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Abstract
The commodity markets are used to mitigate the risk asso-
ciated with price uncertainty in commodity processes. The
purpose of this paper is to demonstrate, with tutorial exam-
ples, opportunities to enhance financial return and further
reduce financial risk due to uncertainty. The first example,
the valuation of an energy swap for flex-fuel utility, demon-
strates the integration of hedging with operational decisions.
The second example, establishing a fair price for a process
lease, illustrates the central importance of incomplete mar-
kets in process valuation.

Keywords: Process valuation, energy swaps, stochastic
dominance.

Introduction
Commodity chemical and energy operations are central ele-
ments of the global economy. At a fundamental level, par-
ticipants in the value chain of these industries are subject
to financial risk because of uncertainty due to volatile com-
modity markets, unknown demand, and other future events
outside the participant’s control.

The purpose of this paper is to demonstrate that financial
risk mitigation offers an array of engineering problems at
the intersection of process control, operations, and finance.
Risk assessment and mitigation, of course, are major func-
tions of the commodity markets [2, 3]. Through futures and
options trading, commodity markets provide a means for re-
ducing exposure to price volatility.

Process design and control offer additional degrees of op-
erational flexibility that can be used to mitigate the effects of
market uncertainty. The working hypothesis of this paper is
that integrating process and financial operations of complex
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commodity processes provides additional opportunities for
enhancing returns and mitigating financial risk.

This paper introduces tutorial examples intended to illus-
trate the above points. The first, the valuation of an energy
swap for a flexible fuel utility, considers the construction of
a hedging portfolio that includes physical ownership of the
underlying fuel stocks. The example demonstrates the use
of process modeling and the importance of optimal process
operation for effective hedging.

The second example, the valuation of a process lease
when there exists significant uncertainty in the price of
products and raw materials, shows the fundamental role
of incomplete markets for risk mitigation for commodity
processes. We propose a criterion based on second-order
stochastic dominance as a framework for process valuation
and risk assessment.

Example 1: Valuation of an Energy
Swap for a Flex-Fuel Utility
The volatile energy markets expose utility providers to sig-
nificant price uncertainty. Figure 1, for example, shows
the price of the near future contract (an approximation to
the ’spot’ price) for natural gas (NG) and Appalachian coal
(QL). We consider the case of a utility operator with the op-
erational flexibility to use either natural gas or coal, in any
mixture, to meet a known demand.

Utility operators are often thinly capitalized and work in
tightly regulated retail markets. Therefore the operator will
enter into an ’energy swap’ with a banker who, for a fixed
payment, underwrites the utility’s cost of fuel. The util-
ity operator provides a fixed payment V (SNG(t0),SQL(t0), t0)
where SNG(t) and SQL(t) are spot market prices. In return,
the banker pays the utility fuel costs C(SNG(t),SQL(t)). This
simple type of energy swap is illustrated in Figure 2. The
problem is to determine a ’fair’ price for the utility operator



Figure 1: Natural Gas and Coal Prices (NYMEX)
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Figure 2: Illustration of a simple energy swap. The utility
provides a fixed payment to an energy banker at time t0.
In return, the banker accepts responsibility for paying the
utilities cost of fuel

to pay the energy banker for the obligation to finance the
utilty’s energy costs.

Drawing on the literature for financial derivatives, the
standard approach to this problem is to determine the ini-
tial capital needs for the energy banker to set up and operate
a risk-free hedge. The hedge consists of portfolio of cash
invested in risk-free assets and ownership of natural gas and
coal inventories. The banker extracts money from the port-
folio to cover the utility’s fuel costs. Given stochastic mod-
els for the evolution of energy prices, the stochastic control
problem is to manage the portfolio to pay the fuel costs of
utility while minimizing or eliminating risk. If risk can be
completely eliminated, then the no-arbitrage price of the en-
ergy swap is the value of the capital required to set up the
hedge in the first place.

The self-financing hedging portfolio V is composed of
cash, physical ownership of θNG units of natural gas, θQL
units of coal, and the fuel financing obligation

dV = r(V −θNGSNG −θQLSQL)dt
� �� �
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Figure 3: Diagram corresponding to a thermodynamically
consistent model of a flex-fuel generation facility. The left
path corresponds plant performance when coal-fired, the
right path corresponds to the more efficient natural gas gen-
erating capability of the plant. For details, see [5].

The convenience yields yNG and yQL are common features
of commodity price models which are not shared by other
financial instruments. The convenience yield is the net re-
turn to the portfolio attributable to physical ownership of the
underlying commodity. The convenience yield is positive if
the owner places a high intrinsic value on physical owner-
ship, such as the avoidance plant shutdowns in the event of
raw material shortages. The convenience yield may be neg-
ative if the cost-of-carry of the physical inventory is large.

Prices are modeled as general Itô processes

dSNG = aNG(SNG)dt +σNGSNGdZNG

dSQL = aQL(SQL)dt +σQLSQLdZQL

where dZNG and dZQL are correlated IID stochastic pro-
cesses. For commodities, the deterministic portion of the
returns, ak(Sk), typically exhibit mean-reversion.

A necessary input to this model is the cost of fuel required
to meet the utilities production requirement. Process flexi-
bility provides the operator with the ability to respond to
market prices. The banker, of course, assumes the operator
will respond by implementing a minimum cost strategy. In
prior work we presented a framework for constructing heat
rate models for complex utilities that are consistent with first
and second laws of thermodynamics [5, 8, 9]. Following
that framework, given SNG(t), SQL(t), and a heat rate model,
the minimum fuel cost C(SNG(t),SQL(t)) is found by the so-
lution of a bilinear optimization problem.

The bilinear optimization model is formulated as follows.
Given prices SNG(t) and SQL(t), the task is minimize the



cost
C(SNG,SQL) = min

T,σ
(SNGqNG +SQLqQL)

which depends on the nodal temperatures T = [T1, . . . ,TN ],
heat inputs q = [qNG,qQL], work outputs w, and entropy flux
σ = [σNG,σQL]. Subject to a fixed work output, the utility
is modeled by the bilinear relationships

q =

�
K +∑

k
Ekσk

�
T

w =

�

∑
k

Wkσk

�
T

Matrix parameters K, Ek, and Wk are constructed from the
energy conversion network diagram, an example of which
is shown in Figure 3.

The control task is to manage the hedging portfolio in
order to minimize risk. Substituting the price model into
expression for dV , using Itô’s lemma, and choosing θNG =

∂V
∂SNG

and θQL = ∂V
∂SQL

produces a risk-free portfolio. (This
is a standard technique in the finance literature, for details
refer to [2]). As typical for the Hamilton-Jacobi-Bellman
formation of stochastic control, the parameters θNG and θQL
are functions of time t, and of the prices SNG(t) and SQL(t).

− ∂V
∂ t

=
σ2

NGS2
NG

2
∂ 2V

∂S2
NG

+ρSNGSQL
∂ 2V

∂SNG∂SQL
+

σ2
QLS2

QL

2
∂ 2V
∂S2

QL
+

(rSNG − yNG)
∂V

∂SNG
+(rSQL − yQL)

∂V
∂SQL
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subject to boundary conditions V (SNG,SQL,T ) = 0,
V (0,SQL, t ≤ T ) = 0, V (SNG,0, t ≤ T ) = 0 and no curvature
for large SNG and SQL.

The functions θNG(SNG(t),SQL(t), t) and
θQL(SNG(t),SQL(t), t) implement the optimal hedging
as a open loop control policy measuring current spot prices.

Typical solutions are shown in the accompanying figures.
The figures demonstrate solution of the linear HJB equa-
tion that incorporate realistic price and utility models. The
hedging position of the energy banker is determined by the
feedback control law.

Example 2: Lease for a Simple Process
In this next example we consider a very different problem
in which a process operator wishes to establish a fair price
for leasing a unit of process capacity. At time t = T0, an
operator is offered a lease for a unit of capacity for a process
converting A into P according to the stoichiometry

2A −→ P

Figure 4: A typical solution for V (SNG,SQL, t) with param-
eters r = 0.1, yNG =−0.2, yQL = 3

Figure 5: Values of the feedback control for natural gas
θNG = ∂V

∂SNG
and coal θQL = ∂V

∂SQL

The cost of operation is C = $5/ton of P produced. The
lease provides the operator with the right, but not the obli-
gation, to produce one ton of P at time T1. What is a fair
price for the lease?

Case 1: Future Prices Known at time T0

If the prices of A and P are known and fixed at T0

SA = 30
SP = 80

then the profit at time T1 is given by

Profit = SP −2×SA −C
= 80−2×30−5
= 15

There is no risk, so the operator should be indifferent to
leasing the process or purchasing a risk-free bond. Thus the
present value for a risk-free bond with r f = 5%

V (T0) =
15

1+ r f
= 14.29

Either investment will return 15 at time T1.



Case 2: Uncertain Price for P at T0

As before, we assume current prices of A and P are 30 and
80. In this case, however, the price for P at time T1 is uncer-
tain. We consider two scenarios

SP(T1|T0) =

�
60 Scenario 1
100 Scenario 2

Profit assuming optimal operation at T1

Profit =

�
max(0,60−2×30−5) = 0 Scenario 1
max(0,100−2×30−5) = 35 Scenario 2

This is not risk-free, therefore a risk-free bond is not a sat-
isfactory pricing benchmark.

The process value at T0 is established by constructing a
pricing benchmark – a ’replicating portfolio’ – that produces
outcomes identical to the outcomes as the process lease un-
der all scenarios. Using a risk-free bond and P as assets, the
matrix of asset payoffs is

Bond
↓

P
↓

A =

�
1.05 60
1.05 100

�
← Scenario 1
← Scenario 2

A ’replicating portfolio’ x consists of risk-free bonds and
contracts for P with same payoff as the process.

�
1.05 60
1.05 100

�

� �� �
A: asset payoffs

�
xBond

xP

�

� �� �
x

=

�
0

35

�

� �� �
b: process payoff

← Scenario 1
← Scenario 2

Solving for the replicating portfolio

�
xBond

xP

�
=

�
1.05 60
1.05 100

�−1 � 0
35

�
=

�
−50

0.875

�

Value of the replicating portfolio at current prices –

V (T0) =
�

1.00 80
�

� �� �
ST

�
−50

0.875

�
= 20

An operator can exactly reconstruct the process payoff given
$20 at time T0. This establishes a ’no-arbitrage’ price for the
process lease.

Case 3: Uncertain Future Prices for A and P
Now suppose the price of both A and the price of P are un-
certain at T1. Assume an asset ’payoff’ matrix

Bond
↓

A
↓

P
↓

A =





1.05 25 60
1.05 25 100
1.05 35 60
1.05 35 100





← Scenario 1
← Scenario 2
← Scenario 3
← Scenario 4

with current prices

Bond
↓

A
↓

P
↓

S =
�

1.00 30 80
�

The process payoff is no longer in the range space of the
asset payoffs.





1.05 25 60
1.05 25 100
1.05 35 60
1.05 35 100





� �� �
A: Asset payoff




xBond

xA
xP





� �� �
x

=





5
45
0
25





� �� �
b: Process payoff

This situation is called an ’incomplete market’. The range
of marketed assets is not sufficient to replicate the uncertain
payoff. The best we can do is find no-arbitrage bounds on
the price.

For this purpose, we introduce the concept of stochastic
dominance (see, for example, [1, 10]). Portfolio xA stochas-
tically dominates portfolio xB to zeroth order if the payoffs
for xA are greater than the payoffs for xB for each scenario.
A rational investor will always pay more for a dominating
portfolio.

Super-Replicating Portfolio The minimum
cost portfolio dominating the process payoff

Vsup(T0) = min
x

ST x subject to Ax ≥ b

This establishes an upper bound on the value of
a process lease. A rational investor would never
pay more for the process lease.

Sub-Replicating Portfolio The maximum cost
portfolio dominated by the process payoff

Vsub(T0) = max
x

ST x subject to Ax ≤ b

This establishes a lower bound on the value of a
process lease. A rational investor would pay at
least this much for the process lease.



Applying these definitions to the example problem de-
scribed above,

Vsup(T0) = min
x

�
1.00 30 80

�
� �� �

ST




xBond

xP
xA





� �� �
x

subject to




1.05 25 60
1.05 25 100
1.05 35 60
1.05 35 100





� �� �
A: Asset payoff




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



� �� �
x

≥





5
45
0
25




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b: Process payoff

Vsup(T0) = 20.9524 with (S ◦ xsup)T = [30.9524,−60,50]
where ◦ denotes the element-by-element Hadamard product
of two vectors.

A sub-replicating portfolio is also found by solving linear
programming problem. Leaving out the details for brevity,
Vsup(T0) = 15.9524 with (S◦xsup)T = [−19.0476,−15,50].

Risk-Aversion
Second-Order Stochastic Dominance (SSD) as
a Measure Risk-Aversion
Given a process lease, a no-cost hedging portfolio x can im-
prove financial behavior. For example, to reduce financial
risk, we propose a formulation

max
z,x

z

subject to

ST x ≤ 0
Ax+b ≥ z

As before, the elements of x denote the quantities of each
asset that will held in the hedging portfolio. The constraint
ST x ≤ 0 means the portfolio can be purchased at a cost less
than or equal to zero. The constraint Ax+ b ≥ z means the
sum of the portfolio payoff and the process payoff will be
greater than z for all scenarios. Maximizing z means that
we’re maximizing the worst-case return that can be obtained
under all scenarios with a no-cost portfolio.

Applying this criterion to the example described above
yields a hedging portfolio S◦x= [35,15,−50]T . Comparing
payoffs

b =





5
45
0
25



 Ax+b =





16.75
31.75
16.75
16.75





These payoffs have the same no-arbitrage price bounds, but
neither is zero-order dominant. A risk-averse operator, how-
ever, will always prefer the hedged payoff. To see this, we
introduce a non-decreasing, concave utility function u(x) to
express the operator’s degree of risk aversion. As shown in
the following figure for a particular choice of utility func-
tion, assuming scenarios are equi-probable, a risk-averse in-
vestor would prefer the hedged portfolio.
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For this case, it turns out that the expected utility of the
hedged portfolio is greater than the unhedged portfolio for
all admissible utility functions. This property, when it ex-
ists, is called second-order stochastic dominance.

Properties of Second-Order Stochastic Domi-
nance (SSD)
The random variable X with probability density function
(p.d.f.) fX (x) is stochastically dominant to second-order
with respect to random variable Y with p.d.f. fY (y), denoted
X �SSD Y , if

EX [u(·)]≥ EY [u(·)]

for any non-decreasing concave utility function u.

• All risk-averse investors (in the sense of a non-
decreasing concave utility function) prefer X to Y if
X �SSD Y

• SSD creates a partial ordering of distributions [1, 4].

Quantile functions are a useful test for second order stochas-
tic dominance. Given a random variable X with p.d.f. fX (x),
the cumulative distribution function (c.d.f.) is

FX (x) =
ˆ x

−∞
f (ξ )dξ

The quantile function is the ’inverse’ of the c.d.f. For p ∈
(0,1)

F(−1)
X (p) = inf{x : FX (x)≥ p}



The second quantile function

F(−2)
X (p) =

ˆ p

0
F(−1)

X (ψ)dψ

Note that F(−2)
X (1) = EX [X ]. A computationally important

property of the second quantile function is stated as follows
( [11, 7]): X �SSD Y if and only if F(−2)

X (p)≥ F(−2)
Y (p) for

all p ∈ (0,1).

Relationship to Value at Risk
Value at Risk (VaR) is a commonly used measure of the
distributions of losses. VaR is expressed as a quantile of the
distribution of losses. VaRα(X) is the negative of the 1−α
quantile of expected payoff [10]

VaRα(X) =−F(−1)
X (1−α)

Conditional Value at Risk1(CVaR) is a ’coherent’ risk
measure of expected loss at a specified quantile [7].

CVaRα(X) =−F(−2)
X (1−α)

1−α

X �SSD Y if and only if CVaRα(X) ≤ CVaRα(Y ) for all
α ∈ (0,1).

SSD Pricing
What is the minimum cost for a portfolio exhibiting SSD
dominance over process payoffs?

V (2)
sup(T0) = min

x

�
1.00 30 80

�
� �� �

ST




xBond

xP
xA





� �� �
x

subject to




1.05 25 60
1.05 25 100
1.05 35 60
1.05 35 100





� �� �
A: Asset payoff




xBond
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xP




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x

�SSD





5
45
0

25





� �� �
b: Process payoff

Any risk-averse investor would prefer that portfolio to the
process payoff. Kopa [7, 6]has shown the solution to this
problem is given by a linear program. For brevity, we have
to leave out the computational details,

1also called Expected Shortfall (ES), Average Value at Risk (AVaR),
and Expected Tail Loss (ETL)
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sup(T0) = 12.73

S◦ xSSD =




120.24
−97.5
−10





SSD Hedging increases SSD Valuation
A no-cost hedge can be found to improve SSD Valuation.
Setting up

max
x

M

∑
m=1

�
F(−2)

Ax+b(
m
M
)−F(−2)

b (
m
M
)
�

subject to

�
1.00 30 80

�
� �� �

ST




xBond

xP
xA





� �� �
x

≤ 0





1.05 25 60
1.05 25 100
1.05 35 60
1.05 35 100





� �� �
A: Asset payoff




xBond

xA
xP





� �� �
x

+





5
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0

25





� �� �
b

�SSD





5
45
0
25





� �� �
b: Process payoff

V (2)
sup,hedged(T0) = 19.88

The value of the SSD hedged lease is between the no-
arbitrage bounds on the price of the lease. This establishes
more realistic value for the process lease

Concluding Remarks
Using tutorial examples, this paper illustrates how financial
and process operations may be combined to determine val-
ues for energy swaps, and to value simple process leases.
We propose second-order stochastic dominance as criterion



for the valuation of commodity process operations. Extend-
ing these ideas to more realistic process models, and to ad-
ditional sources of process flexibility and uncertainty, are
significant research challenges.
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