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Abstract 

Partial least squares (PLS) based soft sensors that predict the primary variables of a process by using the 

secondary measurements have drawn increased research interests recently. Such data-driven soft sensors 

are easy to develop and only require a good historical data set. As industrial processes often experience 

time-varying changes, it is desirable to update the soft sensor model with the new process data once the 

soft sensor is implemented online. Because the PLS algorithms are sensitive to outliers in the dataset, 

outlier detection and handling plays a critical role in the development of the PLS based soft sensors. In 

this work, we develop multivariate approaches for both off-line and online outlier detection. For online 

application, to differentiate outliers caused by erroneous readings from those caused by process changes, 

we propose a Bayesian supervisory approach to further analyze and classify the detected outliers. Both 

simulated and industrial case studies of the Kamyr digesters are used to demonstrate the effectiveness of 

the proposed approaches. 
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In many industrial processes such as distillation 

columns and pulping digesters, the primary product 

variables that are required for feedback control are either 

not measured online or not measured frequently. To 

address this challenge, many data-driven soft sensors have 

been developed and implemented in process industry (see 

comprehensive reviews by Kadlec et al. 2009, Fortuna et 

al. 2010 and references cited therein). Various adaptation 

techniques have been published to update data-driven soft 

sensors online, and Kadlec et al. (2011) provide a 

comprehensive review on the adaptation mechanisms for 

data-driven soft sensors.  

In our previous work (Galicia et al., 2011a), a 

reduced-order dynamic PLS (RO-DPLS) soft sensor was 

developed to address some limitations of the traditional 

DPLS soft sensor when applied to processes with large 

transport delays. By taking the process characteristics into 

account, RO-DPLS soft sensor can significantly reduce the 

number of regressor variables and improve prediction 

performance. More recently we extended the RO-DPLS 

soft sensor to its online adaptation version in order to track 

process changes (Galicia et al., 2011b). Since our focus in 

Galicia et al. (2011b) was to investigate the properties of 

different recursive updating schemes and data scaling 

mailto:hjg0002@tigermail.auburn.edu
mailto:qhe@tuskegee.edu
mailto:wang@auburn.edu


  
 

methods, we preprocessed the industrial datasets to remove 

all outliers before subjecting them to different experiments. 

However, it should be noted that the PLS algorithms 

are sensitive to outliers in the dataset (Hubert and Branden, 

2003). Therefore, outlier detection and handling plays a 

critical role in the development of the PLS based soft 

sensors, and there exist extensive studies on outlier 

detection for off-line model building (Hodge and Austin, 

2004). Typical approaches are based on statistics of 

historical data such as the 3σ outlier detection method 

(Pearson, 2002) and the more robust Hampel identifier 

method (Davies and Gather, 1993). In addition, 

multivariate outlier detection methods have also been 

proposed, such as the PCA-based Jolliffe parameter 

(Jolliffe, 2002). Although many methods have been 

published, outlier detection remains a challenging problem. 

Therefore, it is often recommended to accompany any 

outlier detection method with a graphical inspection of the 

residual space and model parameters to eliminate any 

possible outlier masking effect (i.e., outliers are classified 

as consistent samples) and outlier swamping effect (i.e., 

consistent samples are classified as outliers) (Martens and 

Naes, 2002). For online adaptation of soft sensor models, 

if erroneous readings are used to update the soft sensor 

model, future predictions from the updated model may 

deteriorate significantly. In addition, online outlier 

detection is even more challenging since while outliers 

could be erroneous readings, they could also be normal 

samples of new process states. 

It is worth mentioning that an alternative approach to 

reduce the effect of outliers on soft sensor performance is 

to use the robust versions of PLS algorithms (Wakelinc 

and Macfie, 1992, Cummins and Andrews, 1995, Gil and 

Romera, 1998, Pell, 2000, Hubert and Branden, 2003). 

However, the robust versions of PLS algorithms usually 

involve much more complicated computation, and may 

have various limitations, such as applicable to one-

dimensional response variable, not resistant to leverage 

point, and not applicable to high dimensional regressors. 

More importantly, unlike the conventional PLS algorithm 

which has various recursive versions available for online 

updating, currently there are no recursive versions 

available for the robust PLS algorithms. Therefore, they 

are not desirable for online model updating, and in this 

work we only consider the conventional PLS algorithms.  

In this work, we develop multivariate monitoring 

methods for both off-line and online outlier detection. In 

addition, to differentiate the samples that represent a 

process change from those of erroneous readings, we 

propose a Bayesian supervisory approach to further 

analyze and classify the detected outliers. 

Outlier detection and classification methods 

In this section, the proposed outlier detection and 

classification methods are described in detail. 

Off-line outlier detection for initial model building 

We propose to combine leverage and y-studentized 

residuals for off-line outlier detection. Leverage of an 

observation is a concept developed in the ordinary 

regression theory (Cook and Weisberd, 1982), which 

defines the influence that a given sample will have on a 

model and is related to the Hotelling's T
2
 statistic (Martens 

and Naes, 2002). The leverage in terms of the T scores 

(Walczak and Massart, 1995) is computed as follows: 
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where n is the total number of samples, ti,a is the vector of 

scores for object i, and a is the number of principal 

components retained. For a given sample, it would be 

classified as an outlier if its leverage nahi )1(   , 

where β is a constant (usually 2 or 3). In this work we 

choose β = 3 as our experience shows that this setting 

provides a balanced performance between desired 

sensitivity and specificity. 

For a given sample, the studentized residual is an 

indication of the lack of fit of the y-value, which is defined 

as the following (Walczak and Massart, 1995) 
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where iii yyf ˆ  is the residual of the dependent 

variable, iŷ is the i
th

 prediction of the dependent variable 

provided by the soft sensor model, and 
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is the sample estimate variance 

of the residual. To detect outliers, the studentized residuals 

are usually compared to a normal distribution N(0,1) 

(Martens and Naes, 2002). In this work, if 3if , we 

classify the sample as an outlier. 

Online outlier detection for recursive model update 

For online outlier detection, we use the SPEx and SPEy 

(squared prediction error for X and Y) indices (MacGregor 

and Kourti, 1995, Qin, 2003) to monitor the independent 

variable and dependent variable space, respectively. It is 

worth noting that we do not use Hotelling's T
2
 index to 

detect outliers, although it is commonly used in 

conjunction with SPE index for fault detection. Our choice 

of SPE over T
2
 is mainly due to their different roles in 

process monitoring. It has been suggested that for the 

samples whose T
2
 indices exceed the threshold but not the 

SPE indices, in many cases they correspond to process 

operation changes instead of outliers (Qin, 2003). Our own 

experiences also confirm that when a real outlier occurs, it 

is usually identified by both the T
2
 index and SPE index. 

Therefore, in this work, we use the SPE index alone to 

detect outliers in the independent and dependent variable 



  

space. Specifically, if the SPE index (i.e., SPEx or SPEy) 

violates its corresponding control limit we declare that the 

sample is an outlier and should be analyzed further. SPEx 

and SPEy for a new sample to be used for soft sensor 

update are defined as: 
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where m is the number of independent variables, p the 

number of dependent variables,  inew,x  and inew,y  are the 

new samples of independent and dependent variables, and 

inew,x̂  and inew,ŷ  are the corresponding predictions.  The 

thresholds for SPEx and SPEy can be determined based on 

the theorems developed by Box (1954) using the training 

data, or they can be determined empirically using the 

training or validating data under normal operating 

conditions (Wise et al., 1999, Russell, 2000). 

Bayesian supervisory approach for online outlier 

classification  

For online outlier detection, once a new sample is 

identified as an outlier, we have to determine whether it 

corresponds to an erroneous reading, or it represents a new 

process state. In this work, we propose a Bayesian 

supervisory approach to perform this task. It should be 

noted that this task is less difficult for off-line data, 

because the data collected after the outlier(s) are available 

to help make the decision.  

In the proposed Bayesian supervisory approach, once 

an outlier is detected by the SPE indices, we wait for few 

more measurements to become available and apply 

Bayesian inference to make the decision. The basic 

assumption is that if an outlier is due to erroneous 

readings, the increase in the SPE indices will not be 

sustainable and will result in an impulse or short step 

disturbance in the time series of SPE indices. On the other 

hand, if an outlier is caused by a process change, the 

following samples will all deviate from the previous model 

and will result in a sustained step or ramp disturbance in 

the time series of SPE indices. Therefore, when an outlier 

is identified, we try to classify whether the change in the 

SPE index belongs to an impulse/short step or a ramp/step 

disturbance in order to determine whether the outlier is due 

to an erroneous reading or a process change. In this work, 

the classification is achieved through a Bayesian approach. 

By definition, Bayes' Theorem is a simple 

mathematical formula used for calculating conditional 

probabilities. Simply put, it gives the probability of a 

random event A occurring given that we know a related 

event B occurred. This probability is denoted as P(A|B) 

and is called the posterior probability, since it is computed 

after all other information on A and B is known. Using 

Bayes' Theorem, the posterior probability can be computed 

as 
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In our case, event B corresponds to the measurements 

collected after the outlier is detected and event A 

corresponds to a specific disturbance type.  

In the proposed approach, instead of using the values 

of SPE indices directly which are often affected by the 

stochastic nature of the process, we transform the index 

values into a more robust statistic-based probability 

description using the Bayesian statistics. In this way, 

different processes with different dynamic characteristics 

can be analyzed using a unified statistical framework. 

Figure 1 shows the schematic diagram of the proposed 

Bayesian outlier classification procedure, which is a 

modification of the previously developed Bayesian 

approach for detection and classification of different 

disturbances in the semiconductor processes (Wang and 

He, 2007). The classification algorithm is triggered by the 

identification of an outlier through SPE indices, and a brief 

description is provided below.  

1. Denote the time index of the outlier as k; construct the 

pre- and post-change windows around the outlier k. 

The pre-change window contains a few samples’ SPE 

indices prior to the identified outlier; while the post-

change window contains the SPE indices after (and 

including) the outlier. In this work, the width of the 

pre-change window is fixed to 5 samples, while the 

width of the post-change window varies depending on 

the assumed type of disturbance. 

2. Wait until sample k+1 is available, then perform 

hypothesis testing using Bayes’ Theorem to determine 

whether the disturbance is an impulse. 

3. If the hypothesis is rejected, we wait for more future 

samples to determine whether the sample is part of a 

short step disturbance (with duration 2, 3 or 4). 

4. If all previous hypotheses are rejected, we conclude 

that a real process change has occurred. 

 

It is worth noting that the posterior probabilities in the 

post-change window form different patterns depending on 

the pre-assumed disturbance type and observation values in 

the post-change window. Instead of putting a threshold on 

a single posterior probability, which is a univariate method 

(Hu, 1992), the proposed Bayesian approach compares the 

pattern of the posterior probabilities in the post-change 

window to the predefined patterns in order to classify the 

type of disturbance. This pattern matching approach is a 

multivariate method, which is more robust compared to the 

univariate method, and greatly improves classification 

accuracy and reduces classification delay. In addition, it 

makes the classification results not sensitive to the a priori 

probability (in this work, we set a priori probability to 0.5). 

Detailed description of different patterns of posterior 

probability in the post-change window and pattern 

matching procedure can be found in Wang and He (2007). 



  
 

In addition, by specifying different post-change window 

widths for different disturbances, we can minimize the 

classification delay. In other words, the classification 

decision is made when the minimum required information 

becomes available.  

 

 
 

Figure 1: Bayesian disturbance classification 

procedure 

Soft sensor recursive update with outlier detection and 

classification 

In this section, the proposed outlier detection and 

classification methods are integrated into the previously 

developed RO-DPLS soft sensor (Galicia et al., 2011a, 

2011b) for online recursive update. Based on the results of 

a comprehensive comparison of different recursive PLS 

update schemes (Galicia et al., 2011b), regular recursive 

PLS updating scheme is chosen to update the RO-DPLS 

soft sensor model. Both simulated case study and industrial 

case studies of the single vessel Kamyr digester are used to 

demonstrate the performance of the proposed approach. In 

this section, the performance of the RO-DPLS soft sensor 

is compared for four scenarios. 

 

a) Static model without update; 

b) Recursive update without outlier detection, i.e., 

all samples are used to update the model; 

c) Recursive update with outlier detection, i.e., all 

outliers identified by SPE indices are excluded 

from model update; 

d) Recursive update with Bayesian supervisory 

approach for outlier detection, i.e., erroneous 

readings are excluded from model update, while 

process changes are used for model update; 

Simulated case study 

In this subsection, the simulated Kamyr digester is 

used to illustrate how the Bayesian supervisory approach 

works. The extended Purdue model (Wisnewski et al., 

1997) is implemented to simulate a single vessel high yield 

Kamyr digester. The RO-DPLS soft sensor set up can be 

found in Galicia et al. (2011a). In this case study, we 

consider a very challenging problem: tracking the 

disturbance of a wood type change. It is worth noting that 

wood type change (from softwood to hardwood and vice 

versa) is a major disturbance in pulping processes, and 

usually results in off-spec product during the transition.  

 
Figure 2: Prediction comparison of different 

approaches applied to a simulated case study 

 

Both single and consecutive multiple outliers (i.e. 

impulses and short steps) are added to the process, and the 

Kappa number measurements are plotted in Figure 2. From 

Figure 2 we can see that the dramatic change in Kappa 

number during the transition period is due to the wood type 

change, and the samples during the transition should be 

used to update the model; while the changes that occur at 

samples 10 (impulse), 45 (short step with duration 3) and 

65 (short step with duration 2), are introduced outliers and 

should not be used for model update. The soft sensor 

predicted Kappa number values are also plotted in Figure 

2, with the corresponding mean squared prediction error 

(MSE) and mean prediction error (ME) given in Table 1. 

Both Figure 2 and Table 1 demonstrate the important roles 

of outlier detection and classification, and their impact on 

soft sensor performance. It is shown that outlier detection 

alone may even deteriorate the performance of a soft 

sensor if process changes were treated the same as 

erroneous measurements. On the other hand, if the 

proposed Bayesian outlier classification mechanism is 

integrated into outlier detection, the soft sensor can be 

made more robust to erroneous measurements and at the 

same time is able to track process changes. Figure 3 (a) 

and (b) show the SPEx and SPEy indices for the Bayesian 

supervisory approach, together with the classified outliers. 

Figure 3 shows that SPEx and SPEy indices can promptly 

identify the outliers caused by both erroneous reading and 

process change, and the Bayesian supervisory approach is 

effective in classifying the identified outliers. Without the 

Bayesian supervisory approach, all identified outliers will 

be excluded from updating the model, which results in 

poor prediction performance of approach (c), similar to the 

static model. For approach (b) where all new samples are 

used for model update, the negative impact of using 



  

erroneous readings for model update are illustrated more 

clearly with the insert in Figure 2. 

 
(a) 

 
(b) 

Figure 3: SPE indices for the simulated case study; 

(a) SPEx; (b) SPEy 

 

Table 1: Performance of different soft sensors for the 

simulated case study 

 

Soft Sensor MSE ME 

(a) 405.4800 -10.8817 

(b) 1.1476 -0.1695 

(c) 120.6689 -3.7614 

(d) 0.8505 -0.1526 

Industrial case study 

In the industrial case study, the process data were 

collected from a Kamyr digester at a pulp mill located in 

Mahrt, Alabama run by MeadWestvaco Corp. The training 

data were collected in 2006 which contain 1100 samples, 

while the testing data for online update were collected in 

2010 which contain 300 samples. Clearly, this case study 

presents a challenging problem as training and testing data 

sets were collected about 4 years apart. The soft sensor 

setup for the industrial case is the same as that reported in 

Galicia et al. (2011a). 

Figure 4 plots a segment of the testing data to illustrate 

the prediction performance of different soft sensors and 

compare them with the process measurements, and Table 2 

 
Figure 4: Comparison of predictions of different 

approaches for the industrial case study 

 
(a) 

 
(b) 

Figure 5: SPE indices for the industrial case study; 

(a) SPEx; (b) SPEy 

lists the MSE and ME of different approaches for the 

whole testing data set. Figure 5 (a) and (b) plot the SPEx 

and SPEy indices for the Bayesian supervisory approach, 

together with the classified outliers. It should be noted that 

for this case study the soft sensor that updates recursively 

with outlier detection (but without classification) performs 

exactly the same as the static soft sensor. This is due to the 

big difference between the training data and testing data, 

which causes all new data to be classified as outliers. From 

this case study, it is clear that the Bayesian supervisory 

approach is effective and robust in determining whether an 

outlier is caused by erroneous reading or process change. 



  
 

Conclusions 

Outlier detection and handling plays a critical role in 

data-driven soft sensor development. In this work, we 

propose multivariate approaches for both off-line outlier 

detection (for initial soft sensor model building) and online 

outlier detection (for soft sensor model recursive update). 

Specifically, for off-line outlier detection we combine 

leverage and y-studentized residuals; while for online 

outlier detection, we use squared prediction error indices 

for X and Y to monitor the independent variable and 

dependent variable space, respectively. For online outlier 

detection, to differentiate the outliers caused by erroneous 

reading from those caused by process changes, we propose 

a Bayesian supervisory approach to further analyze and 

classify the identified outliers. Both simulated and 

industrial case studies demonstrate the superior 

performance of the soft sensor with Bayesian supervisory 

approach for outlier detection and classification. 

 

Table 2: Performance of different soft sensors for the 

industrial case study 

Soft Sensor MSE ME 

(a) 75.3031 7.3024 

(b) 34.8632 1.0535 

(c) 75.3031 7.3024 

(d) 29.4228 0.7468 
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