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Abstract 

The high cost of model predictive control (MPC) technology has hampered its wide application in 

process industries beyond the refining/petrochemical industry. This work aims to increase the efficiency 

of MPC deployment. First a semi-automatic MPC system is introduced. It consists of three modules: an 

MPC control module, an online identification module and a control monitor module. The goal of the 

MPC technology is twofold: (1) to considerably reduce the cost of MPC commissioning and 

maintenance; and (2) to increase control performance. System identification plays important roles in all 

the three parts of the MPC system. In the identification module, the so-called ASYM method of 

identification is used. It is demonstrated with an industrial application. In the control module, adaptive 

disturbance model identification is developed for improving control performance; in the monitor module, 

a method of model error detection method is developed. Industrial applications and simulations are used 

to demonstrate the ideas. Finally, we comment on some industrial needs on MPC research and 

development. 
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1    Introduction
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In the last three decades, model predictive control (MPC) 

technology has been widely applied in the refining and 

petrochemical industry and is beginning to attract interest 

from other process industries (Cutler and Hawkins, 1988 

and Qin and Badgwell, 2003). MPC technology can bring 

tremendous benefit for process industries by improving 

product quality and safe operation, reducing energy and 

material costs as well as pollution. Dynamic models play a 

central role in the MPC technology. The most difficult and 

time consuming work during an industrial MPC project is 

modeling and identification (Richalet, 1993, Zhu, 1998). In 

MPC maintenance, the main task is model re-identification. 

Besides model identification, understanding MPC control 

theory and tuning methods and control performance is not 

an easy task. This makes skilled MPC control engineers 

very scarce. Due to these technical and manpower 

difficulties, MPC applications in other (non-petrochemical) 

process industries are still very limited.  

In the last 10 years, work has been done in the MPC 

industry to improve the efficiency and accuracy in model 

identification. Key improvements are 



  

 

 

-  Automated multivariable plant test instead of 

single variable manual test. 

-  Closed-loop test instead of open loop test. 

- The use of parametrical models. 

- The use of model quality grading in model 

validation. 

See Zhu (1998, 2006), Celaya et. al. (2004, 2005), 

Mantelli et. al. (2005) and Kalafatis et. al. (2006). Also, 

the user-friendliness of MPC software packages has been 

improved considerably. Even so, the MPC technology is 

still at the hands of few skilled control engineers and 

cannot be used by non control experts. In MPC 

applications, it is greatly desired to reduce the technical 

difficulties and the engineering effort.  

Recently, Zhu and coworkers (Zhu et. al. 2008) have 

started the development of a semi-automatic MPC system 

that aims to considerably reduce the cost of MPC 

technology as well as to increase control performance. The 

MPC system consists of three parts: an online control 

module, an online identification module and a control 

performance monitor module. For a given MPC design, the 

adaptive MPC can perform controller commissioning and 

maintenance automatically. In this work, we will discuss 

how system identification plays the key role in the adaptive 

MPC. The recent versions of other MPC packages have 

embedded this philosophy as well. Market is heading 

towards this goal. 

In Section 2, the architecture of the semi-automatic 

MPC is introduced. In Section 3 the identification module 

is discussed and an industrial application is presented. In 

Section 4 the control module is introduced where an 

adaptive disturbance model is used to increase control 

performance. In Section 5, the monitor module is discussed 

where an identification method is used in model error 

detection. Section 6 contains the conclusion and 

discussion.  

This paper emphasizes methodology, technology and 

application. Due to space limitation, mathematical details 

are omitted and they can be found in the references.  

2    The Architecture of the Semi-Automatic MPC  

At present, a common MPC project approach has the 

following steps (Zhu, 2001): 

(1)  MPC controller design and benefit analysis.  

(2)  Pre-test.  

(3)  Identification test and model identification.  

(4)  MPC controller tuning and simulation. 

(5)  MPC controller commissioning.  

(6)  MPC controller maintenance. The main task of 

maintenance is to re-identify the process model. 

Highly skilled control engineers with many years of 

experience are needed to perform the tasks and each step 

cost considerable time and effort. Different software 

packages are used in different steps, which is not 

convenient for the user.  

In Zhu et. al. (2008) we have proposed a semi-

automatic MPC controller. The goal of the MPC controller 

is to automatically and efficiently perform MPC 

implementation and maintenance, that is, steps (2) to (6) 

previously mentioned. The MPC controller consists of 

three modules: (1) an MPC Control Module, (2) an online 

Identification Module and 3) a Control Performance 

Monitoring Module. Figure 1 shows the block diagram of 

the semi-automatic MPC controller. 
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Figure 1. Block diagram of the semi-automatic 

MPC 

Assume that an MPC controller design is given. 

During the MPC implementation, the Identification 

Module performs automated plant test and automatic 

model identification. During the plant test, when some 

identified models have good quality for control based on 

model validation, they will be used in the MPC Control 

Module and the corresponding manipulated variables 

(MVs) and controlled variables (CVs) will be turned on. 

As the test continues, more and more models will be 

loaded in the MPC Control Module and MVs and CVs 

turned on. When all expected models reached good fidelity 

and are used in the MPC Control Module, the 

Identification Module will stop and the MPC 

commissioning is finished. For an online MPC controller, 

the Monitor Module continuously monitors its 

performance. When the Monitor Module detects 

considerable control performance and model quality 

degradation, it will activate the Identification Module and 

plant test and model identification will start while the MPC 

controller is still on. During the test and identification, 

poor models will be gradually replaced with the new and 

good ones. When all the poor models are replaced, the 

identification module will stop and the MPC maintenance 

is finished. 

The semi-automatic MPC performs the plant test, 

model identification, control simulation and control 

commissioning in a parallel manner and, therefore, it can 



  

 

considerably reduce the cost of MPC deployment. Most of 

the time plant tests are performed in closed-loop; therefore, 

disturbance to process operation is reduced. Almost all 

steps in MPC commissioning and maintenance are done 

automatically and it can be used by control non-experts 

such as operators. Hence the engineering cost can be 

reduced. The improvement in MPC efficiency can be 

shown as follows: 

1) The Old Way: Series steps, 3 to 4 software packages

Pre-test Step test & model ID Simulation Commission

Test & model ID

Simulation

Commission

3) The Integrated MPC: Parallel procedure, 1 package

Test & model ID Simulation Commission

2) With New Identification: Series steps, 3 to 4 packages

 

A prototype of the semi-automatic MPC controller has 

been developed which contains two modules: the Control 
Module and the Identification Module. It has been applied 

successfully to a PTA (pure terephthalic acid) unit; see Zhu 
et. al. (2008). The development of the Monitor Module is 

in progress. In the following we will discuss how system 
identification plays a key role in all the three modules. 

3    Identification Module  

The Identification Module uses the so-called 

asymptotic method (ASYM); Zhu et. al. (1991) and Zhu 

(1998). The approach is based on the asymptotic theory of 

identification developed by Ljung and Yuan; Ljung (1985) 

and Ljung and Yuan (1985). The technical detail of the 

method has been discussed in Zhu (1998, 2001). Here, we 

will outline how to use the method to achieve automated 

online identification of industrial processes. 

(1) Test signal design and identification test 

The spectra of the optimal test signals can be derived 

using the asymptotic theory. The optimality roughly means 

that the identified model is optimal for MPC control. The 

spectra of the test signals are realized by modified GBN 

(generalized binary noise) signals (Tulleken, 1990). The 

character of a GBN signal can be determined by its 

average switch time and its amplitude. The amplitudes of 

GBN signals are closely related to the MV step sizes 

moved by the operator during manual control. Studies 

show that the optimal average switch time of signals can be 

related to the process time to steady-state (settling time). 

A test program carries out plant test by automatically 

writing out the test signals. The test data is collected and 

stored for use in identification. It is a multivariable test, 

meaning, that in general, all MVs will be excited (tested) 

simultaneously. For each MV, the test can be open loop or 

closed-loop. If an MV is in open loop test, the test program 

writes the total MV signal to the process; if an MV is in 

closed-loop test, the test program only writes the test signal 

and the MPC controller will write the mean value of the 

MV. During the plant test, an MV can be switched from 

open loop to closed-loop test.  

2) Parameter estimation 

The parameter estimation is done in two steps: (1) 

Estimate a high order ARX (equation error) model and (2) 

Perform frequency weighted model reduction. It can be 

shown that this approach can result in maximum likelihood 

estimate, that is, most accurate model for the given data. It 

can also be shown that the estimation will give unbiased 

model for closed-loop test. 

3) Order selection 

The best order of the reduced model is determined 

using a frequency domain criterion. The basic idea of this 

criterion is to equalize the bias error 2ˆ( ( ) ( ))i o i
EG e G e

ω ω−  

and variance error 2ˆ( ( ))i
E G e

ω of each transfer function in 

the frequency range that is important for control. Here E 

denotes the expectation, ˆ ( )
i

G e
ω and ( )o i

G e
ω are the 

frequency responses of the model and of the process. 

4) Error bound matrix for model validation 

Based on the asymptotic theory, a 3σ error bound can 

be derived for each transfer function of the identified 

model. In the following we will give an engineering 

solution to the model validation problem based on the 

derived error bounds.  

 

Grading the Models. This is done by comparing the 

relative size of the bound with the model over the low and 

middle frequencies. Identified transfer functions are graded 

in A (very good), B (good), C (marginal), and D (poor, or, 

no model exists). Based project experience, A grade and B 

grade models can be used in the controller. C grade and D 

grade models are treated as follows: 

1) Zero them when there are no models expected 

between the MV/CV pairs. 

2)  If a transfer function is expected and needed in the 

control, modify the ongoing test in order to 

improve the accuracy of these models.  

Modify the Test. There are several ways to modify 

the ongoing test for improving model quality:  

• Increase the amplitudes of test signals will in 

general decrease model errors  

• Increase the test time will reduce model errors 

• Increasing the GBN switch time will reduce model 

errors in the low frequency band; decreasing 



  

 

 

switch time will reduce model errors in the high 

frequency band. 

Model identification and validation is carried out at a 

given time interval, for example, at each 100 samples, and 

the test may be modified according to model results. When 

most of the expected models are with grade A, and grade 

B, the identification test will be stopped.  

The online identification module is also a standalone 

package and has been applied many times in the industry; 

see, e.g., Celaya et. al. (2004, 2005) and Kautzman et. al. 

(2006). The following is an industrial application.  

Subspace method is also used in some MPC packages. 

However, subspace method is not yet mature enough to 

achieve automated identification and automated model 

validation and selection; its performance in closed-loop 

identification is also questionable.  

An Industrial Application of the Identification Module 

The process under consideration was a crude unit at 

the Ras Tanura Refinery of Saudi Aramco in Saudi Arabia, 

Figure 2. The existing controller had been in service for 

almost 5 years. Process revamps had resulted in loss of 

model fidelity and therefore, a controller revamp 

(maintenance) was undertaken. The model predictive 

controller was running on a Honeywell TDC 3000 

distributed control system (DCS) on a standalone 

application server.  The controller had 18 MVs, six 

disturbance variables (DVs) and 35 CVs. The process time 

to steady state was 2 hours. With conventional step testing 

approaches the estimated time was 2 to 3 weeks of open 

loop testing followed by modeling activities. With the 

automated step testing/modeling approach based on the 

ASYM method, the actual step testing time was 4.5 days.  

 

 

Figure 2. Schematic of the crude unit 

To facilitate the closed loop step testing, additional 

points were built on the DCS to do the summation of the 

controller and the test signals. The step testing package has 

hosted on a standalone machine and communicated with 

the DCS via OPC (Ole for process control) protocol. The 

integration activities consumed about 1-2 days of 

preparation time. The integration logic was left in place 

following the step test to carry out future step testing. A 

master switch enforced zeroing of all the bias signals 

during normal operation. Operating data and the original 

step test data was reviewed to obtain initial estimates of the 

step sizes for the different MVs.  

All the MVs were moved simultaneously under closed 

loop conditions. Figure 3 shows a snapshot of some of the 

MVs and CVs during the step test. Where possible, DVs 

were moved through the operator. Models were built from 

the step test data daily. The model qualities were reviewed 

with the site engineers and changes were made to the step 

sizes based on the estimated model qualities.  

 

 

Figure 3. Step testing trends for a section of the 

MVs 

Figure 4 shows the step responses for a section of the 

MVs/CVs. The color background is used to indicate A/B 

quality models (white background), C/D models (pink 

background) and grey background indicating where no 

relationships are expected. Model identification was done 

in a multivariate sense with very little user input. 

Delays/orders were automatically estimated.   

 

 

Figure 4. Models estimated from closed loop data for 

a section of the controller 



  

 

Figure 5 shows a comparison of the models estimated 

after days 1 and 4. The step test was concluded after 5 days 

of testing. A number of new models were identified in the 

multivariable step test as a result of larger number of 

moves per MV and a more accurate identification method. 

 

 

 

Figure 5. (Upper) Model qualities after day 1 of step 

testing and (Lower) after 4 days of step testing. Red – D 

quality models, Yellow – C quality and Green – A/B 

quality models. Blank entries in the matrixes means that 

there is no model expected 

 

The progress of the model quality was tracked every 

day and the step test was concluded once the critical 

MV/CV relationships were identified to a satisfactory 

accuracy. Certain MV models could not be identified 

accurately due to process issues such as potential fouling. 

This is why some columns in the model matrix are empty. 

Table 1 shows the overall progression of the model quality 

vs the number of models identified during the step test. 

Apart from a number of new relationships being identified 

during the multivariable step test, some of the existing ones 

were flagged as uncertain. This was due to the fact that the 

accuracy of each model was now being quantified. 

Previously there were no hard measures available for 

judging model quality and this often led to questionable 

models being included in the overall controller model. 

 

Table 1. Model quality progression on a daily basis 

Day 1 Day 2 Day 3 Day 4

No of A Models 12 21 29 32

No of B Models 20 29 50 54

No of C Models 10 13 22 20

No of D Models 82 67 59 63

Total Models 124 130 160 169

% A/B models 26 38 49 51  

Figure 6 compares the previous and the newly 

estimated models from the closed-loop step test. A 

thorough review of the identified models was carried out 

prior to adpating the new models in the controller.  

 

 

Figure 6. The old (blue) and the new (red) 

models for a section of the MV/CVs 

Some of the key lessons learned from the 

multivariable closed-loop step test and remodeling 

initiative were: 

(1)  Closed loop identification and multivariable step 

testing are definitely viable alternatives to 

traditional single variable open loop test 

approach, especially for revamp (maintenance) 

projects. 

(2) For grassroots MPC implementations, the 

opportunity to truly “learn” the process dynamics 

is diminished if one is moving all MVs 

simultaneously; however, it may still be feasible to 

apply this approach on units which are well 

understood – such a distillation column or a 

furnace. 

(3)  Closed-loop identification and model uncertainty 

quantification in particular offer precise insight 

into the quality of the model which is often the key 

“tuning” parameter in a model predictive 

controller. More work could be done in the 

direction of using this information to determine 

optimal controller tuning parameters, such as 

weights, for a given level of process uncertainty.  

4    Identification in the Control Module: An Adaptive  

       Disturbance Model  

The MPC Control Module performs MPC auto-tuning 

(for the dynamic control layer only), MPC simulation and 

online control. The MPC control algorithm uses a multi-

objective layered optimization method; see Wu and Qian 

(2005). Each CV can be controlled to its setpoint or within 

a zone (range); when there is not enough freedom to 



  

 

 

control all CVs, priorities and/or weightings can be used; 

for economic optimization, both linear programming (LP) 

and quadratic programming (QP) can be used and ideal 

resting value (IRV) can be assigned to each MV and CV.  

At each control sampling interval, the MPC control 

algorithm consists of three steps: (1) prediction, (2) steady 

state optimization and (3) dynamic control. In prediction, 

the identified process model is used together with the MVs, 

DVs and CVs up to current time to calculate the future 

values of CVs. The predicted values will be used in steady-

state optimization and dynamic control. 

In steady-state optimization, first feasibility analysis is 

performed, then, economical optimization is carried out. 

Feasibility analysis is to check if there is enough degree of 

freedom to control all CVs. If enough degree of freedom is 

not available, CV priorities and/or weightings will be used 

to resolve the conflict. When there are degrees of freedom 

left after meeting all CV control requirements, economic 

optimization will be performed. The economic 

optimization is realized by using combined LP and QP. 

We assume that all the parameters in the steady state 

optimization are determined in the MPC design. The 

results (output) of the steady-state optimization are the 

steady state values of MVs and CVs. 

The dynamic control part of the MPC algorithm uses 

the prediction values and process model to calculate the 

MV control actions that will drive the process to its steady 

state which is determined by the steady state optimization. 

The dynamic control calculation is again a QP  

To achieve semi-automatic MPC control, the MPC 

Control Module must able to (1) automatically select and 

use identified models in control and (2) automatically tune 

the MPC control parameters.  

Automatic Model Selection 

For a large scale industrial MPC controller with many 

MVs and CVs, not all MVs and CVs have relations, 

meaning that there are many zeros in the model transfer 

function matrix; also only good individual models will be 

used in the MPC control. Model selection determines 

which individual model will be used in the MPC control 

module. Model selection can be done automatically using 

the model validation results of the identification module 

and process knowledge given in a so-called expectation 

matrix. An expectation matrix is a matrix where columns 

relate to MVs and rows to CVs. The elements of the matrix 

contains “+” or “-” or “?” or “No”. A “+” element means 

that a model with positive gain is expected between the 

corresponding MV and CV. Similarly, a “-” element means 

that a model with negative gain is expected. A “?” element 

means that the user is unsure about the existence of a 

model for the corresponding MV and CV. “No” means that 

the user is sure that no model exists between the MV-CV 

pair.   

Now the following model selection rule is used: If an 

individual model has a grade A, B or C and the sign of the 

model gain is the same as that in the expectation matrix, 

then use the model in MPC control. Other wise, do not use 

the model. 

Automatic Control Parameter Tuning 

The goal of automated MPC tuning is to obtain a 

default tuning that has good and robust control of the given 

process. This is only done for the dynamic control part of 

the MPC algorithm as the parameters of the steady state 

optimization are assumed to be given in the MPC 

controller design. An MPC controller with auto-tuning can 

be used by a non-control expert, for example, an operator, 

which will considerably reduce the engineering cost of 

MPC technology. The tuning rule depends heavily on 

control requirements and can differ from one industry to 

another industry. Based on many simulation studies and 

industrial experience, an auto-tuning rule is derived which 

are suitable for MPC control in the refining/petrochemical 

industry. The tuning parameters are the closed-loop speed 

of all the CVs and weighting factors in the QP. These 

parameters are determined as functions of the open loop 

CV response times and variations of MVs and CVs which 

can be obtained from the model and testing data.  

Experience has shown that this tuning rule will give 

good and robust MPC control for major units in the 

refining/petrochemical industry, and may also be good for 

other process industries. To optimize the control 

performance, a control expert is needed to perform the 

tuning.  

Adaptive Disturbance Model Identification  

Here a technique for improving the performance and 

robustness of the MPC Control Module is discussed. In 

industrial MPC applications for continuous process units, 

we have observed that the process dynamics from inputs to 

outputs do not change for a long period of time; but the 

character of unmeasured disturbances change frequently. 

These variations cannot be modeled as stationary 

stochastic processes. In Xu et. al. (2010) we have 

developed an MPC technique that uses a fixed process 

model and an adaptive disturbance model. The process 

model is identified using externally excited input-output 

data. The unmeasured disturbances at the outputs are 

modeled as a time varying process filtered by an integrated 

white noise sequence; a time series ARMA model is used 

to describe the dynamics of the disturbances. 

Figure 7 shows the scheme of the MPC with adaptive 

disturbance model. Traditional adaptive MPC controllers 

update both process model and disturbance model sample-

wise and may suffer from poor excitation conditions if no 

test signals are applied. For the proposed method no 

persistent excitation problem will occur as input signals are 

not used here. 

The disturbances at outputs are assumed uncorrelated. 

Hence each disturbance can be modeled as single variable 

time series. This simplifies the model estimation problem.  



  

 

 

 

Figure 7.  MPC controller with the adaptive 

disturbance model  
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G q is the (i, j) transfer operator of the process 

and 
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ˆ ( )i jG q its model, q
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 is the unit delay operator and 

( , )
i

H q t is the time-variant disturbance filter.  

If the process model quality is good, the simulation 

error is a good estimate of the unmeasured disturbance. 

Then (1) can be approximated as 
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i i i

d t H q t w t≈                                                            (2)  

Assume that wi(t) is an integrated white noise. Then 

from (2) we have: 
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d t H q t w t∆ ≈ ∆                    (3) 

The dynamics of ˆ ( )
i

d t∆ can be described by an ARMA 

process: 
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Here ni is the order of the ARMA model.  

Traditional recursive identification method for the 

ARMA model performs a single iteration through a descent 

direction when a new data sample is available. It is well-

known that multi-iteration is needed in nonlinear 

optimizations and the single iteration used in traditional 

recursive identification methods will lead to low accuracy 

and slow convergence. Based on this observation, a novel 

multi-iteration pseudo-linear regression (MIPLR) method 

is developed and used which is more accurate and has 

faster convergence than traditional recursive identification 

methods. Figure 8 compares the speeds of parameter 

convergence of the new MIPLR and of the traditional PLR 

in a simulation. 
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Figure 8. Parameter plots in the simulation study. 

Parameter c2 jumped at sample 660. The blue dashed lines 

are the parameters estimated using traditional PLR, other 

lines are the parameters estimated using the new MIPLR 

with increasing iteration number 

 

The MPC method using the adaptive disturbance 

model is tested on an industrial distillation column; see Xu 

et. al. (2010). The test results show that the proposed MPC 

scheme can not only increase control performance, but also 

increase robustness against model errors. Is this a free-

lunch in control? In Figure 9 the prediction errors of two 

MPC controllers are shown for the two CVs of the process. 

One can see that the disturbance model improves the 

prediction accuracy. 

 

Figure 9.  Prediction errors of the new MPC 

(red and light blue lines) and those of the old 

MPC (green and light blue lines) 

More simulation studies have shown that the adaptive 

disturbance model is particularly useful for control during 

large disturbance events such as crude switches of crude 

units, drum switches of delayed coker and load changes of 

power plants. Here a simulation study of crude switch 

control is presented briefly. The process is a small part of 

an identified crude tower distillation column; studied in 

Zhu (1998). It has five MVs and five CVs. MV1 and MV2 

are temperature setpoints, MV3 is a flow setpoint, MV4 

and MV5 flow ratio setpoints. CV1 is a temperature 



  

 

 

difference, CV2 to CV5 are product qualities from online 

analyzers. Disturbance source signal mimic four crude 

switches in two days, where each crude switch is 

represented as a 1-hour ramp step plus random noise. The 

disturbance source signal is filtered using process models 

which resulted in five disturbance signals and each one acts 

as the unmeasured disturbance at a CV.  

 

Figure 10. CVs of the old MPC (red lines) and 

that  of the new MPC (blue lines). CV peaks 

can be reduced 50%. 

 

Figure 11. MVs of the old MPC (red lines) and 

that of the new MPC (blue lines).  MVs of the 

new MPC moves ahead of that of the old MPC 

Next, two MPC controllers are compared for crude 

switch control: the traditional MPC without using 

disturbance model (will be called old MPC) and the new 

MPC using the adaptive disturbance model. To test the 

robustness of the methods, both controllers use models that 

have 30% gain errors. Figure 10 shows that CV peak 

values during crude switches can be reduced 50% using the 

new MPC. Figure 11 shows that the MV moves of the new 

MPC are ahead of that of the old MPC during crude 

switches, which is due to better predictions.   

 5    Identification in the Monitoring Module: A  

             Method of Model Error Detection 

The monitor module monitors the performance of the 

MPC control as well as model quality. Four major 

indicators are used to monitor the MPC controller 

performance:  

(1)  On/off status of MVs and CVs. When the MPC 

controller does not perform well, some of the 

MVs or CVs may be turned off by the operator or 

by the MPC controller itself. The on/off status of 

MVs and CVs will be checked continuously. 

(2) Oscillations of MVs and CVs. When the MPC 

controller performs poorly, MV and CV 

oscillations often exist. Oscillation detection is 

performed using signal spectrum analysis. 

(3) CV standard deviations. Immediately after the 

MPC controller is commissioned or maintained, 

the monitor module will calculate standard 

deviations of all CVs for a time interval and use 

them as benchmarks for CV variations. The CV 

standard deviations will be calculated repeatedly 

and compared to their benchmarks. Denote 

std(CVi) as the standard deviation in a calculation 

period for CVi and std(CVi)BM as its benchmark. If 

ratio std(CVi)/std(CVi)BM is much greater than 1, 

it will indicate that control performance for CVi 

can be poor. A threshold for the ratio is used to 

indicate that the control performance for the CV is 

very poor; the value can be 2, 3 or 5, depending on 

the application. Similar benchmark is also 

proposed in Yu and Qin (2008a) using more 

complex calculations. 

(4) Model quality. The model quality information is 

obtained using a model error detection method as 

described below. 

The poor performance of an MPC controller can be 

caused by: (1) large model errors, (2) large unmeasured 

disturbances, and (3) improper MPC setting. When 

diagnosing control performance degradation, it is 

important to know the size of model error. Only when the 

large model error is the cause of the control degradation, 

model identification will be used to re-identify a new 

model of the process. So an area of MPC performance 

monitoring involves the search of the root cause of the 

control performance degradation, or, diagnosis (Qin, 1998 

and Patwardhan and Shah, 2002). Some methods have 

been developed for diagnosis, e.g., Kesevan and Lee 

(1997), Yu and Qin, (2008) Harrison and Qin (2009), 

Badwe et al., (2009) and Badwe et. al., (2010). A common 

problem of these methods is the lack of excitation when 

using closed-loop normal operation data, which often leads 



  

 

to inconclusive results. Another problem is that these 

methods usually do not assess the accuracy of their 

calculations and estimates.  

In Zhang et. al. (2011), we have developed a method 

of model error detection for MPC performance monitoring 

and diagnosis. Here we will briefly discuss the main ideas 

of the method and show a simple example.  

In this approach, three small amplitude sinusoids test 

signals are used as test signals to provide accurate 

estimates of the process frequency responses at the three 

frequency points; then the differences of the estimated 

frequency responses and those of the current MPC model 

are used as a measure of model errors. If the differences 

are larger than some threshold, then a warning message can 

be issued for too big model mismatch. This message will 

alert engineers the need to re-identify all or some models 

of the process, or, to activate the identification procedure 

automatically. 

The following procedure is proposed for closed-loop 

test. Choose three frequency points for the given process: 

low frequency
1ω , medium frequency

2
ω , and high 

frequency
3ω ; construct the multiple sinusoidal test signal 

for j-th setpoint  

1 1 1 2 2 2 3 3 3( ) sin( ) sin( ) sin( )j j j j

tr t t t tα ω ϕ α ω ϕ α ω ϕ= + + + + +  (5) 

The three frequencies are determined automatically 

based on the process bandwidth; the amplitudes 

1 2 3,  and j j jα α α  are chosen so small that ( )
j

tu t  will not 

disturb process outputs (CVs).  
Apply the test signal ( )j

t
u t  to j-th setpoint and keep 

other setpoints constant, record the all the signals of the 

closed-loop system. This will be called one sub-test. 

Repeat the sub-test for all the setpoints and collect the 

data. 

Assume that the process has m inputs (MVs) and p 

outputs (CVs). Applying discrete Fourier transforms to a 

multivariable linear process we have 

( ) ( ) ( ) ( )i
e

ωω ω ω= +N N NY G U V                                        (6)   

where ( ),  ( ) and ( )ω ω ωN N NY U V are the discrete Fourier 

transforms (DFT) of output (CV) vector y(t), input (MV) 

vector u(t) and unmeasured disturbance vector v(t). 

 

At test j and at one of the test frequency 

( 1, 2,3)
k

kω =  we get from (6)  

( ) ( ) ( ) ( )kij j j

k k ke
ωω ω ω= +N N NY G U V                        (7) 

where 1,2,...,j m= , means the time of sub-tests. After 

performing all the m tests, one can put DFT data in 

matrixes as 

1 2

1 2

1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

m

k k k k p m

m

k k k k m m

m

k k k k p m

ω ω ω ω

ω ω ω ω

ω ω ω ω

×

×

×

 =  

 =  

 =  

W N N N

W N N N

W N N N

Y Y Y Y

U U U U

V V V V

�

�

�

 

Then from (7) one obtains 

( ) ( ) ( ) ( )ki

k k ke
ωω ω ω= +W W WY G U V                              (8) 

Note that each column of matrix ( )kωWU consists of 

the DFT of the control inputs during one sub-test. Assume 

that none of any two outputs have identical models (if two 

outputs have the same or almost the same models, only the 

models of one output are analyzed.) Then, none of the two 

columns of ( )kωWU will be linearly dependent. Moreover, 

the probability that any two rows of ( )kωWU are linearly 

dependent is practically zero. Therefore, we can assume 
that ( )kωWU is a nonsingular matrix. We can estimate 

process frequency response matrix ( )ki
e

ω
G  using  

1ˆ̂
( ) ( ) ( )ki

k ke
ω ω ω−=N W WG Y U                                           (9) 

Because the disturbance vector is a stationary 

stochastic process, the norm of matrix ( )kωWV  is finite for 

any N; however, the input vector u(t) has sinusoids at 

frequency
k

ω , and the norm of ( )kωWU is in proportional 

to N . Therefore, the norm of the estimation error is in 

proportional to 1/ N . See Ljung (1999, Chapter 6) for 

detailed analysis. Therefore, we can say that the estimate 

(9) is consistent, or,   

ˆ̂
( ) ( )k ki i
e e as N

ω ω
→ → ∞NG G                           (10) 

Note that in the closed-loop test p m≥ is a necessary 

condition to ensure that matrix ( )kωWU  is nonsingular. In 

order to access the quality of the frequency response 

estimate (9), an 85.7% upper error bound is derived; see 

Zhang et. al. (2011).  

Model Error Index Matrix 

Given the three frequency response estimates obtained 

 
ˆ̂

( )ki
e

ω

NG , k = 1, 2, 3                          (11) 

Assume that the error of the estimates are small, which 

can be verified using the 85.7% upper error bound. 

Calculate the three frequency response of the current MPC 

model and denote them as  

ˆ ( )ki
e

ω

NG , k = 1, 2, 3                                                      (12) 



  

 

 

Then calculate the relative differences of the two 

frequency responses of each model 

 

ˆ̂ ˆ( ) ( )

ˆ̂
( )

k k

k

i i

Nhj Nhj

i

Nhj

G e G e

G e

ω ω

ω

−
, k = 1, 2, 3                                  (13) 

where 
ˆ̂

( )ki

NhjG e
ω , ˆ ( )ki

Nhj
G e

ω  are the h-output j-input 

frequency response of estimate and that current MPC 

model. 

Define a model error index matrix ERR as 

1 1 2 2

1 2

3 3

3

ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ERR 0.4 0.4
ˆ ˆˆ ˆ( ) ( )

ˆ̂ ˆ( ) ( )

0.2                                            
ˆ̂

( )

i i i i

Nhj Nhj Nhj Nhj

hj
i i

Nhj Nhj

i i

Nhj Nhj

i

Nhj

G e G e G e G e

G e G e

G e G e

G e

ω ω ω ω

ω ω

ω ω

ω

− −

= +

−

+

   (14) 

where higher weightings are used at low and medium 

frequencies to reflex their importance for MPC control. 

The index matrix MPM can be monitored by the MPC user 

and compared to some threshold, say 50%, for issuing 

model error warning messages. 

Model Error Detection Procedure 

(1) Perform small sinusoidal tests and estimate 

process frequency responses at the three 

frequencies.  

(2)  Calculate the 85.7% upper error bounds (see 

Zhang et. al., 2011) of the three point frequency 

response estimates. If all the error bounds are less 

than 10%, go to next step; if the error bounds are 

greater than 10%, wait for longer test data. 

(3)  Calculate the differences between the three-point 

frequency responses estimates and those of the 

current MPC model and show them graphically to 

the MPC user.  

(4)  Calculate the model error index matrix ERR. If 

some element of ERR is greater than the threshold 

(for example 50%), an alarm will be generated; 

alternatively, an automatic process identification 

test will be activated. 

This approach is motivated by the following 

observations: 

- The test signal energy is very small, which causes 

small or no disturbance to process operation; 

however, the test signal power at the three 

frequencies is very high for large number of data, 

thereby, the three point frequency response 

estimates are very accurate. A full identification 

step test is much more disturbing than the small 

sinusoidal test. Before performing a full step test, 

we first want to make sure some key models are 

with large errors. 

- Most transfer functions can be well approximated 

by first or second order plus delay models. 

Therefore, if the errors of the current MPC models 

at all three frequencies are big, then the model 

errors are big. 

Simulation Example 

The model error detection method is tested in an MPC 

control system which is a simulation using the MPC 

Toolbox of MATLAB
®
. The real process is given as: 

1 2

1 2

0.5
( )

1 1.5 0.7

q q
G q

q q

− −

− −

+
=

− +
 

The MPC model used in control is: 
1 2

1 2

2.4ˆ ( )
1 1.2 0.7

q q
G q

q q

− −

− −

+
=

− +
 

The unmeasured disturbance v(t) is generated by 

filtering a white noise e(t) using the following low-pass 

filter. The variance of v(t) is 10. 

)(
95.01

1
)(

1
te

q
tv

−−
=  

The small test signal is  

2.4sin(0.015* 2 ) 2.68sin(0.067 * 2 )

1.18sin(0.13* 2 1.5 )

tr t t

t

π π π

π π

= + −

+ −
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Figure 12. Output of normal MPC control (red solid 

line) and output of MPC control with diagnose test (blue 

dashed line) 

 

In Figure 12, 1,000 points of normal control 

performances and diagnose test outputs are plotted. One 

can see that small period test signal does not increase the 

output fluctuations very much. The standard deviations of 

the two signals are 2.15 (normal operation) and 2.63 (using 

test signal) respectively. This means that the test signal 

only caused the 22% increase in output standard deviation. 



  

 

This is very small disturbance indeed. In our industrial 

experience, a normal identification test will increase the 

output standard deviation by 200%.  

When the system is stabilized, 20,000 data samples are 

used to perform frequency domain analysis. The frequency 

responses are shown in Fig. 13. The blue curve represents 

the frequency response of MPC model; the red curve is the 

frequency response of the current production process; three 

blue '+' in the figure are the estimated frequency response 

points; red '*' in the figure are the error of estimation and 

real process (in the normal test, the red curve and red '*' 

can not be obtained); three thick blue lines are the upper 

error bound.  
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Figure 13. Frequency responses of the process (red line) 

and that of the MPC model (blue line) 
 

The results of process frequency response estimation 

and model error calculation are given in Table 2. One can 

see that the model error estimation is accurate and the 

current MPC model has very large model error. The model 

error index in (21) can be determined as 

0.4 15.27% 0.4 65.32% 0.2 319.73%

96.18%

= × + × + ×

=

ERR  

This is quite a big number and one may conclude that the 

model error is big and model re-identification is necessary 

in order to improve the MPC performance. 
 

Table 2. Model error detection for the MPC system 

 0.015Hz 0.067Hz 0.13Hz 

Error of process 

freq. resp. estimate 
4.24% 3.40% 2.23% 

Error bound 9.95% 7.38% 9.53% 

Estimated errors of 

the MPC model 
15.27% 65.32% 319.73% 

True errors of the 
MPC model 

11.74% 62.82% 328.73% 

 

A multivariable simulation exampple can be found in  
Zhang et. al. (2011).  

6    Conclusion, Discussion and Perspective 

In recent years we have worked on the development of 

a new generation MPC system to reduce the cost of 

deployment and to increase control performance. In the 

new MPC system the importance of system identification 

cannot be over stated. In the Identification Module, a 

multivariable closed-loop identification method is used 

which can identify process models efficiently; in the 

Control Module, a novel adaptive disturbance model 

identification method is used to improve the control 

performance and robustness; in the Monitor Module, a 

frequency domain identification method is used for model 

error detection. Industrial case studies and simulations 

have shown the effectiveness of the developed 

identification methods.  

Each of the methods used was one or more research 

topics with real application background. We strongly 

believe that research and application (theory and practice) 

can be mutually supporting instead of conflicting. There 

are many interesting and challenging research problems in 

developing the new generation MPC technology. For 

researchers who like to contribute to the MPC technology, 

the following research topics could be considered:  

- How to auto tune an MPC controller? 

- How to relate MPC tuning to model uncertainty? 

- Prove the (robust) stability of MPC with adaptive 

disturbance model of Section 4. 

- Prove the existence of free lunch in control (high 

performance and high robustness). 

- Given a large process, how to determine key 

models that have strong influences on control 

performance and how accurate these models 

should be? 

- Often there is no theoretical proof of stability for 

industrial MPC controllers. Simulations are used 

to check stability and performance. What is the 

relation between MPC simulated stability and 

theoretical stability, or, how to verify theoretical 

stability using simulations? 

- Can we further reduce the identification test time, 

or, can we go beyond the accuracy of prediction 

error model? 

- Should nonlinear weightings be used for nonlinear 

MPCs and how? 

- Analyze the two layer multi-objective MPC 

algorithms (consist of steady-state economic 

optimization layer and dynamic control layer) used 

in industrial MPC packages instead of one layer 

single objective MPC algorithms.  

It is our hope that the new generation MPC technology 

considerably reduces the cost of MPC deployment and 



  

 

 

maintenance so that there is an MPC for every industrial 

process, just like that there is a desktop computer on every 

desk.  
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