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Abstract 

This paper presents the application of a primal decomposition algorithm for the problem of supply chain 

investment planning under uncertainty applied to the petroleum products supply chain. The uncertainty 

considered is related with the unknown demand levels for oil products. For this purpose, a model was 

developed based on two-stage stochastic programming. It is proposed two different solution 

methodologies, one based on the classical cutting plane approach presented by Van Slyke and Wets 

(1969), and other, based on a multi cut extension of it, firstly introduced by Birge and Louveaux (1988). 

The methods were evaluated on a real sized case study. Preliminary numerical results obtained from 

computational experiments are encouraging. 
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Introduction

Oil companies are global multinational organizations 

whose decisions involve a large number of factors related 

to the supply of raw materials, their processing and 

distribution. For companies with strongly diversified 

sources of petroleum supply, a long cast of products, and 

multiple markets, the advance planning of all activities 

along the supply chain is vital. Such planning includes the 

definition of production levels of oil (from oil fields and 

offshore platforms) and of petroleum products (from oil 

refineries), as well as the distribution among these 

refineries and to the final consumers of oil products. Major 

oil companies are characterized by integrated and 

verticalized activities, and the activities of refining and 

distributing oil products are characterized by low profit 

margins. Therefore, techniques for decision-making 

optimization are frequently used in the context of the oil 

supply chain. 

 The use of optimization techniques for supply chain 

design and planning has already been observed in the 

literature since the 1970's, especially the in seminal works 

of Geoffrion and Graves (1974). Vidal and Goetschalckx 

(1997) and Beamon (1998) present an extensive literature 

review on supply chain models. Although the research 

literature on the strategic modeling of supply chains is 

quite rich, few studies have included uncertainty 

mitigation in addition to other decisions of financial scope, 

such as commercialization income, market considerations 

and investment planning. According to Sahinidis (2004), 

the incorporation of uncertainty into planning models 

using stochastic optimization remains a challenge due to 

the large computational requirements involved. 

For nearly 50 years, companies in the oil and chemical 

industries have led the development and use of mixed 

integer linear programming to support decision making at 

all levels of planning. An overriding feature in the oil 

industry is its wide range of uncertainties, typically related 

to the unpredictable levels of demand for refined products, 

fluctuations in prices in domestic and international markets 

and inaccuracies in the forecasted production of oil and 

gas. For this reason, many works have used techniques 

based on mathematical programming to support decision-

making under uncertainty (Escudero, 1999; Dempster, 

2000; Al-Othman, 2008; Khor, 2008) 

Due to the great level of uncertainties taken into 

consideration, and the fact that the aforementioned 

problem is modeled as a mixed-integer linear program, it 



  

 

might become computationally infeasible to deal with a 

great number of scenarios by solving deterministic 

equivalents of the stochastic problems. Therefore, a 

decomposition approach might turn out to be a valid 

alternative as solution methodology.  

The first approaches using decomposition schemes for 

stochastic programs were presented by Van Slyke and 

Wets (1969), a framework based on Benders 

decomposition (Benders, 1962) applied to two-stage 

stochastic problems, which became known as the L-

Shaped method. Birge and Louveaux (1988) present an 

extension of the method presented by Van Slyke and Wets 

(1969), exploiting the structure of two-stage stochastic 

problems to place several cuts at once at each major 

iteration.  

Cutting-plane schemes has been successfully used in 

solving large-scale problems since the pioneering paper of 

Geoffrion and Graves (1974), e.g., the uncapacitated 

network design problem with undirected. arcs (Magnanti, 

1986), the stochastic transportation-location problems 

(Franca, 1982), the locomotive and car assignment 

problem (Cordeau, 2000; Cordeau, 2001), and the non-

convex water resource management problem (Cai, 2001) 

to name a few. 

The objective of this paper is present a mathematical 

model for the optimization of the supply chain investment 

planning problem applied to the petroleum products supply 

chain. Uncertainties related to product demand levels are 

considered, thus, the stochastic programming framework is 

adopted as modeling approach. Furthermore, it is shown 

an application of two primal decomposition techniques 

based on cutting plane approaches as solution technique. 

Experiments were performed in order to evaluate the 

efficiency of the proposed algorithms.   

    The paper is organized as follows: section 2 

describes the proposed mathematical model; section 3 

presents the traditional primal decomposition framework, 

while section 4 presents the multi cut framework; 

computational results are shown in section 5; Section 6 

draws some conclusion. 

Mathematical Model  

Petroleum products supply chains are composed by 

several types of nodes and arcs. Nodes are different in a 

sense that they might represent refineries, international 

markets, distribution bases, and marine terminals. Arcs are 

the connections between the nodes, and might represent 

pipelines, roadways, waterways, and so forth. 

The objective here is to choose, among some possible 

investments, which projects should be implemented in 

order to reach the best logistic efficiency. What we 

understand as the ideal logistic efficiency is the 

configuration that would provide the lowest combination 

of costs for the chain. 

The system is subject to several costs. Costs are 

related with freight, product inventory, investments, and 

demand shortfall. 

 To address the problem in question, a two-stage 

stochastic model is proposed based on mathematical 

programming (Birge and Louveaux, 1997). The first-stage 

comprises the decisions of which projects to implement 

and when; the second-stage decisions are those relating to 

the flows of products, inventory levels, supply provided to 

each demand site, and supply levels at sources. The 

purpose of the model is to provide the optimal distribution 

of refined products to meet the demand of distribution 

bases, minimizing the logistics costs of this operation and 

maximizing revenue for retailing such products. Meeting 

the demand depends on the characteristics of the network 

operations, refinery availability and sources of production. 

The supply transportation is defined in conjunction with 

investment decisions, which are chosen from a predefined 

portfolio of possibilities and allocated over the planning 

horizon. The uncertainties in the model are related to the 

levels of demand for petroleum products in the distribution 

bases, which are modeled as random variables. 

Notation 

The notation to be used for the presentation of the 

mathematical model is presented below. For the sake of 

notational compactness, the domains of summations will 

be omitted, except when the summation is evaluated only 

on a subset of the natural domain. When there is no 

mention of this fact, its domain should be considered as 

the original set to which the index refers. In addition to 

that, we use bold caption to represent decision variable 

vectors.    

Indexes  

        Locations 

     Products 

      Time period 

     Uncertainty realization 

Sets 

      Subsets of distribution bases 

  Locations 

  Products 

    Subset of suppliers 

  Time periods 

  Uncertainty possible realizations 

Parameters 

   
  Current arc capacity 

    Additional arc capacity 

   
  Transportation cost 

   
 ( ) Demand 

    Inventory cost 

    Max. number of tank rotations  

   
  Current inventory capacity 

    Additional inventory capacity 

   
  Supply 



  

   
  Shortfall cost 

   
  Inventory investment cost  

   
  Arc investment cost 

Variables 

    
 ( ) Product flow 

   
 ( ) Inventory level 

   
 ( ) Unmet demand 

   
  Arc investment decision 

  
  Location investment decision 

Formulation 

The mathematical model for the optimization of 

aforementioned problem can be stated as follows: 
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where the term  (   )   , (     )-  represents 

the expectation evaluated over all      possible 

realizations for the uncertain parameters of the second-

stage problem, given an investment decision (   ). 
Constraints 2 and 3 define that each investment can 

happens only once along the time horizon considered.  

The second-stage problem  (     )  can be stated as 

follows in Eqs. (4) to (9). The objective function (4) 

represents freight costs between the nodes, inventory costs, 

and the cost of shortfall. Equation (5) comprises the 

material balance in distribution bases. Constraint (6) limits 

the supply availability at sources. Constraint (7) defines 

the arc capacities and the possibility of its expansion 

through the investment decisions  . In a similar way, 

constraint (8) defines the storage capacities together with 

its expansion possibility. Constraint (9) sets the throughput 

limit for bases, defined by the product of the available 

storage capacity with the maximum number of tank 

rotations.  
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Primal Decomposition Method 

The model proposed in the previous section can be 

defined as an optimization model with binary first-stage 

variables, continuous second-stage variables and discrete 

random parameters. Moreover, the model has relatively 

complete recourse (Birge and Louveaux, 1997) that is, for 

any feasible first stage solution, the second stage problem 

is feasible. Such characteristics allow us a primal 

decomposition framework based on Benders 

decomposition (Benders, 1962) applied to stochastic 

optimization.  

We start by noting that the so-called master problem 

can be equivalently reformulated as follows: 
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This formulation allows one to distinguish an 

important issue. Inequality (13) cannot be used 

computationally as a constraint, since it is not defined 

explicitly, but only implicitly, by a number of optimization 

problems. The main idea of the proposed primal 

decomposition method is to relax this constraint and 

replace it by a number of cuts, which may be gradually 

added following an iterative solving process. These cuts, 

defined as supporting hyperplanes of the second-stage 

objective function, might eventually provide a good 

estimation for the value of   (   ) in a finite number of 

iterations. 

The primal decomposition method applied to the 

aforementioned problem can be stated as follows: 

Initialization: Define    and    as lower and upper 

bounds. Set         and      . Define   as the 

iteration counter and set    . Let ( ̂  ̂) denote the 

incumbent solution.  

 Step 1: Solve the master problem and let (     ) 
and    be its optimal solution and optimal objective value 

respectively. 

Step 2: For each realization     solve the slave 

problem (4)-(9) stated before fixing (     ) and 

calculate the value for  ̂(     ) given by equation (14), 
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where  ( ) is the probability of realization    occurs. Let 

 (   ) represent the first-stage cost function and:  

 (     )   (     )   ̂(     ) (  ) 

If  (     )     then update      (     ) and the 

incumbent solution ( ̂  ̂)  (     ). 
Step 3: If          , where   is a pre specified 

tolerance, then return the incumbent solution ( ̂  ̂) and 

   as the objective function value. Otherwise, proceed to 

Step 4. 

Step 4: Let  ,  ,  ,  , and   be the dual variables 

associated with constraints (5) to (9) respectively. 

Generate the cut (16): 
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Add the cut to the master problem. Update        
   and go to step 1. 

Multi Cut Primal Decomposition Method 

The structure of stochastic programs allows one to add 

multiple cuts to the master problem instead of one in each 

major iteration. Birge and Louveaux (1988) show that the 

use of such a framework may greatly speed up 

convergence. The main idea behind this multi cut 

framework is to generate an outer linearization for all 

functions  (     ), replacing the outer linearization of 

 (   ). The multi cut approach relies on the idea that 

using outer approximations of all  (     ) send more 

information than the single cut on  (   ) and that, 

therefore, fewer iterations are needed. In fact, following 

Birge and Louveaux (1988), it is possible to show that the 

maximum number of iterations for the multi cut procedure 

is given by: 

  | |(    ) (  ) 

 

while the maximum number of iterations for the single 

cut procedure is given by: 

,  | |(   )- (  ) 

where   represents the total of slopes for the second-

stage problem and   the number of recourse constraints. 

Although   might turn out to be complicated to calculate 

for real world problems, bounds (17) and (18) show that 

the maximum number of iterations needed for reaching the 

optimum grows linearly with the number of realizations 

for the multi cut approach, while it grows exponentially 

for the traditional single cut approach. 

Before stating the multi cut procedure, it is necessary 

to reformulate the original master problem to conveniently 

adequate it to the multi cut framework: 
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The main difference between the two approaches 

relies on the modification of Step 4 from the single cut 

approach. The previous three steps should be considered as 

identical to those presented in the previous section. The 

modified Step 4 is now stated as follows: 

Step 4: Let  ,  ,  ,  , and   be the dual variables 

associated with constraints (5) to (9) respectively. 

Generate the group of cuts (23): 
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Add the cuts to the master problem. Update    
       and go to step 1. 



  

Numerical Experiments 

In this section we describe numerical experiments 

using the proposed methodology for solving a realistic 

supply chain investment planning under demand 

uncertainty. The transport in the case study considered is 

primarily done using modal waterways, which are strongly 

affected by seasonality issues regarding the navigability of 

rivers. Four different products were considered - diesel, 

gasoline, aviation fuel and fuel oil - to be distributed over 

19 locations (13 bases, 3 of which have sea terminals, one 

refinery and two external supply locations).  

Waterway transportation is generally by large ferries, 

typically done during periods of river flooding and by 

smaller boats, which are able to navigate the sections 

during droughts, i.e., in periods of low water levels and 

higher transportation costs. The portfolio of projects 

considered for the study consists of 28 local projects and 

three arc project. Such projects are considered mutually 

independent and can therefore be combined as needed by 

the problem. The planning horizon considered was 8 years, 

divided into a total of 32 quarterly periods. Figure 2 

illustrates the case study considered. 

 

Figure 2 – Case study schematically 

represented 

To take into account the uncertainty in demand levels 

for petroleum products, scenarios were generated by the 

following first order autoregressive model: 
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where    represents the expected average growth rate 

for the consumption of product   over the planning 

horizon,   represents the estimated maximum deviation 

for product consumption in the region and       (   ). 
The maximum deviation was estimated based on the 

analysis of the annual consumption historical series over 

the last 40 years. Each scenario represents a possible 

product demand curve for the whole time horizon 

considered, for each product and place. 

The mathematical model and the scenario generation 

routines were implemented using AIMMS 3.10. The 

mathematical model was solved using CPLEX 11.2. All 

experiments were performed on a Pentium Quad-Core 2.6 

GHz with 8 Gb RAM. In AIMMS, an optimality parameter 

can be specified to decide whether to find the optimal 

solution or to quickly obtain a suboptimal solution, 

referred to as an  -optimal solution. In these case studies, 

the execution of AIMMS was stopped when the value of 

the objective function was within 0.5% of the optimal 

solution, which is a reasonable choice in terms of solution 

accuracy. In addition, a time limit of 1 h (3600 s) was set. 

For the primal decomposition procedures, the tolerance   

was equivalently set as        (     ), which is 

equivalent to define a 0.5% optimality tolerance. Table 1 

summarizes the data of the experiments performed.  

Table 1 – Experiment Summary 

N #Var #Const. DE(s) SCut(s) MCut(s) 

20 194,443 204,024 18.20 56.08 12.25 

30 291,243 306,024 29.81 41.14 28.52 

40 388,043 408,024 40.92 45.70 24.98 

50 484,843 510,024 48.34 84.42 45.53 

60 581,643 612,024 86.31 113.92 51.17 

70 678,443 714,024 160.84 101.30 70.75 

80 755,243, 816,024 110.20 98.28 61.09 

90 875,043 918,024 136.06 138.28 71.11 
100 968,843 1.020,024 150.13 171.28 53.48 

The first column of Table 1 represents the 9 different 

instances generated, with 20 up to 100 scenarios. The next 

two columns summarize the size of the complete model 

considering all scenarios at once, what is commonly 

known as the deterministic equivalent (Birge and 

Louveaux, 1997). It is worth to notice that all instances 

have the same number of integer variables, a total of 840 

each. 

 

Figure 1 – Comparison of computation times 

The last three columns from Table 1 show the solving 

time taken by each technique to reach the  -optimal 

solution, namely solving the complete deterministic 

equivalent (DE), using the classical primal decomposition 

framework (SCut), and using the proposed multi cut 

approach (MCut). Figure 1 presents a graphical 

comparison among the three experiments regarding the 

CPU time required to reach the optimal solution. 
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As can be seen in Table 1, the multi cut approach has 

the smallest solution time for every instance, being up to 3 

times faster than solving the deterministic equivalent and 

up to 5 times faster than using the single cut approach. 

Furthermore, it is worth to notice that the solution time for 

the single cut procedure is often higher than the solution of 

the deterministic equivalent among the experiments 

performed. This indicates that, for this particular case, it 

seems more efficient to simply solve the complete 

deterministic problem than use the traditional 

decomposition procedure.  

Conclusions 

This paper presents the application of a decomposition 

scheme for the problem of supply chain design applied to 

the petroleum byproducts supply chain. We propose a 

mathematical model that captures the impact of 

uncertainty on investment decisions, since the problem 

approached here is a mixture of logistic infrastructure 

investment planning problem and the stochastic 

transportation problem. With demand at each destination 

as a random variable, the objective is to minimize the sum 

of expected holding and shortage costs, transportation 

costs, fixed investment costs, and demand shortfall costs. 

In order to solve the proposed model, we propose an 

application of a primal decomposition method to the 

problem at hand, together with the application of the multi 

cut extension of it, based on Birge and Louveaux (1988).  

The results suggest that the first approach performs 

worse than the second in terms of computational time. It is 

an expected, yet important, result that corroborates the 

theoretical bounds for the total number of necessary 

iterations before complete convergence of the algorithms. 

In a general sense, the multi cut framework performs 

better than simply solving the deterministic equivalent - or 

even than directly applying the classic primal 

decomposition framework - allowing one to solve 

instances of greater size and, thus, with a more precise 

representation of the random variables. 
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