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Abstract 
Partially observed Markov decision processes (POMDPs) 
serve as powerful tools to model stochastic systems with 
partial state information. Since the exact solution methods 
for POMDPs are limited to problems with very small sizes 
of state, action and observation spaces, approximate point-
based solution methods like Perseus have gained popularity. 
In this work, a mixed integer linear program (MILP) is 
developed for calculation of exact value updates (in Perseus 
and similar algorithms), when the POMDP has very large or 
continuous action space. Since the solution time of the 
MILP is very sensitive to the size of the observation space, 
the concept of post-decision belief space is introduced to 
generate a more efficient and flexible model. An example is 
presented to illustrate the concepts and compare the results 
with those of the existing techniques. 
 
Keywords: Partially Observed Markov Decision Process, 
Post-Decision Belief State, Bellman Equation, MILP 

Introduction  
POMDP describes a discrete-time stochastic control 

process when the states of the environment are partially 
observed. At any time, the system is in one of the states 
sS where S is a set of all permissible states and is called 
state space. By taking an action a, the system transitions to 
the next state s′S according to known probability p(s′|s,a) 
and accrues a reward r(s,a). The next state s′ is not 
completely observed but an observation o may be made, 
which is probabilistically related to the state s′ and action a 
by p(o|s′,a) through stochastic system dynamics. 
Throughout this paper, symbol p(.) is used to denote 
probability of a quantity.          

More formally, it corresponds to a tuple (S, A, Θ, T, 
OP, R) where S is a set of states, A is a set of actions, Θ is a 
set of observations, T : S×A×S→[0,1] is a set of transition 
probabilities that describe the dynamic behavior of the 
modeled environment, OP : S×A×Θ→[0,1] is a set of 
observation probabilities that describe the relationships 
among observations, states and actions, and R: S×A×S→ R1 
denotes a reward model that determines the reward when 
action a is taken in state s leading to next state s′. The 
dependence of reward function on s′ is usually suppressed 
by taking a weighted average over all possible next states 
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sasRasspasr ). Symbols s, s′, o and a 

are used to denote current state, next state, observation and 
action and belong to sets S, S, Θ and A respectively. 

10    is the discount rate that discounts the future 

rewards. The goal is to maximize the discounted sum of 
rewards over a time horizon, which can be either finite or 
infinite.  

 
Since the exact solution methods for POMDPs are 

limited to problems with very small sizes of state, action 
and observation spaces, approximate solution methods 
have gained popularity. Notable among these are the 
point based methods, which consider a fixed or evolving 
set of prototype belief points instead of considering the 
entire belief simplex. A particular point based method, 
PERSEUS (Spaan Matthijs and Vlassis, 2005) favorably 
makes use of the piecewise linear and convex (PWLC) 
structure of the value function to speed up convergence. 
In this work, POMDPs with very large or continuous 
action space are considered. In the current form of 
PERSEUS and many other point based methods, 
presence of continuous actions or very large action space 
makes it practically impossible to compute the value 
backups exactly.  

In this paper, mathematical programming models are 
developed to alleviate this difficulty. In section 2, 
existing literature on solution methods for POMDPs with 
large/ continuous action space is discussed. In section 3, 
details of mathematical program to obtain the value 
backups are discussed along with assumptions on 
problem structure. The notion of post-decision belief 
state is introduced in section 4. The alternative 
formulation around post-decision belief state allows for 
more efficient and flexible computation of the value 
updates in the presence of large sized observation space. 
An example is presented in section 5 for the purposes of 
illustration and comparison.  

 
Related work 
Adopting the POMDP notation from (Spaan and Vlassis, 
2005), the value backup for a belief point b (for infinite 
horizon POMDP with discount factor γ) is given by (1) 
through (4), where ||,..2,1, n

i
n Vi   is the set of 

gradient vectors that characterizes the value function at 
nth iteration (denoted by Vn). The belief state b(s) 
represents the probability of being in state s at a given 
time. ba,o(s) is the belief state at the next time period, 
which is reached by taking an action a and making an 
observation o. Infinite horizon POMDP with discounting 
is used in all illustrations, γ being the discounting factor. 
Equivalent models can be derived for finite horizon 
POMDPs with little difficulty.   
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Similar to the fully observable Markov decision 
processes (FO-MDP or simply MDP), the computation 
time for each iteration is proportional to |A| when 
enumeration of all actions is used in the max operation in 
(1). Additionally, the size of all possible gradient vectors at 
the nth iteration is |Vn||A||O|, where |Vn| is the number of 
gradient vectors that characterize Vn. Therefore, POMDP 
with large action and observation spaces prove to be a 
challenge. It is not surprising then that, to the best of our 
knowledge, no current solution method claims to compute 
the max operation exactly for very large or continuous 
action spaces. We next review a subset of literature that 
considers POMDPs with very large or continuous action 
spaces.  

Among the available POMDP solution methods, 
policy search methods are better equipped at handling 
continuous action spaces. An example is Pegasus (Ng and 
Jordan, 2000), which estimates the value of a policy by 
simulating trajectories using a fixed random seed, and 
adapts its policy in order to maximize the value. Pegasus 
can handle continuous action spaces at the cost of a sample 
complexity that is polynomial in the size of the state space. 
Baxter and Bartlett (2001) propose a policy gradient 
method that searches in the space of randomized policies, 
and which can also handle continuous actions. The main 
disadvantages of policy search methods are the need to 
choose a particular policy class and the fact that they are 
prone to local optima.      

Thrun (2000) and Spaan and Vlassis, (2005) consider 
sampling techniques to keep the active size of the action 
space relatively small for continuous or very large action 
spaces. In the Monte Carlo POMDP (MC-POMDP) 
method of Thrun (2000), real-time dynamic programming 
is applied on a POMDP with a continuous state and action 
space. In that work, beliefs are represented by sets of 
samples drawn from the state space, while the values of the 
Q-functions defined over belief state and action (Q(b,a)) 
are approximated by nearest-neighbor interpolation from a 
(growing) set of prototype values and are updated by 
online exploration and the use of sampling-based Bellman 
backups. In contrast with PERSEUS, the MC-POMDP 
method does not exploit the piecewise linear and convex 

structure of the value function. Both methods are 
problem dependent and may lead to loss of solution 
quality in certain applications.  

Alternatively, by the use of mathematical 
programming, exact value backups may be ensured in the 
presence of large or continuous action space. The 
equivalent mathematical program for (1) along with 
assumptions is presented in the following section. 
 
Mathematical programming based value updates 
 
Formulation of the mathematical program 
The biggest motivation for using a mathematical program 
to compute the value backup for a belief point b is the 
fact that the value function for infinite horizon POMDP 
can be approximated well by a PWLC function (Sondik 
1978). The value backup equation is shown in (1). 
Assuming that the state and observation spaces are finite 
and with a little abuse of notation, the reward function 
ra(s) =r(s,a), state transition probability function ta(s,s′) = 
T(a,s,s′) and observation probability function 
opa(s′,o)=OP(s′,o) are dependent on action a as shown in 
(5) through (7). Here subscript a suggests dependence on 
action a; s,s′ and o represent the indices of current state, 
next state and observation respectively.  
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The equivalent mathematical program for (1) can be 
written as shown in (8) through (13). 
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Substituting the value of oab ,  from (10) and canceling the 

term )(),'()',(
'
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, the resultant 

mathematical program is shown in Figure 1. Admittedly, the 
reward and probability functions in the form of f1,f2 and f3 
have not been defined. They are better understood by the 
illustrative example presented later (see Eq. (30)-(31)). 



 3

7.1M),',(),'(

6.1M)',,()',(

5.1M),()(

4.1M1),(

3.1M,)),(1(

)()',(),'()',()(~

2.1M,)()',(),'()',()(~
..

1.1M)}(~)()({max

3

2

1

'

'

osafosop

ssafsst

safsr

ooiy

oioiyM

sbsiosopsstov

oisbsiosopsstov

ts

ovsbsr

a

a

a

i

Ss Ss
naa

n
Ss Ss

aa

Ss Oo
a

Aa






















 

 

 

 







 

Figure 1:  The mixed integer program (model M1) for 
determination of the maximizing action for value update  

Computational efficiency of the mixed integer formulation 

The value backups are computed many times for different 
belief states in each iteration. The operation is then 
repeated for multiple iterations. It is therefore imperative 
that the mathematical program associated with the value 
backup be computationally efficient and yield near-optimal 
solutions for each solve. In order to ensure the above two 
properties, restrictions on the structure of the mathematical 
program need to be imposed. This limits the applicability of 
the proposed approach to a certain extent. In general, a 
linear, quadratic or convex program provides ease of 
computation. This requires that the stage-wise reward, 
equations and constraints be a linear, quadratic or convex 
function of the action. Due to the presence of integer 
variables, a linear formulation is most suitable.  

The the size of the model (number of variables and 
constraints) is directly proportional to |S|2, |O| and |Vn|. 
Dependence on |A| is implicit. Since f1, f2 and f3 are 
transition functions, in the absence of logical variables they 
pose little computational challenge. The size of the model 
is greatly affected by the number of integer variables, i.e., 
y(i,o) in this case. This number clearly depends on |Vn| and 
|O|. While |O| comes directly from the model, the size of Vn 
is governed by a combination of factors. The most 
important factor is the dimensionality of belief simplex. In 
terms of PERSEUS, a higher dimensional simplex would 
require higher number of belief points comprising the 
prototype belief set and |Vn| ≤ |B|. Since |B| is highly 
dependent on the dimension of the state space, methods like 
value-directed compression (Poupart and Boutilier, 2003) 
and PCA for belief compression (Roy and Gordon, 2003) 
may be used to reduce |S| and hence |B|. However, in 
practice |Vn| <<|B| (Spaan Matthijs and Vlassis, 2005). 
Another determinant of |Vn| is the structure of optimal 
policy. For example, when the decision region is convex, it 
is possible to approximate the function corresponding to 
each decision region by only few gradient vectors. In this 
case, |Vn| would depend on |A|.   

While approaches to limit the size of |Vn| are 
dependent on the problem structure, there is a more 
general and elegant way to resolve the problem of large 
sized observation spaces. This is addressed in the 
following section.    

Value iteration around post decision belief state 

The basic idea 

For a general MDP (fully observable), the notion of post 
decision state applies to problems where the effect of 
actions and uncertainty on state variable can be 
separately represented. Since POMDP is equivalent to a 
continuous state FO-MDP, this concept can be utilized 
here, given the aforementioned requirement is met. To 
see this, let the belief state at time t be denoted by bt. 
When action at is taken, the state can be thought to 

transition to an intermediate state a
tb

~
 before the next 

observation is made. Once the uncertain observation o is 
realized, the system can be in any of |O| next belief states 
where |O| is the size of uncertainty, i.e., the number of 
possible next beliefs. This is schematically shown in 
Figure 2. Circles represent the more popular pre-decision 
belief state bt, bt+1 etc. and squares represent the 

intermediate state a
tb

~
 that captures the effect of action 

only. This is referred to as post decision belief state. 

In the context of POMDPs, solution using the post-
decision state approach is possible when the observation 
probabilities do not depend on action a.  The actions that 
affect observation probabilities may be made part of the 

state. The transition from regular belief state bt to a
tb

~
 

then is simply given by tabt. 

It is to be noted that although the effect of action on 
underlying states sS may be prone to uncertainty, the 
belief state transition (tabt) is always deterministic. 

 

Figure 2: A schematic of pre-decision state to post-
decision state and again to pre-decision state 
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Having obtained the post decision belief state, |O| (pre-
decision) belief states may be obtained at the next time step. 
The transition is governed by the observation probabilities 

p(o|bt)=p(o| a
tb

~
) for all oO. This two step transition is 

shown in Figure 2.  Intuitively, starting with a post decision 

state b̃a, |O| possible next states ob oa , are obtained. For 

each of the states ob oa , , a maximizing action a′ would 

determine the next post-decision belief state ba′,o.  
Consequently, the value iteration update takes the form 
shown in (15) through (19). Va represents value function 
around post-decision belief state b̃a. For notational ease, the 
dependence of action a′ and next post-decision belief state 
b̃a′ on o is suppressed in future illustrations. The details on 
the derivation of value iteration equation around post-
decision state can be found in (Powell 2007) for a general 
MDP.  

In (15), it is to be noted that the expectation over 
observations is outside the max operator. This removes the 
dependence of the size of the MILP on |O|. In addition, we 
can show that the structure of Va can be shown to be  still 
PWLC (Powell 2007)   

In the following sections, we derive the value and 
gradient update equations around post-decision belief state 
and then present pros and cons of using this method over 
regular value iteration around pre-decision state.  

Derivation of backup equations and formulation of math 
program   

The equations for value and gradient backups around 
post decision belief states are derived on similar lines as 
shown in (Spaan and Vlassis, 2005). The value iteration 
step for the post decision state variable is given by (15) 
through (19).  
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Substituting (16) through (19) in (15) 
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(27) and (28) give the value backup and gradient vector 
backup for the post decision belief state variable 
respectively.  

 
The mathematical program for (25) for a given 

observation and belief state b̃a is shown in Figure 3. 
Evidently, the binary variables y(i) for i=1,2,. |Vn| and 
variable v do not depend on observation o. However the 
model has to be solved multiple times to obtain the 
backup. The number of times the model is to be solved is 
given by o_size≤|O|, where o_size is the number of 
observations for which p(o|b̃a)>0.  
Policy determination Similar to the pre-decision state 
case of section 3.2, there are two possibilities to 
determine the optimal action for a belief state b, i.e., (i) 
Storing the maximizing action(s) associated with each 
gradient vector and (ii) Solving one step look-ahead 
problem on-line. However, there are multiple actions 
associated with a gradient backup (a′{o} o ). Therefore 
the action associated with each observation needs to be 
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cached. This results in higher memory requirement for 
storing the ε-optimal policy for the post-decision state, as 
compared to that for the pre-decision state. For the look-
ahead design on the other hand, the MILP needs to be 
solved for the belief state pertaining to the current 
observation only. This is computationally less expensive 
than the look-ahead design for solution around pre-decision 
belief state.  
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Figure 3: The MILP for determination of the 
maximizing action for value update for a post-decision 

belief state 

Comparison with value updates around pre-decision belief 
states 

While using MILP based value updates the two 
methods can be compared along following avenues:  

i)  Complexity of MILP problem – In the post 
decision state formulation (referred to as ‘post-formulation’ 
hereafter), several smaller MILPs are solved for one value 
backup as opposed to solving one large MILP for pre-
decision state formulation (‘pre-formulation’). The former 
almost always works better if the input/output operations 
between the MILP solver (e.g., CPLEX) and regular 
solution platform (e.g., MATLAB) are not as time 
consuming as the optimization itself. 

ii)  Policy determination in real time – The 
formulation around pre-decision state allows for storing 
optimal action with each gradient vector that characterizes 
the ε-optimal value function. For formulation around post-
decision belief state, optimal action needs to be stored for 
each gradient vector and each observation. This increases 
the memory requirement for the latter. This may not be 
feasible when the observation space is very large. However, 
the look-ahead design for policy determination is faster for 
the post-formulation due to lower complexity of the 
associated MILP.   

iii)  Handling very large or continuous observation 
spaces – While pre-formulation is limited to small 
observation spaces, the MILP technique for value updates 

based on post-formulation is on par with enumeration 
based methods. When observation space is very large or 
continuous, Hoey and Poupart (2005) consider creating 
sets of observations for which b leads to the same future 

belief state oab , . This effectively makes the observation 

space discrete. Such manipulation of observation 
probabilities is better achieved outside the confines of a 
mathematical program, thus making the post-formulation 
more attractive.  

Aside from (ii) above, it is easy to see that the two 
formulations are similar in terms of computational 
complexity when enumeration of action space is used for 
value backups. This consideration excludes the fact that 
post formulation allows for parallel processing of max 
operation.  

 Illustrative example 

The example in this section contains continuous 
actions and the POMDP is formulated around pre-
decision belief state. For simplicity, the observation 
probabilities are assumed independent of actions. 

In order to illustrate the concept of using mathematical 
programming for value backups, a simple problem with 
two states is considered first. A hypothetical machine can 
be in one of two states (s1 and s2) at any time. The system 
probabilistically transitions between the two states.  

 
Rewards R1 and R2 are received when system is in 

state s1 and s2 respectively and R1>R2. This implies that 
s1 is more desirable state than state s2. There are two 
possible actions a1 and a2 which affect the probabilities 
of state transition as shown below. a1(0,1) and a2 (0,1) 
are continuous and bounded. While a higher value of a1 
helps the system remain in state 1, a higher value of a2 
ensures it’s returning to state s1 from state s2. These 
actions can be thought of as routine preventive and 
corrective actions to make sure the equipment is in state 
s1, e.g. cleaning, lubrication etc. The tasks are scaled to 
obtain the bounds of 0 and 1.     
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The (state dependent) unit costs of taking action a1 

and a2 in state s1 are C11 and C12 respectively. Similarly, 
the unit costs of taking action a1 and a2 in state s2 are C21 
and C22 respectively with C12>C11 and C22>C21 .This 
ensures that the cost of keeping the system in state s1 is 
lower than bringing it back to s1, when it has transitioned 
to s2. Accurate state observation is made with probability 
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0<<1. The resulting observation and reward matrices are 
as shown below:  
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Finally, there are system and budget constraints of the 
form shown in (32) and (33), respectively. While the 
former specify system requirements, e.g., a certain mix of 
cleaning fluids from the two actions, the latter represent 
limits on total expenditure. Since cost of actions is state 
dependent, the probabilities of being in state s1 and s2, i.e., 
b(s1)=b1 and b(s2)=b2, are also a part of the constraints.  
 

)33(0

)32(0

32222122121121111

32211




BabBabBabBabB

AaAaA

 
The parameter values considered for this study are 

shown in Table 1. 

Table 1: Parameter values for the system with two-
continuous actions 

Parameter  R1 R2 C11 C12 C21 C22 A1 
Value 0.9 2 0 0.1 0.15 0.3 0.05 0.5088

 
Parameter  A3 B11 B12 B21 B22 B3 A2 
Value  -1 3.1185 9.355 3.0736 1.025 -1 1.325 

Optimal policy and value function 

The performance of the converged value function and 
policy for both approaches are shown in Table 2. While the 
pre-decision formulation is used for the MILP based 
approach, a uniform grid of 0.1 is used for the enumeration 
based approach to generate a finite action space. The 
enumeration based method convergences in an order of 
magnitude less time than the MILP based method. However, 
the performance of the enumeration based method is worse 
than that of the MILP solution. This is attributed to the 
discretization of the action space. 

Scalability To study how the solution time scales with the 
problem size and understand whether the value gap 

depends on the problem size, two additional experiments 
are performed: (i) a system with three possible states and 
three actions, (ii) a system with four states and four 
actions. Similar to the two-action system above, the 
states are discrete and all actions are continuous and 
range from 0 to 1. The probability transition matrix is a 
linear function of actions and the constraints follow the 
same linear structure as (29) and (30). The corresponding 
results are reported in Table 2. It is observed that the 
performance gap widens as the problem size grows.  

We have also applied the post-formulation based 
MILP value backup method to a realistic network flow 
problem, which showed significant improvements in 
solution time and / or quality compared to the 
enumeration approach as the number of nodes in the 
network becomes larger.  This result is not presented here 
due to the space limitation, however.  
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Table 2.  Results for the problems with continuous actions 

Problem |A| Performance |Vn| Convergence time 

  MILP Enum MILP Enum MILP Enum 

2 actions 121 13.28 ±1. 13.08 ±1.5 6 7 16.0 0.62 

        

3 actions 133 16.71 ±2. 14.67 ±3.2 15 11 46.7 29.45 

        

4 actions 146 15.02  ±1 10.27 ±3.6 16 159 108. 1180.25 

 


