
 1

MILP BASED VALUE BACKUPS IN POMDPS WITH VERY LARGE OR CONTINUOUS ACTION SPACES

Rakshita Agrawal+, Jay H. Lee* and Matthew Realff+

+School of Chemical and Biomolecular Engineering, Georgia Institute of Technology
Atlanta, GA 30332, USA

*Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology
Daejoen, Korea

Abstract
Partially observed Markov decision processes (POMDPs)
serve as powerful tools to model stochastic systems with
partial state information. Since the exact solution methods
for POMDPs are limited to problems with very small sizes
of state, action and observation spaces, approximate point-
based solution methods like Perseus have gained popularity.
In this work, a mixed integer linear program (MILP) is
developed for calculation of exact value updates (in Perseus
and similar algorithms), when the POMDP has very large or
continuous action space. Since the solution time of the
MILP is very sensitive to the size of the observation space,
the concept of post-decision belief space is introduced to
generate a more efficient and flexible model. An example is
presented to illustrate the concepts and compare the results
with those of the existing techniques.

Keywords: Partially Observed Markov Decision Process,
Post-Decision Belief State, Bellman Equation, MILP

Introduction
POMDP describes a discrete-time stochastic control

process when the states of the environment are partially
observed. At any time, the system is in one of the states
sS where S is a set of all permissible states and is called
state space. By taking an action a, the system transitions to
the next state s′S according to known probability p(s′|s,a)
and accrues a reward r(s,a). The next state s′ is not
completely observed but an observation o may be made,
which is probabilistically related to the state s′ and action a
by p(o|s′,a) through stochastic system dynamics.
Throughout this paper, symbol p(.) is used to denote
probability of a quantity.

More formally, it corresponds to a tuple (S, A, Θ, T,
OP, R) where S is a set of states, A is a set of actions, Θ is a
set of observations, T : S×A×S→[0,1] is a set of transition
probabilities that describe the dynamic behavior of the
modeled environment, OP : S×A×Θ→[0,1] is a set of
observation probabilities that describe the relationships
among observations, states and actions, and R: S×A×S→ R1
denotes a reward model that determines the reward when
action a is taken in state s leading to next state s′. The
dependence of reward function on s′ is usually suppressed
by taking a weighted average over all possible next states
(

'

)',,(),|'(),(
s

sasRasspasr). Symbols s, s′, o and a

are used to denote current state, next state, observation and
action and belong to sets S, S, Θ and A respectively.

10   is the discount rate that discounts the future

rewards. The goal is to maximize the discounted sum of
rewards over a time horizon, which can be either finite or
infinite.

Since the exact solution methods for POMDPs are

limited to problems with very small sizes of state, action
and observation spaces, approximate solution methods
have gained popularity. Notable among these are the
point based methods, which consider a fixed or evolving
set of prototype belief points instead of considering the
entire belief simplex. A particular point based method,
PERSEUS (Spaan Matthijs and Vlassis, 2005) favorably
makes use of the piecewise linear and convex (PWLC)
structure of the value function to speed up convergence.
In this work, POMDPs with very large or continuous
action space are considered. In the current form of
PERSEUS and many other point based methods,
presence of continuous actions or very large action space
makes it practically impossible to compute the value
backups exactly.

In this paper, mathematical programming models are
developed to alleviate this difficulty. In section 2,
existing literature on solution methods for POMDPs with
large/ continuous action space is discussed. In section 3,
details of mathematical program to obtain the value
backups are discussed along with assumptions on
problem structure. The notion of post-decision belief
state is introduced in section 4. The alternative
formulation around post-decision belief state allows for
more efficient and flexible computation of the value
updates in the presence of large sized observation space.
An example is presented in section 5 for the purposes of
illustration and comparison.

Related work
Adopting the POMDP notation from (Spaan and Vlassis,
2005), the value backup for a belief point b (for infinite
horizon POMDP with discount factor γ) is given by (1)
through (4), where ||,..2,1, n

i
n Vi  is the set of

gradient vectors that characterizes the value function at
nth iteration (denoted by Vn). The belief state b(s)
represents the probability of being in state s at a given
time. ba,o(s) is the belief state at the next time period,
which is reached by taking an action a and making an
observation o. Infinite horizon POMDP with discounting
is used in all illustrations, γ being the discounting factor.
Equivalent models can be derived for finite horizon
POMDPs with little difficulty.

 2

})(),|()(),({max)(,
1 


 

Oo

oa
n

Ss
Aa

n bVabopsbasrbV  (1)

)(),'|(),|'(

)(),'|(),|'(
)'(

'

,

sbasopassp

sbasopassp
sb

Ss Ss

Ssoa




 

 (2)

)(),'|(),|'(),|(
'

sbasopasspabop
Ss Ss

 

 (3)





Ss

oai
n

i

oa
n sbsbV

'

,,)'()'(max)( (4)

Similar to the fully observable Markov decision
processes (FO-MDP or simply MDP), the computation
time for each iteration is proportional to |A| when
enumeration of all actions is used in the max operation in
(1). Additionally, the size of all possible gradient vectors at
the nth iteration is |Vn||A||O|, where |Vn| is the number of
gradient vectors that characterize Vn. Therefore, POMDP
with large action and observation spaces prove to be a
challenge. It is not surprising then that, to the best of our
knowledge, no current solution method claims to compute
the max operation exactly for very large or continuous
action spaces. We next review a subset of literature that
considers POMDPs with very large or continuous action
spaces.

Among the available POMDP solution methods,
policy search methods are better equipped at handling
continuous action spaces. An example is Pegasus (Ng and
Jordan, 2000), which estimates the value of a policy by
simulating trajectories using a fixed random seed, and
adapts its policy in order to maximize the value. Pegasus
can handle continuous action spaces at the cost of a sample
complexity that is polynomial in the size of the state space.
Baxter and Bartlett (2001) propose a policy gradient
method that searches in the space of randomized policies,
and which can also handle continuous actions. The main
disadvantages of policy search methods are the need to
choose a particular policy class and the fact that they are
prone to local optima.

Thrun (2000) and Spaan and Vlassis, (2005) consider
sampling techniques to keep the active size of the action
space relatively small for continuous or very large action
spaces. In the Monte Carlo POMDP (MC-POMDP)
method of Thrun (2000), real-time dynamic programming
is applied on a POMDP with a continuous state and action
space. In that work, beliefs are represented by sets of
samples drawn from the state space, while the values of the
Q-functions defined over belief state and action (Q(b,a))
are approximated by nearest-neighbor interpolation from a
(growing) set of prototype values and are updated by
online exploration and the use of sampling-based Bellman
backups. In contrast with PERSEUS, the MC-POMDP
method does not exploit the piecewise linear and convex

structure of the value function. Both methods are
problem dependent and may lead to loss of solution
quality in certain applications.

Alternatively, by the use of mathematical
programming, exact value backups may be ensured in the
presence of large or continuous action space. The
equivalent mathematical program for (1) along with
assumptions is presented in the following section.

Mathematical programming based value updates

Formulation of the mathematical program
The biggest motivation for using a mathematical program
to compute the value backup for a belief point b is the
fact that the value function for infinite horizon POMDP
can be approximated well by a PWLC function (Sondik
1978). The value backup equation is shown in (1).
Assuming that the state and observation spaces are finite
and with a little abuse of notation, the reward function
ra(s) =r(s,a), state transition probability function ta(s,s′) =
T(a,s,s′) and observation probability function
opa(s′,o)=OP(s′,o) are dependent on action a as shown in
(5) through (7). Here subscript a suggests dependence on
action a; s,s′ and o represent the indices of current state,
next state and observation respectively.

)7(),',(),'(

)6()',,()',(

)5(),()(

3

2

1

osafosop

ssafsst

safsr

a

a

a






The equivalent mathematical program for (1) can be
written as shown in (8) through (13).

)'()',(ssi i
nn   is used for ease of notation.

..

})()(),'()',()()({max
'

ts

ovsbosopsstsbsr
Oo

a
Ss Ss

a
Ss

a
Aa


  


(8)

osbsiov
Ss

oa
n

i
 

'

,)'()',(max)( (9)

'
)(),'()',(

)(),'()',(
)'(

'

, s
sbosopsst

sbosopsst
sb

a
Ss Ss

a

a
Ss

a
oa 




 

 (10)

)13(),',(),'(

)12()',,()',(

)11(),()(

3

2

1

osafosop

ssafsst

safsr

a

a

a






Substituting the value of oab , from (10) and canceling the

term)(),'()',(
'

sbosopsst a
Ss Ss

a
 

, the resultant

mathematical program is shown in Figure 1. Admittedly, the
reward and probability functions in the form of f1,f2 and f3
have not been defined. They are better understood by the
illustrative example presented later (see Eq. (30)-(31)).

 3

7.1M),',(),'(

6.1M)',,()',(

5.1M),()(

4.1M1),(

3.1M,)),(1(

)()',(),'()',()(~

2.1M,)()',(),'()',()(~
..

1.1M)}(~)()({max

3

2

1

'

'

osafosop

ssafsst

safsr

ooiy

oioiyM

sbsiosopsstov

oisbsiosopsstov

ts

ovsbsr

a

a

a

i

Ss Ss
naa

n
Ss Ss

aa

Ss Oo
a

Aa






















 

 

 

 







Figure 1: The mixed integer program (model M1) for
determination of the maximizing action for value update

Computational efficiency of the mixed integer formulation

The value backups are computed many times for different
belief states in each iteration. The operation is then
repeated for multiple iterations. It is therefore imperative
that the mathematical program associated with the value
backup be computationally efficient and yield near-optimal
solutions for each solve. In order to ensure the above two
properties, restrictions on the structure of the mathematical
program need to be imposed. This limits the applicability of
the proposed approach to a certain extent. In general, a
linear, quadratic or convex program provides ease of
computation. This requires that the stage-wise reward,
equations and constraints be a linear, quadratic or convex
function of the action. Due to the presence of integer
variables, a linear formulation is most suitable.

The the size of the model (number of variables and
constraints) is directly proportional to |S|2, |O| and |Vn|.
Dependence on |A| is implicit. Since f1, f2 and f3 are
transition functions, in the absence of logical variables they
pose little computational challenge. The size of the model
is greatly affected by the number of integer variables, i.e.,
y(i,o) in this case. This number clearly depends on |Vn| and
|O|. While |O| comes directly from the model, the size of Vn
is governed by a combination of factors. The most
important factor is the dimensionality of belief simplex. In
terms of PERSEUS, a higher dimensional simplex would
require higher number of belief points comprising the
prototype belief set and |Vn| ≤ |B|. Since |B| is highly
dependent on the dimension of the state space, methods like
value-directed compression (Poupart and Boutilier, 2003)
and PCA for belief compression (Roy and Gordon, 2003)
may be used to reduce |S| and hence |B|. However, in
practice |Vn| <<|B| (Spaan Matthijs and Vlassis, 2005).
Another determinant of |Vn| is the structure of optimal
policy. For example, when the decision region is convex, it
is possible to approximate the function corresponding to
each decision region by only few gradient vectors. In this
case, |Vn| would depend on |A|.

While approaches to limit the size of |Vn| are
dependent on the problem structure, there is a more
general and elegant way to resolve the problem of large
sized observation spaces. This is addressed in the
following section.

Value iteration around post decision belief state

The basic idea

For a general MDP (fully observable), the notion of post
decision state applies to problems where the effect of
actions and uncertainty on state variable can be
separately represented. Since POMDP is equivalent to a
continuous state FO-MDP, this concept can be utilized
here, given the aforementioned requirement is met. To
see this, let the belief state at time t be denoted by bt.
When action at is taken, the state can be thought to

transition to an intermediate state a
tb

~
 before the next

observation is made. Once the uncertain observation o is
realized, the system can be in any of |O| next belief states
where |O| is the size of uncertainty, i.e., the number of
possible next beliefs. This is schematically shown in
Figure 2. Circles represent the more popular pre-decision
belief state bt, bt+1 etc. and squares represent the

intermediate state a
tb

~
 that captures the effect of action

only. This is referred to as post decision belief state.

In the context of POMDPs, solution using the post-
decision state approach is possible when the observation
probabilities do not depend on action a. The actions that
affect observation probabilities may be made part of the

state. The transition from regular belief state bt to a
tb

~

then is simply given by tabt.

It is to be noted that although the effect of action on
underlying states sS may be prone to uncertainty, the
belief state transition (tabt) is always deterministic.

Figure 2: A schematic of pre-decision state to post-
decision state and again to pre-decision state

a
tb

~
tb

a
o1

oN

o2

1,
1
oa

tb 

2,
1
oa

tb 

oNa
tb ,

1

'
1

~a
tb 

a'

''
1

~a
tb 

a''

Sequence of events followed in formulation

around post-decision state

around pre-decision state

a
tb

~
tb

a
o1

oN

o2

1,
1
oa

tb 

2,
1
oa

tb 

oNa
tb ,

1

'
1

~a
tb 

a'

''
1

~a
tb 

a''

Sequence of events followed in formulation

around post-decision state

around pre-decision state

 4

Having obtained the post decision belief state, |O| (pre-
decision) belief states may be obtained at the next time step.
The transition is governed by the observation probabilities

p(o|bt)=p(o| a
tb

~
) for all oO. This two step transition is

shown in Figure 2. Intuitively, starting with a post decision

state b̃a, |O| possible next states ob oa , are obtained. For

each of the states ob oa , , a maximizing action a′ would

determine the next post-decision belief state ba′,o.
Consequently, the value iteration update takes the form
shown in (15) through (19). Va represents value function
around post-decision belief state b̃a. For notational ease, the
dependence of action a′ and next post-decision belief state
b̃a′ on o is suppressed in future illustrations. The details on
the derivation of value iteration equation around post-
decision state can be found in (Powell 2007) for a general
MDP.

In (15), it is to be noted that the expectation over
observations is outside the max operator. This removes the
dependence of the size of the MILP on |O|. In addition, we
can show that the structure of Va can be shown to be still
PWLC (Powell 2007)

In the following sections, we derive the value and
gradient update equations around post-decision belief state
and then present pros and cons of using this method over
regular value iteration around pre-decision state.

Derivation of backup equations and formulation of math
program

The equations for value and gradient backups around
post decision belief states are derived on similar lines as
shown in (Spaan and Vlassis, 2005). The value iteration
step for the post decision state variable is given by (15)
through (19).

)15())}'(
~

(

)()',({max),
~

|()
~

(

'

'
1

sbV

sbasrabopbV

aa
n

ao

s
a

o

aaa
n



 

where

















s

aa

i
n

s

a

i

aa
n

s

aoa

s

a

a
ao

sbasopabop

ssbsbV

asspsbsb

asopsb

asopsb
sb

)19()(
~

),|(),
~

|(

)18()'()'(
~

max))'(
~

(

)17()',|'()()'(
~

)16(
),|()(

~
),|()(

~
)(

'

''

'



Substituting (16) through (19) in (15)

}
)(

~
),|(

)'()(
~

)',|'(),|(
max

)(
~

),|(

)(
~

),|()',(
{max),

~
|()

~
(

'

'

 




 

s s

s

a

i
n

a

i

s

a

a

s

a
o

aaa
n

sbasop

ssbasspasop

sbasop

sbasopasr
abopbV




(20)

Since),
~

|(abop a is independent of 'a , it is taken

out of max and cancelled with the numerator. This
implies that

})'()(
~

)',|'(),|(max

)(
~

),|()',({max)
~

(

'

'
1



 

s s

i
n

a

i

a

so
a

aa
n

ssbasspasop

sbasopasrbV



 (21)
Using

)23(),|()',()(

)22()'()',|'(),|()(

'

'
'

asopasrsTand

sasspasopsg

oa

s

i
n

i
oa



 

and the identity

j
y

j
y

yxxyx
jjjj

.maxarg..max
}{}{

 (24)

)25(},
~

maxarg.
~

)(
~

)({max)
~

(

'
}{

'

'
1

'



 

i
oa

a

g

a

s

aoa

a
o

aa
n

gbb

sbsTbV

i
i

oa



 i
oa

a

g

oaoa gbsTsG
i

i
oa

'
}{

'' ,
~

maxarg)()(
'

 (26)

},
~

maxarg.
~

{)
~

('

}{
1

'
'

 
oaa

G

a

o

aa
n GbbbV

a
oa

 (27)

and


oaa

Go

b
n Gb

a
oa

a '

}{

}
~

{
1 ,

~
maxarg

'
'

 (28)

(27) and (28) give the value backup and gradient vector
backup for the post decision belief state variable
respectively.

The mathematical program for (25) for a given

observation and belief state b̃a is shown in Figure 3.
Evidently, the binary variables y(i) for i=1,2,. |Vn| and
variable v do not depend on observation o. However the
model has to be solved multiple times to obtain the
backup. The number of times the model is to be solved is
given by o_size≤|O|, where o_size is the number of
observations for which p(o|b̃a)>0.
Policy determination Similar to the pre-decision state
case of section 3.2, there are two possibilities to
determine the optimal action for a belief state b, i.e., (i)
Storing the maximizing action(s) associated with each
gradient vector and (ii) Solving one step look-ahead
problem on-line. However, there are multiple actions
associated with a gradient backup (a′{o} o). Therefore
the action associated with each observation needs to be

 5

cached. This results in higher memory requirement for
storing the ε-optimal policy for the post-decision state, as
compared to that for the pre-decision state. For the look-
ahead design on the other hand, the MILP needs to be
solved for the belief state pertaining to the current
observation only. This is computationally less expensive
than the look-ahead design for solution around pre-decision
belief state.

sssafsst

ssafsr

iy

iiyMsbsisstov

isbsisstov

ts

ovsbsr

a

a

i

Ss Ss
na

Ss Ss
na

Ss

oa
a

Aa




















 

 



)',,()',(

),()(

1)(

))(1()()',()',()(

)()',()',()(

..

)}()()({max

2

1

'

'

,
'







Figure 3: The MILP for determination of the
maximizing action for value update for a post-decision

belief state

Comparison with value updates around pre-decision belief
states

While using MILP based value updates the two
methods can be compared along following avenues:

i) Complexity of MILP problem – In the post
decision state formulation (referred to as ‘post-formulation’
hereafter), several smaller MILPs are solved for one value
backup as opposed to solving one large MILP for pre-
decision state formulation (‘pre-formulation’). The former
almost always works better if the input/output operations
between the MILP solver (e.g., CPLEX) and regular
solution platform (e.g., MATLAB) are not as time
consuming as the optimization itself.

ii) Policy determination in real time – The
formulation around pre-decision state allows for storing
optimal action with each gradient vector that characterizes
the ε-optimal value function. For formulation around post-
decision belief state, optimal action needs to be stored for
each gradient vector and each observation. This increases
the memory requirement for the latter. This may not be
feasible when the observation space is very large. However,
the look-ahead design for policy determination is faster for
the post-formulation due to lower complexity of the
associated MILP.

iii) Handling very large or continuous observation
spaces – While pre-formulation is limited to small
observation spaces, the MILP technique for value updates

based on post-formulation is on par with enumeration
based methods. When observation space is very large or
continuous, Hoey and Poupart (2005) consider creating
sets of observations for which b leads to the same future

belief state oab , . This effectively makes the observation

space discrete. Such manipulation of observation
probabilities is better achieved outside the confines of a
mathematical program, thus making the post-formulation
more attractive.

Aside from (ii) above, it is easy to see that the two
formulations are similar in terms of computational
complexity when enumeration of action space is used for
value backups. This consideration excludes the fact that
post formulation allows for parallel processing of max
operation.

 Illustrative example

The example in this section contains continuous
actions and the POMDP is formulated around pre-
decision belief state. For simplicity, the observation
probabilities are assumed independent of actions.

In order to illustrate the concept of using mathematical
programming for value backups, a simple problem with
two states is considered first. A hypothetical machine can
be in one of two states (s1 and s2) at any time. The system
probabilistically transitions between the two states.

Rewards R1 and R2 are received when system is in

state s1 and s2 respectively and R1>R2. This implies that
s1 is more desirable state than state s2. There are two
possible actions a1 and a2 which affect the probabilities
of state transition as shown below. a1(0,1) and a2 (0,1)
are continuous and bounded. While a higher value of a1
helps the system remain in state 1, a higher value of a2
ensures it’s returning to state s1 from state s2. These
actions can be thought of as routine preventive and
corrective actions to make sure the equipment is in state
s1, e.g. cleaning, lubrication etc. The tasks are scaled to
obtain the bounds of 0 and 1.





























2

1

2

1

2

1

s

s
O

a

a
A

s

s
S (29)














22

11

1

)1(5.0)1(5.0

aa

aa
Ta

 (30)

The (state dependent) unit costs of taking action a1

and a2 in state s1 are C11 and C12 respectively. Similarly,
the unit costs of taking action a1 and a2 in state s2 are C21
and C22 respectively with C12>C11 and C22>C21 .This
ensures that the cost of keeping the system in state s1 is
lower than bringing it back to s1, when it has transitioned
to s2. Accurate state observation is made with probability

 6

0<<1. The resulting observation and reward matrices are
as shown below:

























2221212

2121111

1

1

aCaCR

aCaCR
ROP a



 (31)

Finally, there are system and budget constraints of the
form shown in (32) and (33), respectively. While the
former specify system requirements, e.g., a certain mix of
cleaning fluids from the two actions, the latter represent
limits on total expenditure. Since cost of actions is state
dependent, the probabilities of being in state s1 and s2, i.e.,
b(s1)=b1 and b(s2)=b2, are also a part of the constraints.

)33(0

)32(0

32222122121121111

32211




BabBabBabBabB

AaAaA

The parameter values considered for this study are

shown in Table 1.

Table 1: Parameter values for the system with two-
continuous actions

Parameter  R1 R2 C11 C12 C21 C22 A1
Value 0.9 2 0 0.1 0.15 0.3 0.05 0.5088

Parameter A3 B11 B12 B21 B22 B3 A2
Value -1 3.1185 9.355 3.0736 1.025 -1 1.325

Optimal policy and value function

The performance of the converged value function and
policy for both approaches are shown in Table 2. While the
pre-decision formulation is used for the MILP based
approach, a uniform grid of 0.1 is used for the enumeration
based approach to generate a finite action space. The
enumeration based method convergences in an order of
magnitude less time than the MILP based method. However,
the performance of the enumeration based method is worse
than that of the MILP solution. This is attributed to the
discretization of the action space.

Scalability To study how the solution time scales with the
problem size and understand whether the value gap

depends on the problem size, two additional experiments
are performed: (i) a system with three possible states and
three actions, (ii) a system with four states and four
actions. Similar to the two-action system above, the
states are discrete and all actions are continuous and
range from 0 to 1. The probability transition matrix is a
linear function of actions and the constraints follow the
same linear structure as (29) and (30). The corresponding
results are reported in Table 2. It is observed that the
performance gap widens as the problem size grows.

We have also applied the post-formulation based
MILP value backup method to a realistic network flow
problem, which showed significant improvements in
solution time and / or quality compared to the
enumeration approach as the number of nodes in the
network becomes larger. This result is not presented here
due to the space limitation, however.

References

J. Baxter and P. L. Bartlett. Infinite-horizon policy-gradient
estimation. Journal of Artificial Intelligence Research,
15:319-350, 2001.

S. Thrun. Learning metric-topological maps for indoor mobile
robot navigation. Artificial Intelligence, 99(1):21-71, 1998.

T. J. Spaan Matthijs and N. Vlassis, Perseus: Randomized
point-based value iteration for POMDPs, Journal of Artificial
Intelligence Research, 24: 26, 2005.

J. Hoey and P. Poupart. Solving POMDPs with continuous or
large discrete observation spaces. In Proc. Int. Joint Conf. on
Artificial Intelligence, 2005.

W. B. Powell, Approximate Dynamic Programming: Solving
the Curses of Dimensionality, Wiley-Interscience, 2007.

E. J. Sondik, The optimal control of partially observable
Markov processes over the infinite horizon: discounted costs,
Operations Research, 26(2): 282-304, 1978.

A. Y. Ng and M. Jordan, PEGASUS: A policy search method
for large MDPs and POMDPs. In Proc. of Uncertainty in
Artificial Intelligence, 2000.

P Poupart, C Boutilier, Value-directed compression of
POMDPs, Advances in Neural Information Processing
Systems, 2003.

N Roy, G Gordon, Exponential family PCA for belief
compression in POMDPs, Advances in Neural Information
Processing Systems, 2003.

Table 2. Results for the problems with continuous actions

Problem |A| Performance |Vn| Convergence time

 MILP Enum MILP Enum MILP Enum

2 actions 121 13.28 ±1. 13.08 ±1.5 6 7 16.0 0.62

3 actions 133 16.71 ±2. 14.67 ±3.2 15 11 46.7 29.45

4 actions 146 15.02 ±1 10.27 ±3.6 16 159 108. 1180.25

