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Abstract
This paper discusses theoretical foundations for the nmaglelnalysis and control of chemical process networksatet
tightly integrated through complex material, energy arfdrimation flows. The physical behavior of process networks
is described using fundamental concepts from classicambeéynamics, while time-scale decomposition and singular
perturbation theory provide the basis for exploring thevoek-level dynamic behavior that emerges as a result of tigh
inventory integration, and developing appropriate reduaaler models and a hierarchy of control systems for mangagi
inventories and inventory flows. Finally, ideas from mobdabked networked control and Lyapunov theory are leveraged
to develop an integrated control and communication styatiegt manages the information flows between the network
components and explicitly accounts for communication trairss.
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Introduction between the network nodes, and the network is at equilibrium
,&en these driving forces are zero (classic examples ieclud

components together via material and information strea id flow driven by a pressure gradient and heat flow gen-

The resulting networks integrate physical devices, compu?lrea;ﬁd Eglgntegrt)ﬁir:ggtz g(;?d'Zg?ﬁecz(reen:fralep;?:;?:s p:ants
tion and communication. They represent traffic flow, interng - oY 9 gory, y 9 oy

communication, chemical process plants, electrical gsds |cfa_l ?ystems tr;azlnvzlve f[:omplii(, d|st|r |bu(tjegt?rrangggfbn ]
cial, biological or financial systems (Ydstie, 2004).Theeo of inferconnected subsystems (Amaral an Ino, &

mon, underlying trait of all such systems is that each node Héang et al., 2007). The integration betyveen th? constituen
storage capacity and the ability to transform the storeij}yentsubsys'[e.mS th_r ough mass, energy and information ﬂ.OWS and
while the connections between the nodes provide means Ocrycle gives nse to a specific, network-level dynamicsl an
transportation. The dynamic behavior of a network is ush-e _ass_omated need to account for and accommodate th_|s be-
ally quite different from any behavior which can be extralctg] avior in network-level .con_trol structgres, and inforroati

from the individual sub-components or small groups of sucef?fChange and communication strategies.

!n fact, the network may learn and adapt §imply by adjust- Control and supervision of networked process systems
ing (controlling) the strength of the connections betwdn tis a challenging problem that requires tight integration of

sub-systems. Its behavior may also exhibit surprising stbu

o th that individual ; tail with computing, communication, and control into different lev-
ness In the sense that Indlvidual components may tall WinQi ¢ plant operations and information processes. The chal
significantly altering the performance of the entire system

lenge in dealing with networked systems stems not only from
This paper focuses on a particular class of networltee complex dynamic behavior of the component subsys-
called chemical process networks. At the fundamental JeveiIms — due, for example, to nonlinear dynamics, uncertainty
the dynamic behavior of process networks is characterigecdmd constraints, which make the individual units difficolt t
inventory and information exchanges between units (the nedntrol — but also from the interconnections which can cre-
work flow). Inventory flow is driven by potential differenceste new, more complex dynamics, amplify instabilities and

Large scale systems are created by connecting simr\ﬁf
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potentially exacerbate disturbance and failure propagati characterized stability and performance properties ($uh a
across the entire network. El-Farra, 2008a,b, 2009, 2010a,b,c, 2011). These effots a
motivated by the increased reliance in the process in@sstri
Over the past two decades, the fundamental and pragti-sensor and control systems that are accessed over shared
cal challenges associated with control of networked p®cegdred or wireless communication networks instead of ded-
systems have been the focus of significant research acliwated links €.g., Song et al., 2006), as well as the recent
ties in the process control community and have motivateglis for expanding the traditional process control and op-
many research studies on the design of distributed and étations paradigm in the direction of smart plant operation
pervisory control schemes for process networks. Traditiqe.g., Ydstie, 2002; Christofides et al., 2007). A key com-
ally, the control of plants with geographically-distrikdtin- ponent of this paradigm is the deployment and integration of
terconnected units has been studied within either the cagtworked sensors and actuators in process control systems
tralized or decentralized control frameworks. In the cetp achieve tighter integration of process operations véti-r
tralized setting, all measurements are collected and sentire information and help realize objectives that cannot be
a central unit for processing, and the resultant control-comet otherwise, including proactive fault-tolerance anal-re
mands are then sent back to the plant. While centralized c@nve plant reconfiguration based on market demand changes.
trol is known to provide the best performance — because it This paper seeks to develop a unified framework for the
imposes the least constraints on the control structure — fhgdeling, analysis and control of process networks whose
computational and organizational complexity associatiéll Weomponent subsystems are tightly integrated through mate-
centralized controllers often makes their Imp|ementam)-n riaL energy and information flows and recyc'e_ These Sys-
practical. Also, the consequences of failures in a ceatéli tems can be thought of in terms of a two-tier hierarchy,
controller can be detrimental to the entire plant. These cQphere in one tier the processing units exchange material
siderations have motivated significant work on decenesdlizang energy subject to physical laws and constraints, while
control. In this paradigm, the plant is decomposed intoj@ another tier the control systems exchange information
number of simpler subsystems (typically based on functiongrough some communication medium subject to communi-
and/or time-scale differences of the unit operations) with cation constraints. The developed framework brings tagyeth
terconnections, and a number of local controllers are c@gmcepts and tools from classical thermodynamics, singula
nected to each distributed subsystem with no signal trans{grturbations, and networked control. Classical thermody
taking place between different local controllers. Decalntr namics provides the framework for deve'oping a physica”y_
ized control of multi-unit plants can reduce complexitytie t hased representation of process networks, while timescal
controller design and implementation, and can also provig€composition and singular perturbation theory provide th
ﬂeX|b|I|ty in dealing with local controller failures. HOVVer, basis for exp|oring the impact Of ught inventory integra_
since in this structure the interconnections between the cgon on the network dynamics, and developing appropriate
stituent subsystems are totally neglected, the closeplged  reduced-order control systems for managing the inventory
formance of the plant may deteriorate, and in some cases fitfgs. Finally, ideas from model-based networked control
bility may be lost. Significant research work has explored ifhd Lyapunov theory are leveraged to develop an integrated
depth the benefits and limitations of decentralized colarsl control and communication strategy that manages the infor-
as well as possible ways of overcoming some of their limitgsation flows between the network components in a way that

tions (seee.g., Price et al., 1994; Sandell Jr et al., 1978kes communication constraints explicitly into account.
Siljak, 1991; Lunze, 1992; Sourlas and Manousiouthakis,

1995; Luyben et al., 1997; Cui and Jacobsen, 2002; Skéructureand Connectivity in a Process Network

gestad, 2004; Huang and Huang, 2004; Kariwala, 2007, andFigure 1 shows the architecture of a decentralized control
the references therein) . In recent times, there also has b&estem for a chemical plant. It consists of severals layeis t
significant and growing interest in studying plant-wide comllow operators and algorithms interact with the chemical
trol problems within a diverse array of frameworks, inclugrocess in real time. The interface layer converts measure-
ing optimization-based distributed model predictive coht ments into signals that can be interpreted by the supegvisor
(see, for example, (see, for example Katebi and Johnscontrol and data acquisition (SCADA) system. SCADA per-
1997; Camponogara et al., 2002; Venkat et al., 2005; Stewfarms low level control that adjust pumps, valves and other
et al., 2010; Maestre et al., 2011; Christofides et al., 2014§tuators in response to measurements. They contain pro-
passivity-based control (see, for example, (see, for elamgrammable logic control systems to ensure safe and reliable
Hangos et al., 1999; Garcia-Osorio and Ydstie, 2004; Jiiperation, perform supervisory control tasks, send and re-
son and Ydstie, 2007), agent-based systems (Tatara etcelve data from the communication system through Fieldbus
2005; Tetiker et al., 2008), and singular perturbation fottEC 61158) or similar communication protocols that allow a
mulations (Kumar and Daoutidis, 2002; Baldea et al., 2008ide range of network communication topologies. PID con-
Baldea and Daoutidis, 2007). In addition to these worksollers and to an increasing degree more advanced process
research has recently begun to integrate and address coonirol systems can be connected directly to Fieldbus or al-
munication issues in the plant-wide control problem (e.gow communication to Fieldbus devices through OPC as in-
resource constraints, real-time scheduling constragatisy- dicated in the figure. In a typical chemical process appli-
munication delays and disruptions, etc.), leading to the dmtion there may be several thousand such devices and and
sign of networked plant-wide control systems with expljeit algorithms connected into a dynamically changing network



that integrates the physical process with communicatiah an As a consequence, in the case of process networks, the
control devices of ever increasing complexity. How such nebompensation of disturbances at the unit level involves not
works can be designed, maintained and operated is at presaiyt obtaining measurements ekternaldisturbances, but
an open problem and faults and poor performance often resilgp obtaining state information from the units that are di-
when single devices or communication between devices fadlctly connected and/or in the physical proximity of thetuni
The objective of this paper is to discuss how such networsinterest. Naturally, a tradeoff exists between achiévab
can be modeled and controlled usign ideas from nonlineantrol quality and thextentand frequencyof information
control theory and time-scale decomposition. transfer (note that in modern plants, information exchange
Chemical plants consist of a network of interconnectedcurs over a data bus/network, whose bandwidth may be
process units (Figure 2), which interact dynamically tlylou limited).
material, energy and information streams. At the system Controlling network nodes with a high degree of connec-
level, such dynamic interactions contribute to the emergenivity (i.e.,featuring more than a single input and a single out-
of a complex, network-level behavior, that is present iniadgut, such as node in Figure 2 (b) or nodé in Figure 2 (c))
tion to the dynamics of the individual units. At the localjtunwill intuitively require more extensive informationé., that
level, the process interactions constitute disturbandgshw data be acquired from several neighboring units), while the
must be appropriately addressed in controller design. Fromxtent of information required for disturbance compemsati
theoretical perspective, the analysis of process netwiorksin simple input/output nodes is more modest. Special censid
cuses on (interconnections of) open, finite-dimensionsd sgration should be paid to the well established need to avoid
tems, with the dynamics of each sub-systg¢rbeing de- “recycling disturbances” when material or energy recyglin

scribed by a system of equations of the form: loops are present in the process Seborg et al. (2010), and
n to acquiring the relevant disturbance information when re-
x = f(x)+ Z g(x,uj, Xj) 1) cycling is unavoidable.
=1 Intuitively, thefrequencyat which information exchange

_ . is necessarylepends on the time constant(s) of the units in-
where the driftf(x) denotes production, for example dug|yeq (note that, as we will show below, the dynamics of
to chemical reqct|0ng(x,uj,xj) denotes _ﬂOW betyveen theindividual process units are fast). On the other hand, tie fr
sub-system ang ot_her systems (eaph with Sta_tﬁ)’ Uj _de- guency at which information exchangepsssible or practi-
notes a vector of inputs (control signals) which adjust the, i pe inversely proportional to the degree of connec-
input/output flow rates, thereby defining and determinirey th v, of the units. Assuming, for example, that the units
interaction of systemj and other systems. use Model Predictive Control, limiting the communication

[ ] frequency and the amount of data exchange will benefit the

7y fast execution of the controller but may impede on its perfor
7] [ ] | | ol [ mane
Distributed Control Ad i Optimizati MPC . . . .
sihuted tontre ? 5 S i“m'zam" E E Furthermore, relying extensively on disturbance informa-
L A 4 . . . . .
Communication TP o tion in the design of a unit-level controller poses the risk o
Supervisory Control performance degradation or even loss of stability in theeve
of a communication failure.
Interface Layer IA/D and D/A )
Process Systems and Networ k Representations
Process Layer The Process System and its Interconnections
|;h the Environment DefInItIOI"I

Figure 1: The architecture of a modern control system con- In @& chemical process network we can use the non-
sists of several layers of hardware and software that inf¢gative vectox = (U,V, Ni,...Np)T with x € RE™, re-
grates the process with control and optimization algorithmferred to as a inte;D invehntory, ItO _rep;esent the state. The
H non-negative ok confines the analysis of process systems to
A H B c @) the sub?:lass of positive dynamica{syster%s (note tillat a prac
tical consequence of this property is that mole- and mass-
fractions sum to one). Inventories are additive so that, if
systemS consists of subsystenfy andS, andx; andxz
& H 5 < (®) are, respectively, the states of these systems, then we can
| write, X = X1 + Xp, that is, the inventory of a system is the
sum of the inventories of its subsystems. Note that addjtivi
provides process systems with a linear vector space stauctu

H A H B H C }* (c) that is exploited extensively in thermodynamics and preces
[ !

control.
The inventory vectox constitutes the basis for the Gibbs
Figure 2: Connectivity structures in integrated proceds nelassical state based theory of thermodynamics. In statist
works mechanicsx is referred to as the micro-canonical ensemble




and for a simple system it contains the measures of the endatiffjcult to characterize in a generic way, which, in turnies

inventory, volume and number of molesmgfdifferent chem- flected in the difficulty to develop (and, in effect, the alsen

ical species. In a more general sense, the elements ofdhpa aeneral theorv for nonlinear nrocess control.

vectorx can refer to any (extensive) variable that measures : 4

the inventory of a quantity, such as area, charge, momentum, Control inputu | | Measured output y

number of items stored in a supply chain, cash deposits or v 1

liabilities Ydstie (2004). In chemical process modeling; e

thalpy is often used instead of internal energy. Within the Sub-System

same context, it can be shown that there exists a special in- Fowf{Zuz)

ventoryS e R, called Entropy, which captures dissipation

and stability by its tendency increase in isolated systdms.Figure 3: Two port representation of a process unit or sub-

what follows, we will assume that entropy satisfies the @all8yStem

postulates Callen (Callen) i.5(x) should be concave, ho- The concavity of the entropy function serves as a basis for

mogeneous degree one and differentiable at least once. defining a natural Lyapunov function V for a process unit:
Using the concepts above, we can define a vector of con-

. . . . Np
jugate, intensive variables, as: V(X,X*) = (W— W«)T (X—X)+ Zl(xi _ Xi*)zKi (5)
+ S (1P =
w=—=[(=,=,.=](2 (2) ) .
0X TT T where * denotes variables at the stationary stéte; 0 and

which can be used to compute the driving forces for flow b&1dNp IS the number of phases in the system. The first com-

tween subsystems. Specifically, we can write the flow coRgnent of this function is related to the Gibbs tangent plane
ponents of Eqg. (1) as: and it measures the distance between the intensive vagiable

and their reference variables. The second component shows
a(X,uj,Xj) = ge(u) + L(w—w;)(3) (3) that we need to control as many inventories (extensive) vari

where the first term corresponds to convective (no%l_ales as there are phases in the system. The construction

dissipative) flow and the second term is dissipative. QOWS us to conclude that:
g’ (w—wj) = 0 does not provide entropy production (dug(x x) >0, if x#£X*
to mechanical reversibility), dissipation can be calcedisds: ’ ’
andV(x,x*) = 0 iff x = x*. From statistical mechanics, it
can be shown that S(Z) is twice differentiable, with a local
Note that the Second Law states that the entropy is n@orvature
negative, and, consequentlig > 0. This fact can also be )
seen from the fact that > 0. Furthermore, the concavity ofy; _ 0°S <
the entropy production function implies that process syiste OXi0Xj —
are dissipative.
The system dynamics in Eq. (1) can be augmentedB
associating a vector of measured output signals: S

fsj= (W—w;j) L(w—w;)

e symmetric, non-positive matrix M contains parameters
ch as the heat capacity and the compressibility. A new

differential system can then be defined by the coordinate
y =h(x) (4) transformationdw = Mdx Integrating using Newton's the-

The measured variablesare tvpically intensive variablesorem’ we can express potential differences as a function of
% ypically the states of different sub-systems, i.e.,

such as temperature, pressure, composition and voltage
(which can be related to the state variabls

A Lyapunov Function for Process Systems w—wj = Q(x —Xj)

Together with the definition in Eq. (4), the formulaWhere
tion in Eq. (1) introduces a two-port representation of pro- 1
cess systems. Figure 3 illustrates the two different ciasée= | M(x+ (1—€)(xj —x)de
of input and output signals of interest for a process system.
The inventory flow variableg correspond to physical flows It follows that the Lyapunov function of Eq. (5) in fact
(heat, fluid, components and electrical current); these vayan be written as (local) quadratic function:
ables obey conservation laws, they can be positive or negati
and their magnitude and direction are determined by pot?}-x X*) = —(W—W)TQ(W—W) n o (% —x-*)ZK- (©)
tial differences. Inventory flows can be added and subtdacte'™ ™ / — i; oA
like inventories. On the other hand, u and y correspond to
information flows and are not necessarily conserved. In @he negative sign follows from the non-positivity M. This
fect, they are not homogeneous degree 1 functions and fokmulation provides a direct link between stability thgor
low rules defined by block diagram algebra. The nonlinearf thermodynamics and Lyapunov stability, and can be ex-
ity associated with the two-port nature of process netwizrkgloited in controller design, as we will see below.



Quas Decentralized Networked Control isfies a dissipation bound of the form:

An approach that reconciles the need for frequently up- .
dating the state information of the neighbors of a unitinta nlyi = LiVitleMk(x) < —ai(px[)) <0, T=1,2,--.n (9)
work, and the limitations imposed by computation power afiok some classk functiona;(-), whereLsV denotes the Lie
potential communication failures is quasi-decentralieed- derivative of functiorV along the vector field.
trol, QDC (Sun and El-Farra, 2008a). QDC refers to a dis- The controller of Eqg. (8) is thus designed to compensate
tributed control strategy in which most signals used for-cofor the effect of the interconnected subsystems on thesstate
trol at the unit level are collected and processed localjlev of thei-th unit. This allows for shaping the time-derivative
certain signals (the total number of which is kept to a mim{f the Lyapunov function and obtaining an explicit charac-
mum) are transferred between the local units and contsollegrization of the expected closed-loop behavior in terms of
over a shared communication medium. This approach repaetime-varying bound that dependasly on the state of the
sents a compromise solution that aims to overcome the $teal unit being controlledThe stability properties of the in-
bility and performance limitations of decentralized conhtr dividual plant units can therefore be assessed by mongtorin
approaches while avoiding the complexity and lack of fle#eir states locally without the need for state measuresnent
ibility associated with implementing traditional cenizald from the rest of the plant. This controller-induced propert
control structures. A key consideration in this strategy facilitates the design and implementation of a dynamid-stra
to enforce the desired closed-loop stability and performearegy for managing the flow of information between the plant
objectives of the plant with minimal information transfer-b subsystems.
tween the component subsystems. The implementation of each control law in Eq. (8) re-

Consider a unit-wise description of a process systequires the availability of state measurements from both the
consisting ofn interconnected processing units, with a statescal subsystem being controlled and the units that are con-
space representation that follows the generic descriptiomnected to it. To reduce the transfer of information between

Eqg. (1): the local control systems as much as possible without sac-
rificing stability, a set of dynamic models of the intercon-

X1 = fi(x)+Gi(x)ur nected plant units is embedded within the local control sys-
X2 = fa(x)+Ga(x)uz tem of each unit to provide it with an estimate of the evolu-
: @ tion of the states of its neighboring units when measuresnent

%0 _ fr(X) -+ Gn(X)Un are not available. The use of models allows the sensors of

the neighboring units to collect and send their data less fre
guently since the model can provide an approximation of the
plant’s dynamics. Feedback from one unit to another is per-
cessing unitxT denotes the transpose of a veckorx — formed by updating the stlate of_each model us_ing the actual
ToT T (1) (2 (G117 g st_ates of _the _correspondmg unit prowded by |t_s sensors at

Xp Xz - Xn T, U= (U U - U] € R denotes giserete time instances. Figure 4 illustrates the impleeen
the vector of manipulated inputs associated withi#tfepro- - jon of this model-based control architecture for a unitigUn
cessing unit, and the functiofi¢) andGi(-) are sufficiently 5y yhose dynamics are influenced by both an upstream and
smooth nonlinear functions. a downstream unit (Units 1 and 3, respectively). By provid-
ing estimates of the states of units 1 and 3 when measure-
ments are unavailable, the embedded models also increase

The objective of QDC isto design a distributed net-the robustness of local control systems with respect todist
worked control strategy that stabilizes the individual teniPances from upstream and downstream, as well as to unex-
(and the overall plant) with minimal information flows bePected communication outages that may disrupt the flow of
tween the component subsystethsreby reducing the susinformation through the network.
ceptibility of the plant-wide control structure to commeoa
tion disruptions.

A first step towards this goal is to ensure stability at the

wherex; := [x\" x? ... x{P/|T ¢ RP denotes the vec-

tor of process state variables associated withittie pro-

QDC Controller Design

Unit 1 Unit 2 Unit 3

3 T T X X
‘ I i : i

unit level, by synthesizing for each unit a feedback cotgrol B F‘mm"e:l Coimmeiz o I
that enforces closed-loop stability in the absence of commu  voeer | L% %)% b By
nication suspension (i.e., when the sensors of each ung-tra oy Ko Ty Xsl Ry
mit their data continuously to the control systems of theepth T (ot oromn | [otunis T

) ¥ i ¥
) 1 j

plant units). To this end, we consider nonlinear feedback
controllers of the general form:

) : M ) : ' 1]

Communication network

uj = ki (X)’ i = :I_7 27 ---.N (8) ********* * Information flow Material/energy flow

wherek;(-) is a nonlinear function chosen to ensure that tikégure 4: A networked control architecture featuring mod-
time-derivative of the Lyapunov function (5), —or of anatheels of neighboring units, which can act as state observers to
suitable control Lyapunov function candidate- of system increase the robustness of the local control system tordistu
i, along the trajectories of theth closed-loop subsystem satbances and communication outages



The implementation of the local model-based control lagrrors to zero. Communication from the rest of the plant to

for each unit proceeds as follows: thei-th unit is then suspended for as long as the Lyapunov
. functionV; continues to decay. In this way, only units that re-
Ui t = ) (X Xi (t))v =12 ! quire attention (i.e., those on the verge of instabilityeiege
() = (x X (1)) + (x Xi (t))u' (1) measurement updates, while the rest do not. This targeted
i j (10) . . .
olj t) = (x ,x.(t)) te (tkvtk+l) update strategy is more robust to unpredictable distudmnc
>2'J t) = xt), i=1--,n,j#i, k=012 (compared with a static policy with a constant update pgriod

. and allows the plant to respond quickly in an adaptive fash-
whereX; is an estimate ok;, used by the local controlion to a unit that requires immediate attention. In additmn
is a vector containing the estj-Stability considerations, performance specificationsaiaa

system of the-th unit, X
mates of the states of the plant units excepfittieunit, i.e., P€ incorporated into the communication policy by appropri-

<= [)A(,-T QT gl ?T]T fi(-) andG;(-) are nonlin- ate modification of the update law. For example, an update
A — M N1 N4-1 Mo ] J .

ear functions that model the dynamics of thh unit, and law of thg form: _

t| denotes thé-th time instance that the states of the models ~ Xj(t) = xj(t), (12)

embedded iri-th control system are updated using the state; (x(t}, )) > —(1—B)ai(|x (L))

measurements transmitted from the rest of the plant. wherd ¢ (0,1), ensures that not only doas decay

Information Update and Communication Policies monotonically along the trajectories of tleh networked
closed-loop subsystem, but also that it does so at a certain

The frequency at which thieth control system (Eq. 10) minimum rate (which is a fraction of the rate prescribed for
receives measurements from the other units through the mie¢- non-networked plant). By examining the above commu-
work to update the corresponding model estimates is deigitation logic, it can be seen that an update law \@itj# 1
mined by the update peridg :=t, ., —t, (i.e.,the reciprocal imposes a stronger restriction on the growth of the model
of the communication rate). The update period is an imp@stimation error than the stability-based logic of Eq. (11)
tant measure of the extent of information transfer, and eanih the sense that it limits the extent to which model estima-

calculated statically or dynamically. tion errors (resulting from communication suspensions) ca
Using a static communication polici€., the update pe- slow down the non-networked closed-loop response. This in
riod is constant and the same for all the unifs, —t} == turnimplies —quite intuitively— that accommodating thelad

h, k=1,2,---,n) presents the advantage that the minimutional performance requirements comes at the expense of an
aIIowabIe communication rate can be calculated off-linerpr increase in the rate at which theh control system needs to
to plant operation (Sun and El-Farra, 2009). However, a cageeive measurement and disturbance updates from the rest
stant communication rate may not always be the best choigkthe plant.
especially in cases when plant operations are subject to un-The arguments above have dealt with firrguencyof in-
predictable and time-varying external disturbances. formation exchange between the units. Teheentof data
In this case, a dynamic communication policy that allovesxchange between units is driven by the number of models
the local control system to determine and adjust the necgmt need to be incorporated in each control system, which,
sary communication rate on-line (i.e., during plant ogergt in turn depends on the structure of the plant and the connec-
based on the state of the plant becomes desirable (Sun andiEly of the units.
Farra, 2010c). The Lyapunov stability constraint derived i Consider again the network structures in Figure 1. For
Eq. (9) can be used as a guide for establishing and suspasx@mple, in the presence of weak integratierg(,a low in-
ing communication. Specifically, consider the plant of Egentory recycle flow), the integrated process network in Fig
(7) for which each Lyapunov functiow, i = 1,--- ,n, satis- ure 2 reduces to a simple cascade (series) connection ef unit
fies Eq. (9) when state measurements are exchanged coiginee in this case unit 1 receives no input from the othesunit
uously between the plant units. Consider alsoitlfeplant the number of models embedded in its control system is zero.
unit subject to the model-based networked controller of Bdnit 2 receives input from unit 1, so a model of unit 1 needs
(10). Then, an update law of the form: to be included in the local control system of unit 2. If any
interactions exist between units 2 ande3y(,through the in-
i i o : - fluence of the downstream pressure on the mass flow between
Xj(t) = xj(t), v j #1, whereVi(x(tx ) =0 (11) the two units), Unit 2 should also incorporate a model of Unit
. ) . _ 3. Unit 3 receives two inputs - one directly from unit 2 and
wherex;(ti ) =lim,_ .- x(t), ensures thati(x (t)) < 0. another indirectly from unit 1 (which feeds into unit 2) - and
The implementation of this policy thus requires that eatherefore requires two models: one to estimate the behavior
local control system monitor the evolution of the corregponof unit 2 and another to estimate the behavior of unit 1.
ing Lyapunov function to determine when the models’ states If computational load becomes an issue (e.g., when N is
must be updated and communication re-established. Spdaifge), it is possible replace some or all of the models with
ically, if Vi begins to increase at any time, the sensor suiampler zero-order hold models of the form:
of the neighboring units are prompted to send their data overxi(t) =0, t € [ti,t} ;)
the network to update their corresponding disturbance mod- This corresponds to the case in which each control sys-
els embedded in thieth unit and re-set the model estimatiotem holds the last available measurement from a given unit



until the next one is made available at the update time. It last two (internal inventory flow and inventory recy-
should be noted, however, that while this strategy helps re- cle) terms in Eq. (13) to the evolution of the states
duce the number of models that need to be solved, it may is significantly higher than the contribution of the first
increase the communication requirements between the com- two, and we can expect that the dynamic behavior of
ponent subsystems relative to that associated with thelmode  the process represent a significant departure from that
based scheme. In general, it is expected that the estimate of a cascade system.

generated by a physically-based model outperforms the es-

4 Given the current trend towards ever tighter integration
timate generated by a zero-order hold strategy (unless the . . .

. T of chemical plants through material recycling and energy re
plant-model mismatch is significant).

covery, the case wheiRcis a large number is of elevated

Process Networ ks Networ ks with Tight Integration interest. It will constitute the focus of the developmenrds b
Let us consider a generic integrated network of chemid@yv. To this end, let us rewrite the model in Eq. (13) in a

process systems, such as the one in Figure 2 c), consistingefe general form as:

N process in series. We use the terms “integrated” and “in-

tegration” to denote the presence of a recycle conne&jon® =

intended to transfer inventory from the last unit to the ,firsth b is th tor of unit toriess € R™
as illustrated in Figure 5, where, as above,is the vector of unit inventories® €

f(X) + GS(x)us+ %G' (x)u' (15)

R is the vector of scaled input variables that correspondéo th
v | small input/output of inventory from the process,c R™
F, F, F, Fu is the vector of scaled input variables that correspond to
— > > — > the large internal inventory flows (including inventory yec

cling), e = 1/RcandGS(x) andG' (x) are matrices of appro-

. ) - riate dimensions. The model in Eq. (15) is a nonstandard
Figure 5: Generic integrated process system, feathngp. .
4 ) . singularly perturbed system of equations Kumar and Daou-
units and an inventory recycle connection . - ‘ . L
. L . tidis (1999); its dynamics thus have the potential to exfabi
The mathematical model describing the evolution of an | . ; . .
. : . multiple time scale behavior. The rational approach for ad-
inventory (e.g., material, energy) of this system can be&-wri . :
e ) . dressing the control of such systems involves the properly
ten (Kumar and Daoutidis, 2002; Baldea and Daoutidis . .
2007) as: coordinated synt.h.eS|s of separatg fast and ;Iow coni;dter
' that overall stability, output tracking and disturbancgce
. N-1 tion performance can be achieved. The design of such con-
x =f(x)+ Z gj (X)u; “FRCZlkjgj(X)Uj +Regr(X)ur (13) trollers is carried out using separate reduced-order nsodel
1=0N 1= that describe the dynamics in the fast and slow time scales.

whereu; = (Fj/Fjs) represent (possibly manipulated) di:rhese issues are addressed below.

mensionless v_arlables that correspond to the inventonsflow Redquced Order Modeling

ki = Fjs/Frs,j = 1...N, and gj(x) and gr(x) are vector

functions of appropriate dimensions. The subs@ii¢notes We define a fast, “stretched” time scale-t/e. Rewrit-
steady state values. The model explicitly identifies thegering Eq. (15) in this time scale and considering the limit case
that involve the process port flowg € 0,N), the internal in- € — 0 (which physically corresponds to an infinitely high re-
ventory flows ( = 1,...,N— 1) and the recycle flowj(= R). cycle number or, equivalently, an infinitely high inventory
In order to investigate the impact on the presence and meggycle rate), we obtain a description of the fast dynamics o
nitude of inventory recycling on the process dynamics, Bhe process:

(13) also makes use of the recycle numRera process-wide

dimensionless number expressed as the ratio of the (steg;iy: G (X)UI (16)

state) rate at which inventory is recycled to the rate at twhic

inventory is introduced in the process through the inlet:p0|N|0te that .the above model only ”.“’O'Ves the (large) flowrates
u of the inventory recycle and internal inventory streams,

Rs and does not involve the (smaller) flowratesof input and

Re= Fos (14) output of inventory to and, respectively, from the process.
Examining Eq. (13), it is intuitive that the internal invery

This perspective allows us to delineate two limiting case: flows do not affect the total inventory in the process, antl tha
i _ the total inventory is affected only by the flow rat€sof the
e Rck 1, i.e., the flow rate of the recycle strearr_1I|s smﬁHput/outputstreams. In other words, Eq. (16) effectiwgy

compared to the flow rate of fresh feed. Intuitively, ig¢rihes the dynamics of the individual unit inventoriestia t
this case the dynamics of the process network in Figyg.y cle loop and does not capture the overall (process)leve

5 will not differ significantly from the dynamic behav-canges in inventory. We can use this observation to further
ior of a cascade dfiprocess units in series as in Figurg car that:

1a).
e The differential equations in Eq. (16) are not linearly
e Rc> 1, which corresponds to significant inventory re- independent. By consequence, the steady state condi-

cycling. Intuitively, in this case the contribution of the tion 0= G' (x)u'for the fast dynamics in Eq. (16) does



not specify a set of isolated equilibrium points, butith control objectives for the overall networg,g.,produc-
rather a low-dimensional equilibrium subspace (matien rate, total inventory and product quality.
ifold), in which a slow component of the system dy- The above time scale decomposition provides a transpar-
namics evolves. The slow component of the processt framework for the selection of manipulated inputs that
dynamics is associated with the evolution of the totean be used for control in the two time scales. Specifically, i
inventory of the process. establishes that the output variabjésieed to be controlled
) ) ) in the fast time scale, using the large flow ratesvhile the

» Based on physical considerations, at mst1 equa- ¢ontrol of the variableg® is to be considered in the slow time
tions (whereC IS the number of chemical compoxcgle, using the variableg. Moreover, the reduced-order
nents) are required to completely capture the overgllyroximate models for the fast dynamics (Eq. (16)) and
and component-wise material balance, and the ove@l,; qynamics (the state-space realization of Eq. (18)) can
energy balance of the process. Thus, we can expggfye as a basis for the synthesis of well-conditioned (non-
that the dimension of the system of equations descriRear) controllers in each time scale. Note that, due to the
ing the slow dynamics of the process system to be @pendence of the algebraic constraints in Eq. (18) on the

mostC + 1, and the equilibrium manifold of the fastnpytsu!, the fast controller design must precede the design
dynamics to be at mo&t+ 1-dimensional. of the slow controller.

In order to obtain the description of the slow dynamics As stated in the previous section of this paper, the design
we will assume thatit is possible to isolate a sat 6f(C-+ 1) of the unit-level controllers can be addressed as a callecti

linearly independent constraints corresponding to thiedfas of decentralized, networked _control problems UG the
namics, i.e., that the matri@' (x) can be decomposed as: Lyapunov-based controllers in Eq. (8). The supervisory-con
troller is typically a nonlinear, multivariable optimizai-

G (X) = B(X)C_SI (X) (17) based construct that addresses plant-wide control obgscti
such as inventory and product quality control, as well as en-
with B(x) € R™("-(€+1) peing a full column rank matrix ergy management by modifying the setpoints and control ob-
and the matrixG' (x) e R(N—(C+1))xn having linearly inde- jectives of the decentralized controllers.
pendent rows. It can be shown (Baldea et al., 2010) that, provided that
Multiplying Eq. (15) bye and considering the limit of anthe fast controllers are designed to exponentially sebile
infinitely high recycle flow rate (i.eg — 0) in the original fast dynamics, the stability of the overall network is deter
time scalet, we obtain the linearly independent constraintsined by the stability of the supervisory control system in
G'(x)u' = 0 which correspond to the quasi-steady state die slow time scale. From this perspective, the composite
the fast dynamics and must be satisfied in the slow time scalentrol approach delineated above affords the control-engi
Also in the limit ase — 0, the termgG' (x)u') /e which cor- neer a significant amount of design flexibility. The avail-
respond to the differences of large flow rates present in thiglity of a reduced-order model (i.e., a state-spacezaali
inventory equations of every process unit, become indeterition of Eq. (18)) of the slow dynamics that is non-stiff and
nate. Defining = limg_.o G (:>U' as the vector of these ﬁniteiwell-C(_)n(_JIitio_ned means that any of the available inversior_1
but unknown terms, the system in Eq. (15) becomes: or optimization-based controller design methods (Kravari
and Kantor, 1990; Mayne et al., 2000; Zavala and Biegler,
x = f(x)+G3X)u*+B(x)z (18) 2009) can be used to design a stabilizing supervisory con-
0 - G (X)ul trol system for the slow dynamics, guaranteeing at the same
time stability at the process level. The composite confpel a
which represents a Differential Algebraic Equation model proach delineated above is also beneficial from animplemen-
the slow dynamics of the process, induced by the presencégpn point of view: the reduced dimensions and improved

significant inventory recycling. conditioning (reduced stiffness) of the supervisory colfgr
_ _ (compared to a controller based on the original model (15)
Hierarchical Control of Integrated Processes will result in reduced online calculation times and lessssen

. . _ . tivity to noise and disturbances.
The two-time scale behavior of the inventory of inte-

grated processes suggests the use of a hierarchical controlhformation Transfer and Communication Policies at the
structure with two tiers of control action: i) distributegpygcess Network Level

control, addressing control objectives for individual gees

units in the fast time scale and, ii) supervisory controk, ad Relying on a reduced-order model for supervisory con-
dressing control objectives for the overall process in tbe s troller synthesis presents the benefit of reducing the mésr
time scale To this end, let us complete the description of Bipn transfer requirements at the level of the entire preces
(18) with a vector of output variables= h(x) = [y'y5|T. y network. Following the developments above, the supervi-
extends the definition of the output vector in (4) to the levebry controller designed based on the reduced-order médel o
of the integrated process network, whgrelenote the subsetthe slow process dynamics guarantees stability at the metwo
of the output variables that are associated with contra@objlevel, provided that i) the quasi-decentralized contrslen-
tives for the individual process units (typically involgithe sure exponential stability of the fast dynamics and, iiy¢he
control of local inventories) ang® those that are associatedre no communication failures between the process and the



supervisory controller. Note that the latter provisioroaé Conclusionsand Outlook
for a continuous updating of any model that is used in com- The increasing need to improve operational efficiency
puting the controller output. and lower energy and utility consumption have givenrise to a
The ideas developed above can serve as a basis for undew class of chemical plants - the process network - feajurin
standing the role of communication constraints and paéntight integration between individual units (process systp
communication failures on stability at the level of the grss through material, energy and information flows. Integmatio
network. gives rise to strong dynamic interactions, causing an diyera
To this end, we will resort to a generalization of the Tehetwork-level dynamics to emerge.
legen theorem (Jillson and Ydstie, 2007) to extend Eq. (6) The complexity of this behavior, and its impact on pro-
and derive a Lyapunov function for a process network witess control, requires a paradigm shift in our analysisstool
multiple nodes. This approach uses the fact that the intenginiting concepts from classical thermodynamics, singular
variables are unique (which follows from the concavity @& thperturbation theory, Lyapunov stability and networked-con
entropy function) to show that we have: trol into a broadly applicable framework for the analysislan
control of integrated process networks, the paper predente
% wrh (d_x _f) — Z{ WTg_ Z (Wi _WJ)T(gi —gj) (19) novel avenue for addressing the aforementioned challenges
nodes dt pofts flows We have advocated the use of a hierarchical networked ap-
ach, consisting of a set of quasi-decentralized cdetsol

. . r
The expression above gives the entropy balance for the rg?ghe unit level, and a supervisory controller which adskees

work since: control objectives at the level of the process network, and a
ds T dx 20 gued that the proposed structure represents a powerful tool
dt ng{es dt (20) for ensuring stability and performance for complex process

networks.
and the entropy can serves compute a network LyapunF?(\E/r
function at the process network level, with erences

dv . _ Amaral, L. A. N. and J. M. Ottino (2004a). Augmenting the
network: _ ; w g+ Ed wf— Z (W, —Wj)" (G «81) framework for the study of complex systenf&uro. Phys.
ports nodes flows

dt J. B: Condensed Matter Physics 38(237-162.
_ dXx;
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