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Abstract 

Near-infrared, Raman, fluorescence and X-ray fluorescence spectra of multiple soy hydrolysate lots 

manufactured by different vendors were analyzed for comprehensive characterization of raw materials 

used in mammalian cell culture processes. The variability of soy hydrolysates, as well as the correlation 

between multiple spectra and cell culture performance was addressed. The identified compositional 

variability was further analyzed in order to estimate the growth and protein production of two 

mammalian cell lines. Multiple spectral platforms were compared with each other in terms of their 

estimation capability, and finally integrated into a unifying prediction model using data fusion strategies. 

The performance of the resulting models demonstrated the potential of data fusion of multiple 

spectroscopies as a robust lot selection tool for raw materials while providing a biological link between 

the chemical composition of raw materials and cell culture performances. 
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Introduction

Therapeutic recombinant proteins, such as monoclonal 

antibodies, are often produced from mammalian cell 

culture process using Chinese Hamster Ovary (CHO) cells. 

CHO cell based platform provides a few attractive 

features: easy maintenance, safe use in humans, capability 

of post-translational modifications and acceptable 

regulatory standards. Along with a rapidly growing 

demand for biopharmaceuticals, considerable effort has 

been devoted to improving the productivity of CHO cells 

by developing proficient cell lines, formulating culture 

medium, and optimizing process conditions (Kim et al., 

2004). Despite these significant advances, however, the 

performance of mammalian cell culture processes are 

highly variable, often resulting in inconsistent critical 

quality attributes for their final products (Rathore et al., 

2010).  

One of the most common sources of variability in 

mammalian cell culture processes is the composition of the 

raw materials or culture media, which are complex 

mixtures of nutrients. In many commercial processes that 

are producing biopharmaceuticals, variability in critical 

raw materials can have a great impact on the product 

quality as well as process, since most manufacturing 

processes are kept under tight controls with fixed operating 

conditions to meet strict regulatory requirements. Plant 

protein hydrolysates are often supplemented with culture 

medium to improve protein production from recombinant 

CHO cells in serum free environment (Lu et al., 2007). 

They have large influences on mammalian cell cultures. 

The drawback of using plant hydrolysates is that they often 

exhibit considerable variability in their growth-promoting 

and production-enhancing activities due to their 

compositional uncertainty. Furthermore, in many cases, a 

comprehensive analysis of these complex materials is 

rather time consuming, complicated and expensive, so it is 

impractical for routine use.  

Application of spectroscopic techniques to raw 

materials can provide fast, simple and non-destructive 

ways to measure physicochemical properties or 

compositional variability of them (Kirdar et al, 2010; Ryan 



  
 

 

et al., 2010). A simple and convenient characterization tool 

can eventually lead to the reduction of variability in the 

final product quality of the therapeutic proteins. 

Furthermore, the use of different spectroscopy platforms 

can provide complementary information regarding the 

chemical composition of raw materials. However, until 

now, only a few studies have been made for the use of 

multiple spectra in characterizing the raw materials.  

Motivated by the importance of rapid media 

characterization in bioprocesses, a comprehensive data 

fusion strategy based on the multiple spectroscopic 

measurements of soy hydrolysates was employed in this 

study in order to distinguish the good and bad lots. Current 

methods to evaluate the quality of soy hydrolysate are 

mostly based on time consuming bioassays. Therefore, the 

application of multiple spectroscopic techniques, such as 

near-infrared, Raman, 2-D fluorescence and X-ray 

fluorescence (XRF) system can be a good alternative to 

these labor-intensive bioassays. Variability of soy 

hydrolysates, as well as the correlation between multiple 

spectra and cell-based assay results was first addressed 

using principal component analysis. Then, the spectral data 

sets were combined with chemometric tools to predict the 

cell growth and titer of two different cell lines. Different 

spectroscopic platforms were compared with each other in 

terms of their predictability, and the efficient methods to 

combine these multiple spectra were investigated using 

various data fusion strategies. 

Materials and Methods 

Samples 

A total of 15 soy hydrolysate samples were obtained 

from different manufacturing lots produced by four 

vendors (A, B, C and D). The number of lots for each 

vendor was dependent on the availability of samples; 

therefore, nine, two, two and two lots are used for vendor 

A, B, C and D, respectively. Detailed composition, and 

specific vendor information, for each soy lot were not 

known for proprietary reason. All samples were stored in a 

refrigerator at 4
o
C upon their arrival and were equilibrated 

at room temperature prior to the subsequent analysis. 

Spectral Acquisition 

Near-Infra spectra of soy hydrolysates were measured 

on a Bruker MPA FT-NIR spectrophotometer (Bruker 

Optics). To measure near-infrared spectra, all of the 

samples were packed into 22 mm glass vials and then 

scanned in the wavenumber range:  12500 - 4000 cm
-1

, 

using the reflectance mode. Here, the number of co-added 

scans and resolution were 64 and 8 cm-1, respectively, 

which were sufficient to achieve a high signal to noise ratio 

for the given samples.  

Raman spectra of soy hydrolysate were measured on a 

RXN3 Raman spectrophotometer (Kaiser Optical Systems, 

Inc.) equipped with an optical fiber probe. Due to the large 

fluorescence of soy hydrolysate powder samples, all 

spectra were measured after dissolving the solid powder 

into the distilled water with concentration of 10 g/l.  Here, 

the spectral range was 100 – 1900 cm
-1

 with resolution of 1 

cm
-1

, and 32 co-added scans were taken for each sample 

with exposure time of 30 seconds.  

2D-fluorescence spectra were measured on a LS45 

fluorescence spectrometer (Perkin Elmer, Inc.) by 

employing multiple excitation wavelengths. All spectra 

were measured after dissolving the solid powder with 

concentration of 1 g/l. Excitation and emission 

wavelengths employed here were 200-450 nm (increment 

of 10nm) and 200-800 nm (increment of 1nm), 

respectively, and scanning speed was set to 1000 nm/min. 

XRF spectra of soy hydrolysate were measured on a 

Niton FXL XRF analyzer (Thermo Scientific), equipped 

with geometrically optimized large area drift detector. To 

measure XRF spectra, all samples were packed into 8 mm 

cup and then scanned with sample spinner. Here, instead of 

utilizing raw XRF spectra, elemental analysis data 

provided by the built-in calibration curves of the Niton 

FXL analyzer were directly used. Note that all spectral 

measurements were conducted in triplicate except for XRF 

analysis. 

Bioassays 

To evaluate the culture performance of CHO cells 

grown from the different soy hydrolysate lots, biological 

assays were performed based on a dose response model. 

Here, two different CHO cell lines (A and B) expressing 

immunoglobulin (IgG) were employed. In the bioassays, 

the expanded seed cells were first washed and inoculated 

into replicate culture tubes, each of which contained 30 ml 

of the test medium supplemented with different soy 

concentrations (0, 1, 2.5, 5, 7.5, 10, 12.5 and 15 g/l) in 

duplicate. After seeding the cells, the cultures were grown 

in a shaking incubator at 200 rpm under the conditions of 

37 
o
C and 5 % CO2; they were harvested after 7 days for 

analyzing the growth and productivity of the cells. Integral 

Viable Cell Density (IVCD) and IgG concentration were 

measured from the harvested cells using Cedex (Roche 

Innovatis, Germany) and Qctet QK (ForteBio Inc., USA), 

respectively as quantifiable culture performance indices.  

Multivariate Data Analysis 

Prior to conducting the multivariate analysis, all the 

spectra were preprocessed in order to suppress unwanted 

variations originating from light scattering, background 

drift and instrumental artifacts. For this, multiplicative 

scatter correction combined with the first derivative 

method was applied to the near-infrared spectra. On the 

other hand, baseline correction with polynomial fitting and 

total intensity normalization were utilized for Raman 

spectra. In addition, Savitzky-Golay smoothing with 

removal of Rayleigh and Raman scattering were carried 



  

 

out for 2-D fluorescence spectra, followed by unfolding of 

2-D map of each sample into one vector. 
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Figure 1. Schematic diagram of multivariate data 

analysis conducted in this study 

 

Then, multivariate data analyses were conducted on the 

multiple experimental data independently using principal 

component analysis (PCA) and partial least squares (PLS) 

methods (Eriksson et al., 2001) as shown in Figure 1. PCA 

and PLS are the useful multivariate analysis tools for data 

visualization and dimensionality reduction, which can be 

achieved by projecting the raw data into a new low-

dimensional principal component or latent variable space. 

Therefore, the datasets with thousands of variables can be 

easily characterized by a small set of new variables, called 

scores. PCA is usually used to analyze a single dataset, 

while PLS is utilized for the regression of two datasets 

which consist of predictor (X) and response variables (Y). 

Here, PCA was employed to identify the variability of the 

soy hydrolysate lots by the multiple spectra, and PLS is 

used to estimate the cell culture performance from each 

spectral measurement. In both methods, 5-fold cross 

validation was utilized to determine the optimal number of 

principal components (PC) or latent variable (LV) for PCA 

or PLS models. In addition, the prediction accuracy of the 

PLS model was quantified by either R
2
 or Q

2
 (≤1) of the 

leave-one-out cross-validation (Eriksson et al., 2001). 

Then, the validity and the statistical significance of the 

developed PLS models were confirmed by using 

permutation test (Eriksson et al., 2001).  

To combine different spectra measured by near-

infrared, Raman, 2-D fluorescence and XRF analyzers, 

consensus PCA (CPCA) and multi-block PLS (MBPLS) 

were employed (Westerhuis et al., 1998). In these multi-

block methods, multiple blocks of either X or Y datasets 

are simultaneously modeled, thus four spectroscopic data 

can be efficiently fused to generate a single unified 

estimation model. To select the optimal number of latent 

variables in CPCA and MBPLS, 5-fold cross-validation 

was used again, and then permutation test was conducted 

to examine the validity of the constructed MBPLS model. 

 Note that all calculations for multivariate analyses 

were conducted using PLS toolbox (Eigenvector, Inc.) and 

home-written routines in MATLAB (Mathworks, Inc.). 
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Figure 2. Preprocessed spectra of different soy 

hydrolysate lots. (a) near-infrared; (b) Raman; (c) 

fluorescence spectra. 

Results and Discussion 

Near-infrared, Raman, fluorescence and XRF spectra 

Figure 2 shows the near-infrared, Raman and 

fluorescence spectra obtained from the different soy lots. 

In the near-infrared spectra, a spectral region below 1000 

cm
-1

 was discarded from the entire spectra because the 

signal-to-noise ratio was very low in that region. In 

addition, the regions below 850 cm
-1

 and above 1550 cm
-1

 

from the Raman spectra were also discarded due to the 

artifacts. The final spectra shown in Figure 1 clearly 

illustrate that there are noticeable variations in several 

regions, which correspond to the numerous chemical 

components contained in the soy hydrolysates. 

Table 1 presents the summary of elemental analysis 

measured by XRF. In XRF data, chemical elements, whose 

concentrations (%) were smaller than the error range 

(provided automatically by instrument) with more than 

50% of total number of the samples, were discarded, and 

only the elements having significant variations were 

included for the subsequent analysis. Pearson correlation 

coefficients were calculated to investigate the correlation 

between XRF data and bioassays, and the results revealed 

that chemical elements of tungsten, calcium, chloride and 

iron have a significant effect on the growth and 

productivity of two mammalian cell lines (p-value < 0.01). 



  
 

 

Table 1. Summary of XRF analysis.  

element Mean Standard 

deviation 

Max. 

 

Min. 

 

Ag 0.0033 0.0012 0.0070 0.0020 

Balance
*
 78.2 4.617 84.3 66.2 

Rb 0.0023 0.0008 0.0040 0.001 

W 0.0210 0.0056 0.0330 0.0150 

Zn 0.0039 0.0045 0.0130 0 

Cu 0.0044 0.0029 0.0100 0.001 

Fe 0.0136 0.012 0.0370 0 

Ca 0.382 0.168 0.758 0.112 

K 12.9 3.07 19.8 9.73 

Al 0.0917 0.0575 0.238 0.0360 

P 1.47 0.370 2.47 1.15 

Si 0.0152 0.0229 0.0610 0 

Cl 3.67 2.27 7.54 0.131 

S 3.20 1.18 7.61 1.32 

*Balance was calculated by [100 – sum of all species] (%) 

Bioassay Data 

Figure 3 shows results obtained from the cell culture-

based bioassays, which were performed to evaluate the 

effect of different soy hydrolysate lots on mammalian cell 

culture processes. For this, after seven days of inoculation, 

IVCD and IgG quantities were measured from each of the 

culture tubes, where two CHO cell lines were cultivated in 

a medium supplemented by each of the soy hydrolysate 

lots with varying concentrations.  

In the resultant response curves, shown in Figure 3, it 

could be observed that there is high variability in the 

multiple soy hydrolysate lots with each having different 

effects on the corresponding mammalian cell cultures. In 

overall, the variability of the soy lots in promoting growth 

and productivity of mammalian cells became more distinct 

at higher dosage region, although the IVCD profiles show 

more apparent dosage-dependent responses to the 

variability of the soy lots, compared to the IgG profiles. In 

addition, some lots even exhibited inhibitory cell growth 

and declined IgG production at high dosage region, 

indicating that these lots can potentially influence 

subsequent mammalian cell culture process in a negative 

way. On average, the soy hydrolysate lots from vendor A 

exhibited better performance by stimulating the cell growth 

and protein production than the remaining ones, indicating 

the effects of different manufacturing vendors. This was 

further confirmed by hierarchical clustering with Euclidean 

metric and average linkage method. The results revealed 

that good, intermediate and poor performing lots could be 

discriminated mostly by their vendors although more 

samples are needed to generalize this observation (data are 

not shown). The above results demonstrate that variations 

of soy hydrolysate lots supplemented in the cell culture 

medium can induce alterations in the growth and 

productivity profiles of mammalian cell cultures, stressing 

the necessity of efficient screening tools for the 

corresponding raw materials. 
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Figure 3. Dose-response curves of IVCD and IgG 

profiles obtained by bioassays. (A) IVCD profiles for cell 

line A; (b) IgG profiles for cell line A; (c) IVCD profiles 

for cell line B; (d) IgG profiles for cell line B. 

Identification of variability in soy hydrolysate lots 

In order to examine the feasibility of each 

spectroscopic technique in characterizing the variability of 

the soy hydrolysate lots, PCA models were constructed 

separately on each spectral data set. Figure 4 shows the 

resultant score plots, which describe the variability of 

spectra by two major PCs. Several distinct groups of the 

soy lots were clustered together according to their 

manufacturing vendors, except for vendor B where one of 

the lots exhibited poorest performance in the bioassay 

results. For the comparison of these results with their 

explicit quality in mammalian cell cultures, additional PCA 

model was constructed on the bioassay profiles as shown 

in Figure 4 (e). Surprisingly, there was high similarity in 

the clustering patterns between the different spectral data 

sets and bioassays, especially for the near-infrared and 

Raman spectra. This might illustrate that the different 

spectroscopic techniques employed here have capability of 

capturing the compositional differences among different 

soy lots originating from lot-to-lot and vendor-to-vendor 

variability. 

Additionally, to further understand whether there are 

overlapping features among the different spectral datasets, 

CPCA model was constructed on the combined dataset of 



  

 

near-infrared, Raman, fluorescence and XRF 

measurements. Four PCs were selected as an optimum, 

explaining 89.2% of total variance. Figure 5 represents 

cumulative percent variance explained by each PC for each 

data block. In this model, first and second PCs (PC1 and 

PC2) mainly described the Raman and fluorescence spectra, 

indicating that they might capture common features from 

the soy hydrolysates. On the other hand, third PC mainly 

described the variance of near-infrared spectra, and forth 

PC explained XRF spectra, differentiating them from the 

remaining ones. This result illustrates that they might have 

complementary information about the compositional 

variability of the soy, and justifies the fusion of different 

analytical techniques employed here for screening the raw 

material lots. 
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Figure 4. Score plots obtained by separate PCA 

models on (a) near-infraed; (b) Raman; (c) fluorescence; 

(d) XRF; (e) bioassay profiles. blue-vendor A; pink-vendor 

B; yellow-vendor C; green-vendor D. 

Estimation of cell culture performance 

In this section, the growth and productivity profiles of the 

different cell lines were estimated using combination of 

multiple spectra in order to evaluate the performance 

capability of raw materials. For this, several PLS models 

were constructed with different combinations of the 

multiple spectra in order to predict each of the IVCD and 

profiles of the two different CHO cell lines under the 

condition of varying soy dosages.  
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Figure 5. Cumulative percent variance explained by 

CPCA model for each spectral data block. 

 

First, the prediction performance of the PLS models, 

which estimates either the IVCD or IgG values of different 

cell lines, was evaluated by employing a single 

spectroscopic technique. In Figure 6, Q
2
 values of the 

models were displayed for two soy dosages (5 and 10 g/l) 

as a representative case. As can be seen from this figure, 

the prediction accuracy of PLS model was generally better 

at high dosage regions and declined as the soy dosage 

decreased. This is especially true in the IgG models of cell 

line B, where Q
2
 of the most models exhibited negative 

values at low concentration ranges. These results are in 

line with the analysis of variance (ANOVA) of the 

bioassays. This also revealed that there were no significant 

effects from soy hydrolysate at lower concentration ranges 

(p-value>0.05, data are not shown). Thus, the variation of 

cell culture performance induced by different soy lots was 

less pronounced at lower concentration ranges, and the 

quality of soy hydrolysates in the cell culture processes 

might not be adequately predicted. The PLS models 

constructed here correctly captured these phenomena, 

illustrating the validity of the developed statistical models. 

Among the different spectroscopic measurements, in 

general, near-infrared and Raman spectroscopy provided 

most reliable estimations compared to the other two 

spectra, regardless of differences in the cell lines and soy 

dosages. However, in some cases, fluorescence or XRF 

spectra gave more accurate prediction, highlighting the 

needs of combining the multiple spectra in order to obtain 

more robust estimation model.  

To examine the different data fusion strategies for the 

multiple spectra, all possible combinations among four 

spectra, such as near-infrared (N) + Raman (R) or near-

infrared (N) + fluorescence (F) + XRF (X) were made and 

their prediction accuracy represented by Q
2
 was examined 

as shown in Figure 6, where only the cases of two soy 

dosages (5 and 10 g/l) are represented due to the space 

limit. In general, the advantages of combining the multiple 

spectra could be seen in most cases by improving the 

prediction accuracy of the estimation models, but there was 

no unique combination method which dominates over the 

others under the various conditions (i.e. two cell lines and 

different dosages). However, among different 

combinations, fusion of the near-infrared spectra with 

others generally showed the best prediction performance. 



  
 

 

As illustrated in the previous section of CPCA model, 

near-infrared spectra did not share the common features 

with the other spectra, so the combinations with other 

datasets might provide some complementary information 

about the soy hydrolysates, resulting in the improved 

prediction accuracy. Therefore, incorporation of the near-

infrared spectra with other sources of spectroscopic 

techniques might be an optimal data fusion strategy in 

constructing the prediction models for estimating the 

growth and productivity of mammalian cell cultures. 

Overall, the prediction powers for most PLS models 

were acceptable at high dosage regions, showing there is a 

high correlation between the variability of raw materials 

and the resultant cell culture performance. In some models, 

the prediction accuracy was quite high (Q
2
>0.8), 

suggesting that these models can be used to estimate cell 

culture performance directly from the multiple spectra 

instead of utilizing time-consuming bioassays. Considering 

that the bioassays implemented here took seven days to 

complete, the fast and simple nature of the spectroscopic 

techniques poses a great potential for the use of them as a 

real-time or near real-time inspection tool of the incoming 

raw material lots in mammalian cell cultures. At the same 

time, the procedures used in the identification of the lot or 

vendor differences can be ideally combined with real-time 

multivariate statistical control schemes, which might gain 

another benefit in the manufacturing processes of raw 

materials. 
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Figure 6. Prediction performance (Q

2
) of PLS models. 

(a) IVCD of cell line A; (b) IgG of cell line A; (c) IVCD of 

cel line B; (d) IgG of cell line B. 

 

Conclusion 

In this study, the multiple spectra of different soy 

hydrolysate lots was analyzed in order to develop a fast 

screening tool for the raw materials in mammalian cell 

culture processes. By using a chemometric approach, it 

was demonstrated that data fusion of different 

spectroscopic technique can be used to reveal lot-to-lot 

variability, as well as vendor-to-vendor differences of soy 

hydrolysate, which cannot be avoided for these chemically 

undefined raw materials. At the same time, the prediction 

models for estimating cell growth and productivity of 

mammalian cell cultures from near-infrared spectra were 

constructed, providing estimation of the cell culture 

performance under conditions of varying soy dosages in a 

cell line-specific manner.  
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