 

isolated stochastic terms to account for measurement noise 

and unknown disturbances (Beck & Arnold, 1977; Ljung, 

1999). Much of the phenomena that occur at the nano and 

microscale are stochastic in a way that is very different 

from the fluctuations typically observed in a macroscopic 

system. In particular, phenomena at the molecular scale 

are inherently stochastic, so that a repeated experiment 

can produce vastly different outputs even if the overall 

system has no measurement noise and no unknown 

disturbances.  

As an example of such a phenomenon, consider the 

nucleation of crystals in droplets of solution, for which a 

large number of high-throughput microfluidic platforms 

have been developed over the past decade for the 

crystallization of organic compounds including amino 

acids, proteins, and active pharmaceutical ingredients (e.g., 

see Figure 1 and Hansen et al., 2002; Zheng et al., 2003; 

Squires & Quake, 2005; Talreja et al., 2005; Anderson et 

al., 2006; Li & Ismagilov, 2010). These microseparation 

systems enable the efficient high-throughput search for 

solvents, molecular additives, and dynamic operating 

conditions that nucleate and grow high quality protein and 

pharmaceutical crystals for subsequent analysis via X-ray 

or neutron crystallography, and enable the investigation of 

crystallization kinetics for a much wider range of 

conditions than achievable at the macroscale (ten Wolde & 

Frenkel, 1997; Vekilov, 2004; Goh et al., 2010). Such 

applications have the potential to impact structure-function 

analysis, pharmaceuticals design, bioseparations, 

controlled drug delivery, treatment of protein condensation 

diseases, and study of human degenerative conditions 

(Bucciantini et al., 2002; Vekilov, 2004; Pan et al., 2005). 

The measured output for a single droplet is the induction 

time, which is the time in which the first crystal nucleates. 

The measured induction time can vary by a factor of two or 

more, even when the experiment is designed to have 

negligible disturbances and measurement biases and noise, 

due to the very small volume of each droplet and that the 

very small number of crystals in a droplet (e.g., ten Wolde 

& Frenkel, 1997; Izmailov et al., 1999). In such a system, 

treating the measured output as “the induction time” is not 

appropriate, and the true measured output is represented in 

terms of an induction time distribution or a cumulative 

induction time distribution (see Figure 2). Quantities 

derived from such distributions, such as the measured 

mean induction time or the standard deviation of the 

induction time, contain much less information than the 

entire distribution. For nano and microscale systems, the 

distributions of process outputs are typically not Gaussian, 

so that the assumption of an underlying Gaussian 

distribution parameterized by a mean and a variance is not 

appropriate. 
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Figure 1.   A microfluidic platform that uses 

evaporation to induce nucleation in microliter 

droplets (Kee et al., 2008ab). The evaporation 

rate in each droplet is specified by the partial 

pressure of water at the droplet surface, the 

area and length of each channel that connects 

the droplet to external air, and the humidity of 

the external air. 
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Figure 2.   Cumulative induction time 

distributions for droplets containing lysozyme 

and sodium chloride in aqueous solution: 

experimental data (×), and model (line) in Eq. 

3 fit to the data (Kee et al., 2008ab). The 

measured induction times range from about 9 

to 14 hr for the same experimental conditions. 

As phenomena at the molecular scale are inherently 

stochastic, the measured outputs of nano and microscale 

systems that are a direct consequence of those molecular 

scale dynamics are also inherently stochastic. Stochastic 

dynamics with continuous states are typically described by 

Langevin dynamics or the Fokker-Planck equation (Fokker 

1914, Planck 1917). However, when there are only a 

discrete number of states, stochastic dynamics are 



  

 

described by Master equations (Kendall, 1949; Fichthorn 

and Weinberg, 1991): 

( , )
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where P(σ,t) is the probability that the system is in 

configuration σ at time t, and W(σ',σ) is the rate of 

transitions between configuration σ' and σ (in units of 

inverse time). Each Master equation is the conservation 

equation for the probability of a configuration 

(accumulation = in – out), with the overall system 

described by writing Eq. 1 for every possible configuration 

in the system. For example, for the nucleation of crystals in 

droplets, one configuration is the droplet containing no 

crystals, another configuration is the droplet containing 

one crystal, etc. The structure of Eq. 1 is relatively simple, 

being linear in the probabilities P(σ,t), each of which lie in 

the interval between 0 and 1. The probabilities can be 

stacked into a single state vector x(t) and the transition 

rates collected into a matrix A(t;θ) that enables Eq. 1 to be 

written in state-space form: 

( ) ( ; ) ( )
d

x t A t x t
dt

θ=     (2) 

where A(t;θ) depends on additional variables such as 

temperature or concentrations of species external to the 

system that can vary with time, and on a vector of first-

principles model parameters θ such as chemical kinetic, 

adsorption, or desorption rate constants; surface diffusion 

coefficients; and equilibrium constants. As an example, the 

nucleation of crystals in droplets for the microfluidic 

platform in Figure 1 can be modeled by the Master 

equations 
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where Pn(t) is the probability that the number of crystals is 

equal to n at time t and ( ) 0tκ >  is the transition 

probability of nucleation in units of inverse time, which 

depends on the solubility, crystallization kinetics, 

evaporation rate, and initial droplet volume and solution 

concentrations (Goh et al., 2010; Jiang et al., 2011). In 

most applications, the initial number of crystals in a 

droplet is equal to zero, which is described by the initial 

conditions 0(0) = 1P  and (0) = 0nP  for n > 0. The number 

of possible configurations in the above model, as well as 

the number of states in Eq. 2, is infinite. 

As another example, consider the Master equation for 

adsorption and desorption of molecules on a DNA-

wrapped single-walled carbon nanotube used for single-

molecule sensing (see Figure 3). A standard approach for 

reducing the number of configurations is by defining 

equivalence classes (e.g., Oguz & Gallivan, 2008), which 

for this application involves ignoring which sites on the 

nanotube contain the adsorbed molecules. This 

representation produces the simplified Master equations 

(Ulissi et al., 2011) 
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where NT is the number of potential sites for adsorbed 

molecules on the nanotube, Pi is the probability that the 

nanotube has i molecules adsorbed somewhere on its 

surface, kD is the desorption rate constant, and Ak ′  is the 

adsorption rate constant, which is proportional to the 

concentration of the adsorbing species in the surrounding 

solution. Both rate constants can vary with time, due to 

time-varying temperature during sensing. The nanotube-

based sensor computes the latter concentration by real-time 

estimation of the adsorption rate constant Ak ′

 

from the 

measured adsorption and desorption events (Boghossian et 

al., 2011). The matrix A in the state equation (Eq. 2) has 

row and column dimensions equal to the number of 

potential adsorption sites plus one, which is high for long 

nanotubes (carbon nanotubes have been grown that are 

longer than 10 centimeters, Zhang et al., 2011).  

 

Figure 3.    Schematic of adsorption and 

desorption on a DNA-wrapped single-walled 

carbon nanotube (Ulissi et al., 2011). The 

arrow points to an open adsorption site. 

The main challenge with implementing control 

systems tasks for process models described by Master 

equations is that the number of states is usually very 

large, often higher than 10
10

. For this reason, few chemists 

and chemical engineers have attempted to solve Eq. 1 

directly, but instead employ kinetic Monte Carlo (KMC) 

simulation, which follows a single realization of the Master 

equation by calling a random number generator to select 

among the possible transitions with probabilities defined 

by the kinetic rate laws for each allowed kinetic event. At 



  

 

 

most one kinetic step can be taken during each time step of 

the KMC algorithm, with the time step (typically on the 

order of 1 ns) selected so that the time simulated in the 

KMC algorithm corresponds to real time (Fichthorn & 

Weinberg, 1991). Although a KMC simulation is usually 

much faster than exactly solving the Master Eq. 1 for each 

possible configuration, a KMC simulation for a process of 

practical importance is typically on the order of a day 

using a personal computer of 2011. Further, if an entire 

state or output distribution is of interest, a large number of 

KMC simulations are needed to generate even an 

approximation for the distributions. If the control objective 

only depends on some statistic of the output distribution, 

then a feedback controller can be designed based on a low-

order “equation-free” model fit to the results of one or 

more KMC simulations (e.g., Kevrekidis et al., 2004; 

Siettos et al. 2003). Alternatively, black-box models can be 

used to replace a full model with a simplified one (Oguz et 

al. 2008). In both equation-free and black-box models, the 

physicochemical relationships between the states and 

controlled variables on the manipulated variables are no 

longer transparent. 

Another challenge is that nanoscale systems typically 

have few variables at the nanoscale available for real-

time manipulation by a digital control system. For 

example, multilayered polyelectrolyte nanofilms for the 

spatially localized release of molecules to kill tumor or 

bacteria cells or promote tissue regeneration are surgically 

implanted into the macroorganism so that no real-time 

variables are available for manipulation (e.g., Macdonald 

et al., 2011; Poon et al., 2011). The only parameters 

available for optimization to produce a desired time profile 

of molecular release are specified during the manufacture 

of the polyelectrolyte nanofilm. As another example, the 

only variable that typically can be manipulated in real-time 

during the rapid thermal annealing of a nano or 

microstructure is the time-varying power to heating lamps. 

A sparsity of variables for real-time manipulation limits the 

degrees of freedom available for control. 

Reduced availability of manipulated variables tends to 

be less of an issue for microscale systems than for 

nanoscale systems. For example, consider that the 

variables available for real-time manipulation in the 

microfluidic platform in Figure 1 are the temperature and 

evaporation rate, which can be implemented by enclosing 

the entire microfluidic system within a box instrumented 

with feedback control of temperature and humidity. These 

manipulated variables, although specified at the 

macroscale, have a direct effect on the solution 

concentrations within each droplet. Although it is difficult 

to specify a different temperature in each droplet in a 

single device due to the high surface area-to-volume ratio, 

the evaporation rate can be specified to be different in each 

droplet by selecting different areas and/or lengths for the 

channel connecting each droplet to the exterior air (see 

Figure 1). The selection of temperature, channel areas and 

lengths, and controlled time-varying evaporation rate 

enables the direct specification of dynamic conditions 

within each droplet. 

Another control challenge is that limited real-time 

measurements are available for most nanoscale systems. 

Sensors require a certain quantity of material to be able to 

produce useful information. For example, no real-time 

sensors are available for measuring the solution 

concentrations in nanoliter droplets. As another example, 

no real-time sensors are available for measuring the 

interior pH or concentrations within multilayered 

polyelectrolyte nanofilms used for the release of growth 

factors, hormones, or pharmaceutical compounds 

(Macdonald et al., 2011; Poon et al., 2011). The limited 

real-time sensors make both identification and control 

challenging. 

 Models for nano and microscale systems have 

significant uncertainties. The distributions of measured 

outputs for nano and microscale systems are often non-

Gaussian, as will be seen in the next section, which is 

incompatible with the most common parameter estimation 

and stochastic control systems techniques (Beck & Arnold, 

1977, Chen et al., 1995). The non-Gaussian distributions 

of the measured outputs as well as nonlinearities in the 

models imply that the probability distributions on the 

model parameters computed from a rigorous parameter 

estimation procedure will typically be non-Gaussian. 

Promising Research Directions 

This section describes some promising approaches for 

addressing the aforementioned challenges to the control of 

nano and microscale systems. While any sufficiently 

general set of systems engineering methods developed for 

multiscale systems automatically applies to molecular, 

nanoscale, and microscale systems, which has been 

discussed in detail in past reviews (Braatz et al., 2006ab), 

general approaches for multiscale systems can fail to take 

advantage of the underlying structure of specific classes of 

nano- and microscale systems that can be exploited to 

greatly facilitate control systems tasks such as parameter 

estimation, experimental design, and feedback control.  

A significant effort has been directed in the last 

decade on exploiting time-scale separation inherent in 

many physicochemical systems to accelerate KMC 

simulations (e.g., see Rao & Arkin, 2003; Rico-Martinez 

et al., 2004; Cao et al., 2005, Chatterjee & Vlachos, 2007; 

Zheng et al., 2008; Rishi et al., 2011, and citations 

therein). Rather than basing the completion of control 

systems tasks on running large numbers of KMC 

simulations to approximate the dynamics of Master 

equations, some recent efforts have been towards direct 

solution of the Master equations that explicitly exploit their 

sparse and highly structured character. One approach is the 

direct numerical solution of Eq. 1 using sparse ordinary 

differential equation solvers (Lakerveld et al., 2011), 

which is applicable for systems with up to tens of millions 

of configurations. Further reductions in computational cost 



  

 

can be obtained using methods that project the state vector 

in the Master equation to a lower dimensional space or 

employ other model reduction algorithms design for direct 

application to the Master equations (e.g., see Peles et al., 

2006; Engblom, 2009; Engblom et al., 2009; Drawert et 

al., 2010; and citations therein). Although there is a limit to 

the complexity of the Master equations that can be solved 

using these numerical methods, this approach is feasible 

for many nanoscale systems of practical importance, and 

numerical algorithms are expected to continue to improve 

over the next decade.  

Another approach for addressing specific classes of 

systems described by Master equations is by the 

derivation of analytical or semi-analytical solutions of 

Eq. 1 by exploiting the structure of the equations. While 

this approach is not applicable to all nano/microsystems, 

analytical solutions can be derived for many applications. 

For example, while the number of states for the nucleation 

in droplets is infinite, with the matrix A in Eq. 2 having 

infinite row and column dimensions, the matrix A is highly 

structured, being both bidiagonal and Toeplitz. For this 

microfluidic system, a probability-generating function 

(Kendall, 1949) can be used to derive a semi-analytical 

solution to Eq. 3 that describes the dynamics of crystal 

nucleation in droplets as 

0
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for all positive integers n (Goh et al., 2010). Numerical 

evaluation of Eq. 5 only requires a small number of 

algebraic operations and the computation of an integral 

whose computational cost at time t can be reduced by 

incorporating the integral computed at the last previous 

time instance for which the integral was computed: 

0 0
( ) ( ) ( )

t t t t

t t
s ds s ds s dsκ κ κ

−∆

−∆
= +∫ ∫ ∫ .    (6) 

The function ( )tκ  and its derivative vary by more than six 

orders-of-magnitude in a typical induction time 

experiment, whose dynamics can be efficiently handled by 

employing an ordinary differential equation solver with 

adaptive time-stepping, 

0
( ) : ( ) ( )

t dI
I t s ds t

dt
κ κ= ⇒ =∫ .    (7) 

The above analytical solutions have been applied to the 

solution of systems engineering problems, such as the 

identification of parameters in nucleation rate expressions 

(Goh et al., 2010) and the determination of upper and low 

bounds on nucleation rates (basically, a state estimation 

problem, Chen et al., 2011a). 

As an example of a different approach in exploiting 

structure, the state matrix A in Eq. 2 corresponding to Eq. 

4 for modeling the adsorption of molecules on a nanotube 

is tridiagonal and highly structured. Equations 4 can be 

equivalently formulated in terms of two discrete population 

balances, with one population being the number of 

adsorbed molecules and the other population being the 

number of open sites (Jahnke & Huisinga, 2007). This 

reformulation facilitates the derivation of an analytical 

solution that is the convolution of binomial distributions 

with parameters NT and  AN θ , the latter of which is 

described by 

( )A
A T A D A

dN
k N N k N

dt

θ
θ θ′ − −=     (8) 

for suitably defined initial conditions (Ulissi et al., 2011). 

As in Eq. 5, the computational cost of computing the semi-

analytical solution of Eq. 8 only requires a small number of 

algebraic operations and the numerical determination of an 

integral. This approach has been applied to the (i) 

maximum likelihood estimation of adsorption rates, which 

have been used to estimate nitric oxide concentration near 

the carbon nanotube, (ii) the quantification of uncertainties 

in these estimates, and (iii) the reconstruction of two-

dimensional nitric oxide concentration fields from arrays 

of carbon nanotubes (Ulissi et al., 2011). 

Many methods are available for exploiting the 

structure of linear ordinary differential equations to derive 

numerical, analytical, or semi-analytical solutions that can 

be applied to the Master equations that arise in nano- and 

microscale systems. For example, the Master equations for 

some nanoscale systems have an A matrix that is symmetric 

circulant, in which case the real Fourier matrix can be used 

to diagonalize the equations, which can be exploited for 

carrying out systems tasks including robust optimal control 

design (e.g., see VanAntwerp et al., 2001, and citations 

therein). Research is expected to continue on fast methods 

for the analysis of Master equations, both in terms of 

general methodology and in addressing specific classes of 

applications, as these methods enable facile application of 

systems engineering. 

Many methods have been developed in recent years 

for addressing the sparsity of real-time manipulating 

variables available in most nanoscale systems. One 

approach is to modify the system boundaries at the 

molecular scale to create desirable feedback interactions 

during manufacturing (Seebauer et al., 2006; 2010). This 

approach of embedded feedback is the application at the 

molecular scale of the autoregulatory feedback paradigm 

developed for macroscale processes many decades ago and 

investigated more recently in tissue engineering and other 

biomedical systems (e.g., see Braatz et al., 1994; Kishida 

et al., 2010; and citations therein). Another interesting 

recent approach is to employ action-at-a-distance 

magnetic or electric fields for real-time manipulation of 

molecular motion or nanoparticles (Solis et al., 2010ab; 

Lakerveld et al., 2011; Probst and Shapiro, 2011). This 



  

 

 

approach provides many more degrees of freedom than 

relying solely on the selection of initial conditions and self-

assembly to attempt to produce a desired positioning or 

structural arrangement of molecules (e.g., such as in Drews 

et a., 2006; 2007; Liu et al., 2009; and citations therein). 

One of the applications of localized feedback or action-at-

a-distance fields of high interest has been in combining 

drug targeting with surface-modified nanoparticles with 

light to cause the nanoparticles to release their payloads or 

greatly increase their temperature, often for the purpose of 

detecting or killing tumor cells (Otsuka et al., 2003; 

Paciotti et al., 2004; Pissuwan et al., 2006; Ghosh et al., 

2008; Liong et al., 2008; Qian et al., 2008). Methods have 

been developed for the robust optimal control of spatial 

fields (Kishida & Braatz, 2009ab; 2010ab), for which the 

manipulated variable is a spatial field, that may be 

potential for the real-time manipulation of molecular 

motion or nanoparticles, either by action at a distance 

(Solis et al., 2010ab; Lakerveld et al., 2011; Probst and 

Shapiro, 2011) or by fluid flow fields (e.g., Tanyeri et al., 

2010; Mathai et al., 2011).  Finally, passive control of 

microscale systems can be achieved by appropriate design 

of the active volume (Marre & Jensen, 2010). 

Sensor technologies are being developed that greatly 

expand the number and quality of real-time measurements 

in nanoscale and microscale systems. For example, DNA-

wrapped single-walled carbon nanotube-based sensors 

have been developed that are able to measure the 

adsorption and desorption of single molecules (Boghossian 

et al., 2011). These sensors can be arranged into a two-

dimensional (2D) array, to enable the real-time 

measurement of the 2D spatial variation of molecules in 

nano- and microscale systems. The nanotubes can be 

chemically modified or coupled with strong-binding 

enzymes or fluorescent dyes to measure in real-time the 

spatial concentration fields of different molecules (e.g., see 

Ahn et al., 2011; Heller et al., 2011; Ulissi et al., 2011; and 

citations therein). 

A strategy for improved estimation of model 

parameters from limited sensors in nanoscale systems is 

to abstract additional information from the noise 

statistics. For example, the estimation of two model 

parameters from repeating the exact same experiment with 

only one datum per experiment has been demonstrated for 

the high-throughput device in Figure 1 (Goh et al., 2010). 

The two model parameters were associated with a 

nucleation rate described by classical nucleation theory 

and the single datum per experiment was the measured 

induction time. In a macroscale system, it is usually 

impossible to estimate two model parameters from 

repeated experiments in which only one datum is measured 

during each experiment, as the measurement noise and 

unmeasured disturbances characterize the differences in 

the measured value in each experiment, and their effects on 

the measured value are stochastically different in each 

experiment. In such systems, extra experiments improve 

the accuracy of the stochastic model for the measurement 

noise and disturbances but do not provide information on 

the nominal model. 

The situation is very different at the molecular scale, 

in which phenomena are inherently stochastic. For these 

systems, stochastic variations in experimental 

measurements can be separated into two types of sources: 

(1) intrinsic variability, which arises simply as a 

consequence of the stochastic nature of molecular events, 

and (2) extrinsic variability, which is a consequence of 

variability in the external environment. Characterization 

of the intrinsic variability through numerical or 

analytical solutions of the Master Eqs. 1 makes it is 

possible to distinguish between the two types of sources 

of variability. Our group has applied such an approach to 

separate the variability due to imperfections in our 

experimental setups from variability associated with 

molecular events for the detection of single-molecule 

adsorption and desorption of nitric oxide on DNA-wrapped 

carbon nanotubes (Ulissi et al., 2011). Such an approach is 

expected to be useful in many systems in nanoscale science 

and technology. 

For these systems, the intrinsic stochastic variations in 

the measured values are direct functions of the 

physicochemical parameters, and hence contain 

information on the parameters. In the crystallization 

experiments, the analytical solution for the stochastic 

variation as a function of the nucleation model parameters 

can be derived from the Master Eq. 3, so that the model 

parameters can be estimated accurately by fitting the 

distribution of induction times obtained by repeating the 

exact same experiment multiple times (Figure 2). In 

principle this approach of improving the estimation of 

physicochemical parameters from the stochastic 

fluctuations in the measurements can be applied to any 

molecular system described by Master equations, 

regardless of whether the Master equations are solved 

analytically, such as for the micro-crystallization process 

and the single-molecule sensing system in Figure 3 

described by Eq. 4, or solved numerically either by direct 

solution of the Master equations or by indirect solution via 

kinetic Monte Carlo simulation. Parameter estimates in the 

process model are estimated from the distribution of 

measurements rather than mean values. In some sense, 

instead of trying to filter away the noise as in a macroscale 

system, the model parameters in many nanoscale systems 

can be estimated from the noise. The potential 

improvement in the accuracy of the parameter estimates 

obtained by exploiting the additional information in the 

“noise” will depend on the details of the particular system.  

Many high-value applications of carbon nanotubes 

such as in nanoelectronics require the separation of 

nanotubes in terms of their chirality, as this molecular 

structure is directly related to their electronic structure, 

adsorption kinetics, and chemical reactivity (e.g., see Nair 

et al., 2006; 2007; Doyle et al., 2008; Sumpter et al., 2008; 

Sgobba & Guldi, 2009; Chen et al., 2010; 2011b; Liu & 

Zhang, 2010; and citations therein). Typically the 



  

 

nanotubes are separated by the addition of surfactants 

followed by centrifugation, which produces a gel with each 

position along the gel corresponding to a different mixture 

of chiralities. Various spectroscopic methods are applied to 

each position, with the objective of estimating the 

concentrations of nanotubes with each chirality. The 

amount of peak overlap in the spectra is very high and 

while advances have been made in the deconvolution of 

the spectra (e.g., see Nair et al., 2008, and citations 

therein), more advances are needed to reduce the large 

uncertainty in some of the estimated concentrations. 

Advanced control of many nanosystems will require 

significant advances in sensor calibration that exploit all 

aspects of the sensor physics, such as the effect of defects 

in carbon nanotubes on their spectra, while carefully 

quantifying uncertainties in the estimates. 

Polynomial Chaos Expansions (PCEs) is an approach 

for uncertainty analysis that is applicable to dynamical 

systems described by continuum models with model 

parameters that belong to non-Gaussian distributions 

(Wiener, 1938; Phenix et al., 1998). In recent years PCE-

based systems and control methods have been developed 

(see Nagy & Braatz, 2007; 2010; Fisher & Bhattacharya, 

2009; Templeton et al., 2010; and citations therein), that 

extend techniques such as robust nonlinear control and 

model predictive control to handling non-Gaussian 

distributions. Alternative approaches for addressing 

systems with non-Gaussian distributions such as particle 

filters (e.g., Lang et al., 2007 and citations therein) have 

also become popular. As such distributions also appear in 

nano and microscale chemical systems, it seems likely that 

some of the PCE-based methods will be useful for 

addressing their associated systems and control problems. 

Conclusions 

Challenges in the control of nano and microchemical 

systems are high model state dimensionality, limitations in 

real-time measurements and manipulated variables, and 

significant uncertainties described by non-Gaussian 

distributions. Promising directions for dealing with these 

challenges include exploiting model structure of the 

stochastic model equations, employing molecular 

modification at system boundaries to create desirable 

feedback interactions within the material, and manipulation 

via magnetic and electric fields. These approaches included 

the numerical or analytical solution of Master Eqs. 1 for  

(i)  distinguishing between fundamental intrinsic 

variability and extrinsic variability, and  

(ii)  abstracting information on fundamental model 

parameters from the intrinsic variability or “noise.” 

Methods were reviewed for the numerical and analytical 

solution of the Master Equation that commonly arises when 

modeling nano- and microscale chemical systems, with the 

analytical methods being (i) matrix exponentials, (ii) 

probability generating functions, (iii) reformulation as 

discrete population balance equations, and (iv) exploiting 

symmetries. While these approaches will not apply to all 

nano- and microscale systems, our experiences is that the 

methods apply to a surprisingly large number of chemical 

systems, with some examples of such systems given in this 

paper. All of the approaches used for directly solving 

Master equations can be directly applied to any systems 

problem, such as parameter estimation, quantification of 

uncertainties in model parameters, state and output 

estimation, optimal design, and optimal state feedback 

control. This paper described some of these applications of 

systems engineering to nano- and microscale chemical 

systems, including to carbon nanotube-based devices and 

microfluidic systems. Many more applications of systems 

engineering to nano- and microscale chemical systems by 

direct solution of Master equations are expected in the near 

future. 

One of the messages of this paper is to embrace the 

non-Gaussian stochastic phenomena that occur in nano- 

and microchemical systems; that stochasticity if understood 

fundamentally can be more an asset than a hindrance. A 

way to develop this fundamental understanding of intrinsic 

variability is to direct numerical or analytical solution of 

the stochastic equations (Eq. 1) that describe the kinetic 

phenomena at these length scales. For problems in which 

such direct methods are not applicable, polynomial chaos 

expansions was suggested as a potential approach for 

addressing non-Gaussian distributions during state and 

output estimation and optimal feedback control design. 
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