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Abstract 

This paper presents a mathematical formulation for large-scale continuous process scheduling problem 

using unit-specific event-based continuous-time representation. The formulation is based on the work of 

Ierapetritou et al., (1999). The model considers the changeovers for multi-purpose units and tanks, setup 

constraints for parallel units and tanks, and includes product tanks that satisfy demand of products with 

intermediate due-date requirements. The main objective of the model is to satisfy the demand by 

respecting the due-dates and maximize the performance by minimizing changeovers and setup costs. For 

the large-scale scheduling problem, the resulting formulation is a complex mixed-integer linear 

programming model that is difficult to solve to global optimality. A set of valid inequalities are proposed 

that improves the computational performance of the model significantly. Applicability of the proposed 

valid inequalities is demonstrated by studying a case study.   
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Much of the work in the area of continuous process 

manufacturing has been focused on the small-scale 

scheduling problem but the scheduling problem of large-

scale multiproduct and multipurpose continuous plant have 

received significant less attention. Large-scale scheduling 

problems arise frequently in chemical industry where the 

main objective is to assign sequence of tasks to processing 

units within certain time frame such that demand of each 

product is satisfied before its due date. 

Over the last two decades, different mathematical 

formulations are proposed for continuous process 

scheduling on basis of time representation. In discrete-time 

approaches, the time horizon is divided into a number of 

fixed time intervals, whereas the continuous-time 

approaches are based on time slots/events of unknown 

length. Two types of continuous-time approaches are 

studied in the literature, where the first is based on a set of 

events that are used for all tasks and units (global event 

based models), and the second approach introduces event 

points based on a task (unit-specific event based models). 

A couple of excellent reviews can be found in the literature 

(Floudas and Lin, (2004); Mouret et al., (2010)) Short-

term scheduling models based on unit-specific event points 

have received considerable attention in the literature 

(Ierapetritou et al., (1999); Giannelos and Georgiadis, 

(2002); Mendez and Cerd, (2002); Shaik and Floudas, 

(2007)). Shaik et al., (2009) studied large-scale scheduling 

models based continuous time approach, where they 

considered changeovers and proposed a two-level 

framework to effectively deal with complexity of the 

medium-term scheduling problem.  

In our work we propose a large-scale scheduling 

model using unit-specific event-based continuous-time 

representation. The large-scale continuous process 



  
 

scheduling problems are highly complex and to reduce the 

complexity, in our work we present a set of valid 

inequalities that reduces the complexity and improves the 

performance of the model.  

Proposed model 

In this section we present the mathematical 

formulation for the continuous manufacturing production 

plant that is an improvement over the model of Ierapetritou 

et al., (1999). A state-task network (STN) representation 

introduced by Kondili et al., (1993) is used to describe the 

plant operations. A detailed description of each variable 

and parameter used in the model can be found in the 

nomenclature section.  

Variable recipe constraint 

Constraints (1-2) enforce that the amount produced or 

consumed at production unit is restricted by the imposed 

recipe bounds. Constraint (3) satisfies material balance at 

each production unit. It states that the total amount of 

material consumed is equal to the total amount of material 

produced.   
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Material balance constraints 

Constraints (4-5) provide the material balance for the 

material produced or consumed at each production units, 

and constraints (6a-6b) enforce the material balance over 

the storage tanks.  
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(6b) 

Capacity constraints for production units 

Constraint (7a) enforces that the material processed by 

unit j  performing task i  is bounded by the maximum and 

minimum rate of production. Constraint (8) provides upper 

bounds on the total amount of the material processed at 

each unit over the entire time horizon.  
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Capacity constraints for storage tanks 

Constraints (9-11) define the binary variables 

associated with the flow in and out of the tanks. Constraint 

(12) enforces the maximum capacity of the tank and 

constraints (13a-13c) define the binary variable associated 

with material present in the tank.  
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The maximum and minimum unloading rate for 

product storage tanks must be bounded as specified by 

constraint (14).  
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Demand constraints 

The plant has two types of products; type A can be 

stored in tank and has intermediate due dates and type B 

that is not stored in tank and whose demand should be 

satisfied based on the production unit.  Constraint (15) 

guarantees that sufficient amount of product will be 

available to meet the demand.  
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(15) 

Due to production capacity limitation, sometimes the 

demand order of finished product cannot be satisfied 

within its due date. To obtain a feasible solution positive 

artificial variables associated with over and under 

production are introduced and they are penalized in the 

objective function to minimize quantity giveaway. 

Allocation constraints 

Constraints (16-18) express the requirements that each 

multipurpose production unit and storage tank can only 



  

perform one task at any given event point. Constraint (21) 

restricts that the product tank can satisfy at most one 

demand order at any event point.  
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Set-up constraints 

Set-up variables are 0-1 continuous variables defined 

by constraints (19a-19b) for production unit and 

constraints (20a-20b) for storage tanks. In our work, we 

include set-up constraints only for parallel units and tanks.  
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Changeovers constraints 

Changeover constraints proposed by Shaik et al.Shaik 

et al., (2009) are used in this work. Changeovers variables 

are 0-1 continuous variables and constraints (21-22) are 

used to define the changeover variables. Changeovers 

between modes of operations cause disturbances and 

additional costs, thus, few changeovers are desired.   
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Sequence constraints for production units 

Finishing time of any task must be greater than the 

starting time of that task, as represented by constraint (23). 

Constraints (24-25) express that a task cannot start at next 

event point 1n  until current task is completed at event 

point n . Equation (25) enforces the time sequence 

constraint for different tasks happening in the same unit. 

The unit needs to go through clean-up maintenance when 

changeover of service is happening between different 

operating modes.  
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Constraints (26a-26d) represent that the two 

consecutive productions
 

with no storage in between 

happen at the same time because production units operate 

as continuous processes.  
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Sequence constraints for storage tanks: 

Constraints (27-29) enforce the sequence time 

requirement for material movement transfer task from one 

event point to next event point.  
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Start time sequence constraints for tanks receiving or 

sending material from/to multiple destinations are given by 

constraints (30a-30c). 
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Sequence constraints for material transfer in and out of 

tanks happening at the same event point is enforced by 

equations (31-32).  The start and finish time of the material 

transfer must align as to not violate the material balance 

requirement.   
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Constraints (33-34) connect material transfer in/out of 

a tank from one event point to next event point. 
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 Sequence constraints for production units and tanks:  

Sequence constraints for production and material flow 

into/out of storage tank happening at the same time event 

point is given by constraints (35-36).  

 , , , , , , , , ,2 ,

, , , ,

   

     

i j n j k n i j n s j k n

pk

s k j

Ts Tss UH wv in

s S k K j J i I n N
 

(35a) 

 , , , , , , , , ,2 ,

, , , ,

   

     

i j n j k n i j n s j k n

pk

s k j

Ts Tss UH wv in

s S k K j J i I n N
 

(35b) 

 , , , , , , , , ,2 ,

, , , ,

   

     

i j n j k n i j n s j k n

pk

s k j

Tf Tsf UH wv in

s S k K j J i I n N
 

(35c) 

 , , , , , , , , ,2 ,

, , , ,

   

     

i j n j k n i j n s j k n

pk

s k j

Tf Tsf UH wv in

s S k K j J i I n N
 

(35d) 

 , , , , , , , , ,2 ,

, , , ,

   

     

i j n k j n i j n s k j n

kp

s k j

Ts Tss UH wv out

s S k K j J i I n N
 

(36a) 

 , , , , , , , , ,2 ,

, , , ,

   

     

i j n k j n i j n s k j n

kp

s k j

Ts Tss UH wv out

s S k K j J i I n N
 

(36b) 

 , , , , , , , , ,2 ,

, , , ,

   

     

i j n k j n i j n s k j n

kp

s k j

Tf Tsf UH wv out

s S k K j J i I n N
 

(36c) 

 , , , , , , , , ,2 ,

, , , ,

   

     

i j n k j n i j n s k j n

kp

s k j

Tf Tsf UH wv out

s S k K j J i I n N
 

(36d) 

Intermediate due dates:  

Intermediate due dates requirements for group A 

products, which are stored in product tanks, are given by 

constraints (37a-37b). To consider demurrage, slack 

variables are utilized and later penalized in the objective 

function.  
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(37b) 

All tasks should start and finish before the end of the 

scheduling time horizon as stated in (38a-38d). The 

scheduling horizon is bounded as H UH .  
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Objective function 

The objective function (39) is used to maximize the 

performance and revenue of total production. The 

performance is represented by the minimization of 

utilization of units and tanks, start up set-ups, changeovers, 

demurrage, and under and over production and revenue 

term is calculated from the sales of the final products. The 

penalty weights are assigned arbitrary to each term 

depending on its importance in schedule and note that the 

different penalty parameters have significant effect on the 

computational time required to obtain an optimal solution.  
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(39) 

Valid Inequalities 

Valid inequalities are added in the formulation to 

improve the computational efficiency of the proposed 

model. Constraints (40a-40c) enforce that if there is a 

material flow into/out of the tank at event point n , then the 

binary variable , ,s k ny is 1.  
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(40c) 

Constraints (41a-41b) require material s flow in/out of 

tanks to be active at event point n if the unit j is processing 

the material at that event point. 
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(41b) 

Constraint (42) enforces the material balance 

constraint in addition to the constraint presented in 

equation (3).  
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(42) 

If two units are consecutive without any storage tank 

between them, then constraint (43a) imposes the 

simultaneous operation of these units due to the continuous 

operation mode. However, this constraint is not imposed 

on parallel production units that can produce the same type 

of products. For units that follow or are followed by 

parallel units, valid inequalities 43b and 43c are included.  
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(43c) 

The demand order set O is arranged according to the 

ascending due date start time. That 

is, , , ,
    o otimes times o o o o o . Inequalities 44a are 

applied to require the demand order o to be satisfied by 

product tank k earlier than order  o o . Furthermore, if the 

initial inventory of the products is less than the required 

total minimum demand orders, then the production should 

take place before the demand is fulfilled. This requirement 

is captured by constraint (44b). 
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(44b) 

Case Study and Results 

We apply our model to a case study that consists of 14 

multipurpose production units that processes 4 different 

raw materials to produce 18 final products. Of the 14 

production units, two are parallel units (R1 and R2). Units 

(L1-L5) have cleaning downtime impose between certain 

task mode changeovers. The intermediates that are 

consumed by unit (M1) are stored in five dedicated tanks 

and other seven intermediates share three different storage 

tanks but with restricted allocation to these tanks. Final 

products (mp1, mp2, and mp3) are stored in three 

dedicated product. Demand of all eighteen final products is 

bounded by the maximum and minimum limits. In our 

problem we consider five demand orders and scheduling 

time-horizon of 240 hours. The state-task network of the 

problem is given in Figure 1. 
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Figure 1.   STN representation of the plant 

The problem is solved on a Dell Precision (IntelR 

XeonTM with CPU 3.20 GHz, 3.19 GHz, and 2 GB 

memory) running on Windows XP using CPLEX 

12.2.0/GAMS 23.6.3. The proposed model requires 4 

event points in order to satisfy group A and group B 

products demand. The objective function corresponds to 

minimization of costs and maximization of revenue. The 

optimal objective function is found to be 1982.87 and 

statistics of model with and without valid inequalities are 

reported in Table 1.  

Table 1. Model statistics and results 

 Without Valid- 

inequalities 

With Valid 

inequalities 

Events 4 4 
Binary Variables 384 384 
Continuous Var. 2677 2677 
Constraints 5857 6217 
Nonzeros 24546 25684 
Objective 1982.87 1982.87 
% gap 48.75 0.00 
CPU times 27147.72 1783.06 
nodes 412021 82084 
Iterations 709225859 5680953 

When the valid inequalities are included in the model, 

the number of variables remains the same, but the number 

of constraints and nonzero elements increases. Valid 

inequalities have no effect on quality of the optimal 

solution; rather their effect is concentrated in significantly 

reducing the computational effort needed to find the 

optimal solution. The CPU time required to reach optimal 

solution is improved significantly when the valid 

inequalities are present versus when they are not included 

in the model. In the problem studied, it is not possible to 



  
 

find optimal solution within 7 hours; however the model 

with valid-inequalities obtains the optimal solution in 1783 

seconds an improvement of 1 order of magnitude. The 

optimal objective schedule has minimum changeovers and 

for units L1-L5, the changeovers are favored between 

those tasks that have minimum clean-up downtime 

imposed.   

Conclusions 

In this paper, we present a scheduling model for large-

scale continuous processes using unit-specific event points 

and continuous-time representation. A set of valid 

inequalities are proposed that reduces the CPU resolution 

time by a significant factor for large scale problems. 

Propose valid inequalities perform best when the problem 

consists of parallel and sequential units, product tanks, 

multipurpose units and tanks, and intermediate demand 

due-dates requirements. 

Nomenclature 

Indices: i :Tasks, n :Event point, j :Units, o : Orders, s :Tasks  

Sets:
jI :Tasks performed in unit j, /P C

s sI I :Tasks 

produce/consume material s, J :Production units, /P C

s sJ J :Units 

produce/consume material s,
iJ :Units which are suitable for 

performing task i, hJ :Parallel production units, /pk kp

k kJ J :Units 

that produce/consume material  stored in tank k, seq

jJ :Units that 

follow unit j (no storage in between), K :Storage 

tanks, hK :Parallel tanks, /pk kp

j jK K :Tanks that store material 

produce/ consumed by unit j,
pK :Tanks that can store final 

products ,
sK :Tanks that can store material s , N :Event 

points, O :Demand Orders for Group A products, S :States, 

/b fS S :Group A/Group B products, 
kS :Materials that can be 

stored  in tank k, /p c

i iS S :Materials produced/consumed by task 

i, /p c

j jS S :Materials produced/consumed by unit j 

Parameters: / , /   

os os s sD D r r : Demand requirements bounds, 

max max/ij ijR R :minimum or maximum rate of production, 

max max/k kU U :Minimum or maximum rate of unloading, 

,s ksto :Initial amount of state s in tank k, UH :Available time 

horizon, max

kV :Maximum available storage capacity of storage 

tank k, max max/ si si :Proportion of state s produced/consumed  by 

task i. Binary Variables: ijnwv :Assignment of task i in unit j at 

event point n, \sjkn skjnin out :flow of s into/out of tank k  from unit 

j at point n, 
konl :flow out of tank  k to order o at event point n, 

skny :material s is stored in tank k at event point n. Positive 

Variables: /sijn sijnbp bc :material s produced/consumed by task i 

in unit j at point n, / , /l u l u

o o s sdg dg rg rg :Over and under 

production, H :Total time horizon, sjj nJJf :Flow from unit j to 

consecutive unit j’ at point n, \sjkn skjnKif Kof :Flow of material s 

into/out of tank, \okn sjnLf Uof :Flow of product from tank\unit, 

\skn sjnRif Uif :Flow of raw material to tank\unit, 
sknst :Amount of 

material present in tank k, \o oTearly Tlate :Due date violations 

for order o, \ijn ijnTf Ts :Finish/start time for task i in unit j, 

\kon konTof Tos :Finish/start time of flow from tank k for order o at 

event point n, \jkn jknTsf Tss :Finish/start time of flow from unit to 

tank, \kjn kjnTsf Tss :Finish/start time of flow from tank to unit, 

\ jn kn
:1 if the unit\tank becomes active for very first time at 

event point n,  ss kn
:1 if service changeover in tank k from s at 

event point n to s’ at later event point,  ii jn
:1 if task at unit j 

changes from i at event point n to i’at later event point.. 

Acknowledgments 

The authors gratefully acknowledge financial support 

from the National Science Foundation under Grant CBET 

0966861 and GAANN. 

References 

Floudas, C. A. and Lin, X. (2004). Continuous-Time Versus 

Discrete-Time Approaches For Scheduling of Chemical 

Processes: a Review. Comput. Chem. Eng., 28(11), 

2109. 

Giannelos, N. F. and Georgiadis, M. C. (2002). A Novel Event-

Driven Formulation for Short-Term Scheduling of 

Multipurpose Continuous Processes. Ind. Eng. Chem. 

Res., 41(10), 2431. 

Ierapetritou, M. G., Hene, T. S. and Floudas, C. A. (1999). 

Effective Continuous-Time Formulation for Short -

Term Scheduling: 3. Multiple Intermediate Due Dates. 

Ind. Eng. Chem. Res., 38(9), 3446. 

Kondili, E., Pantelides, C. C. and Sargent, R. W. H. (1993). A 

General Algorithm for Short-Term Scheduling of Batch 

Operations--I. MILP Formulation. Comput. Chem. 

Eng., 17(2), 211. 

Mendez, C. A. and Cerd, J. (2002). An Efficient MILP 

Continuous-Time Formulation for Short-Term 

Scheduling of Multiproduct Continuous Facilities. 

Comput. Chem. Eng., 26(4-5), 687. 

Mouret, S., Grossmann, I. E. and Pestiaux, P. (2010). Time 

Representations and Mathematical Models for Process 

Scheduling Problems. Comput. Chem. Eng., 35(6), 

1038. 

Shaik, M. A. and Floudas, C. A. (2007). Improved Unit-Specific 

Event-Based Continuous-Time Model for Short-Term 

Scheduling of Continuous Processes: Rigorous 

Treatment of Storage Requirements. Ind. Eng. Chem. 

Res., 46(6), 1764. 

Shaik, M. A., Floudas, C. A., Kallrath, J. and Pitz, H.-J. (2009). 

Production Scheduling of a Large-Scale Industrial 

Continuous Plant: Short-Term and Medium-Term 

Scheduling. Comput. Chem. Eng., 33(3), 670. 

 
 


