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Abstract 

Reduced order models (ROM) lead to powerful techniques to address computational challenges in 
PDE-constrained optimization. However, when incorporated within optimization strategies, ROMs are 
sufficiently accurate only in a restricted zone and thus, need to be systematically updated over the 
course of the optimization. As an enabling strategy, trust-region methods provide an excellent adaptive 
framework for ROM-based optimization. This study develops a novel filter trust-region algorithm for 
constrained optimization problems, which utilizes ROM refinement and a feasibility restoration phase. 
The algorithm not only restricts the optimization step within ROM’s validity, but also synchronizes 
ROM updates with the information obtained during the course of optimization, thus providing a robust 
and globally convergent framework. When applied to the optimization of a two-bed four-step PSA 
system for CO2 capture, it converges to a local optimum within reasonable CPU time. 
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Over the past decade, reduced order modeling (ROM) 
techniques based on proper orthogonal decomposition 
(POD) have been developed to generate cost-efficient 
representations of spatially and temporally distributed 
PDAEs (Kunisch and Volkwein, 1999, Armaou and 
Christofides, 2002). POD-based ROMs are formulated 
through the Galerkin projection of the PDAE system onto 
a truncated small set of POD basis functions, which lead 
to a significant reduction in the number of states as well 
as a much smaller optimization problem. However, for 
optimization, the ROM is accurate only at values of the 
decision variables where it is constructed (“root-point"), 
and the local nature of POD basis leads to inaccuracy of 
the ROM at other points in the decision variable space 
(Agarwal et al., 2009). Hence, the ROM needs to be 

updated as the optimization proceeds from the root-point 
to other points in the decision space. 

Trust-region methods (Conn et al., 2000) offer an 
effective way to manage ROM updates over the course of 
optimization. These methods ensure that the step 
computed by the optimizer stays close to the root-point, 
and leads to ROM update decisions based on the 
information obtained during the optimization procedure. 
Trust-region methods for ROMs were first developed for 
unconstrained optimization. In particular, Alexandrov et 
al. (1998) developed an algorithm with a scaled objective 
function to ensure convergence to the correct optimum. 
Fahl (2000) developed the TRPOD algorithm based on an 
inexact gradient approach. Later, Alexandrov and 
coworkers (2001) extended their framework to incorporate 
equality and inequality constraints as well. In particular, 



  
 

 

they developed the MAESTRO-AMMO algorithm with an 
l2 penalty function as a merit function. 

In this work we develop a novel filter-based trust-
region approach that extends the algorithm of Fletcher et 
al. (2002). We utilize a few concepts from Fahl's TRPOD 
algorithm and the MAESTRO-AMMO algorithm, and 
also incorporate Alexandrov’s scaling scheme for the 
objective and constraints to ensure global convergence. In 
subsequent sections we present the details of the 
algorithm and apply it to optimize a two-bed four-step 
isothermal pressure swing adsorption (PSA) process to 
maximize CO2 recovery from an N2-CO2 feed mixture. 

Trust-r egion Subproblem with Constr aints  

We consider the nonlinear programming problem of 
the following form 
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where the objective function )(xf , equality constraints 

)(xcE
, and inequality constraints )(xcI

 are assumed to be 
sufficiently smooth and at least twice differentiable 
functions. The PDAE system is solved implicitly for given 
values of x . Solution profiles from the PDAEs are then 
used to compute the objective function and the 
constraints. 

At iteration k of the optimization cycle, a ROM is 
constructed at a particular kx , and this is used to build the 
model function for the trust-region subproblem. We define 
a ROM-based trust-region subproblem at iteration k as: 
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where )( sxf k

R
k +  is the objective function and )(, sxc k

R
kE + , 

and )(, sxc k
R

kI +  are the equality and inequality constraints, 

respectively, computed from the reduced set of state 
variables of the ROM. We prefer to use a box type (l∞) 
trust-region to restrict the step size.  

To develop a robust and globally convergent trust-
region algorithm involving ROMs, the following 
assumptions should hold (Conn et al., 2000) 
(AF1) Functions )(xf , )(xcE

, and )(xcI
 are twice-

continuously differentiable on nℜ  
(AF2) The function )(xf  is bounded below nx ℜ∈∀  

(AF3) The second derivatives of )(xf , )(xcE
, and )(xcI

 
are uniformly bounded nx ℜ∈∀  
(A1) For iteration k , )(xf R

k
 is twice differentiable on 

kB , 
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n
k xxxB  

(A2) The value of the objective and the constraints for (1) 
and (2) coincide for every iterate k  
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(A3) The gradient of the objective and the Jacobian of the 
constraints for (1) and (2) coincide for every iterate k 
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(A4) The second derivatives of )(xf R

k
, )(, xc R

kE
, and )(, xc R

kI
 

remain bounded within 
kB , for all k  

 
Assumptions (AF1)-(AF3), (A1), and (A4) are assumed to 
hold. Assumption (A2) can be ensured by constructing 
accurate ROMs at each kx . However, gradients of the 
objective and the constraints will in general differ for the 
ROM. To simplify the construction of ROMs that satisfy 
assumptions (A2) and (A3), scaled (corrected) functions 
can be derived by using local corrections that correspond 
to the current iterate k. In this work, we define two 
additive correction schemes for the objective and 
constraints of (2): 
 
Zero Order Correction (ZOC) 
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First Order Correction (FOC) 
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Here ZOC satisfies only (A2) while FOC satisfies both 
(A2) and (A3). Although ZOC does not satisfy (A3), we 
still adapt it within our trust-region algorithm. We 
redefine (2) in terms of the corrected objective and 
constraints 
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While ZOC does not require derivative computation, and 
thus is cheap, FOC also requires )( kxf∇ , )( kE xc∇ , and 



  

 

)( kI xc∇  to be computed only once at kx  when the 
objective and the constraints are constructed for (5). The 
subproblem (5) is then solved using cheap derivatives of 
the ROM. However, these derivatives need to be computed 
every time whenever FOC is used to construct (5) for a 
trust-region iteration. 

Filter -based Trust-r egion Algor ithm 

We develop a filter-based trust-region algorithm, 
which utilizes both ZOC and FOC for different parts of 
the algorithm. As constructing FOC for every trust-region 
iteration is expensive due to derivative computation, we 
apply ZOC when far from the optimum. Our algorithm 
thus begins with subproblems based on ZOC and later 
switches to FOC when no further improvement is 
observed. This work is patterned after Fletcher’s trust-
region filter method (Fletcher et al., 2002) with additional 
modifications for POD-based ROMs. Our proposed 
modifications also enjoy the global convergence properties 
of Fletcher's algorithm. 

A filter method considers both minimization of the 
objective function )(xf  and constraint violation )(xθ  as 
separate goals, where 
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A filter is a list F  of nondominated pairs ),( ii fθ  such 
that for any two point ),( ji  in filter F , either 

ji θθ ≤  or 

ji ff ≤ . During optimization, we move from kx  to kk sx +  

only if the following condition holds: 
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where )1,0(, ∈θγγ f

 are chosen to be small. We add 

),( kk fθ –pairs to the filter for the acceptable iterates kx . 

Trust-region step computation 

We decompose the trust-region subproblem (5) into a 
normal and a tangential subproblem. To minimize the 
constraint violationδ  for ROM, we write the following 
normal subproblem 
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For a non-zero tangential step, we choose kc ∆=∆ 6.0 . 
With optimal infeasibilityδ , we solve the following 
tangential subproblem to reduce the objective 
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We note that both subproblems are formulated with kx  as 
the center of the trust-region. This allows us to apply ZOC 
or FOC only once at kx  for both subproblems. In this 
work, we compute exact solution for both problems using 
the NPL solver IPOPT (Wächter and Biegler, 2006). 

Switching condition 

Relying solely on the condition (7) can cause 
sequence of iterates to provide sufficient reduction of )(xθ  
only, and not necessarily the objective. This could result 
in convergence to a feasible but suboptimal point. In order 
to prevent this, we use the following switching condition 
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Here 

kθ  is the actual constraint violation from Eq. (6). If 
Eq. (11) fails, then the current 

kθ  is significant and we 
aim to improve that by inserting kx  to the filter. However, 
if Eq. (11) holds, then the reduction in the ROM-based 
objective function )(~

k
R

k xf  is significant compared to 
current 

kθ , and the algorithm should promote descent in 
the objective. In such a case, it is important that a 
sufficient decrease is also realized in the actual objective 
function )(xf . In other words, the following 
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should hold together with Eq. (11). If this happens, we do 
not add kx  to the filter. 

Eq. (11) ensures no feasible iterate is ever included in 
the filter. This is vital to not only avoid convergence to 



  
 

 

suboptimal points, but also for a finite termination of the 
feasibility restoration phase discussed later. 

Algorithmic Parts ZOC and FOC 

Since ROMs with ZOC are cheap to construct, our 
two-part algorithm begins in Part ZOC with problems (9) 
and (10) defined with ZOC, and proceeds until no further 
improvement in the objective or the infeasibility measure 
is obtained. After this, the algorithm moves to Part FOC 
where subproblems are constructed using first order 
corrections in Eq. (4). 

Since constructing FOC is expensive, before 
switching to Part FOC we seek further improvement in 
the objective or infeasibility in Part ZOC by improving the 
accuracy of ROM. In particular, ROM is made more 
accurate by increasing the number of POD basis 
functions. POD subspace augmentation is carried out until 
an improved point is found or maximum limit for POD 
subspace dimension is reached. 

Part FOC involves computing exact derivatives for 
each trust-region iteration. Because FOC ensures descent, 
we do not utilize ROM refinement. In fact, Part FOC 
allows working with smaller ROMs compared to Part 
ZOC as accurate steps can be generated. Also, once the 
algorithm proceeds from Part ZOC to Part FOC, it never 
returns to Part ZOC. 

Feasibility restoration phase 

The algorithm switches to a feasibility restoration 
phase if the new iterate either fails condition (7), or if it 
satisfies both Eq. (7) and Eq. (11) but doesn’t provide 
sufficient decrease, i.e. 1ηρ <k . The purpose of the 
restoration phase is to decrease the current constraint 
violation and generate a new iterate which is acceptable to 
the filter. In particular, it involves solving the normal 
subproblem repeatedly until such a point is obtained. 

Whenever restoration is invoked at an iterate kx , this 
point is added to the filter to avoid future visits. 
Restoration either generates a feasible iterate or converges 
to a local minimum of )(xθ  indicating the problem might 
be infeasible. 

Filter-based algorithm 
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1. Compute POD basis functions at 
Part ZOC 

kx . Choose POD 
subspace size kM  and construct a ROM 

2. Step computation 
a. Solve subproblems (9) and (10) with ZOC 

b. If maxθθ ≥k , add kx  to filter and go to step 3 
c. If min∆≤∆ k , 

i. If maxMM k ≥  (ROM cannot be refined), 
A. If 0=kθ , go to step 4 
B. Add kx  to filter. Update kM , go to step 3 

ii. Refine ROM by increasing kM , repeat step 2 
d. If (7) fails, kkkk xx ∆=∆= ++ 111 , γ , increment k  by 

1 and repeat step 2 
e. Compute kρ  from Eq. (12) 
f. If 0<kpred  and 0>kared , go to 2(h) 
g. If (11) holds and 1ηρ <k , kk xx =+1 , kk ∆=∆ + 11 γ , 

increment k  by 1 and repeat step 2 
h. If (11) fails, add kx  to the filter 
i. Set kkk sxx +=+1 . If (11) fails, kk ∆=∆ +1 , else 
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Increment k  by 1 and go to step 1 

3. Restoration with ZOC 
a. Solve normal problem (9) with ZOC until a point is 

found that satisfies (7). If found, add kx  to the 
filter, increment k  by 1 and go to step 1, else 
continue 

b. If maxMM k ≥  (ROM can’t be refined), go to step 4 
c. Refine ROM by increasing kM , repeat step 3 

 

4. Reinitialize 
Part FOC 

k∆  and kM , construct ROM, go to step 6 
5. Compute POD basis functions at kx . Choose POD 

subspace size kM  and construct a ROM 
6. Step computation 

a. Solve subproblems (9) and (10) with FOC. If 
 from (14), STOP 

b. If 0=kθ  and min∆≤∆ k , STOP 
c. If maxθθ ≥k or min∆≤∆ k add kx  to filter, go to step 

7 
d. If (7) fails, kkkk xx ∆=∆= ++ 111 , γ , increment k  by 

1 and repeat step 6 
e. Compute kρ  from Eq. (12) 
f. If (11) holds and 1ηρ <k , kk xx =+1 , kk ∆=∆ + 11 γ , 

increment k  by 1 and repeat step 6 
g. If (11) fails, add kx  to the filter 
h. Set kkk sxx +=+1 . If (11) fails, kk ∆=∆ +1 , else 

update k∆ as in 2(i). Increment k  by 1, go to step 5 
7. Restoration with FOC: Solve normal problem (9) 

with FOC until (7) is satisfied. If such a point is 



  

 

found, add kx  to filter, increment k  and go to step 5, 
else STOP  
 
The choice of the constants in the algorithm depends 

on the optimization problem and the scaling mechanism 
used for the decision variables. One peculiar feature of the 
algorithm is step 2(f) in Part ZOC. Even 
though 0<kpred , this step allows us to move from kx  to 

kk sx +  because 0>kared . Such a scenario is possible 
especially with ROM-based trust-region subproblems 
without exact gradient information. Here 1ηρ <k , so, if 
we move from 2(f) to 2(g), the step will be denied even 
though 0>kared . Hence, we jump from 2(f) to 2(h). 

Another important feature of the algorithm is that in 
both sections, the trust-region radius is updated only when 
(11) holds. If (11) fails, the main effect of the current 
iteration is not to reduce the objective, but rather to reduce 
constraint violation (which is ensured by inserting kx  to 
the filter in steps 2(h) and 6(g)). In this case, we impose 
no further restriction on 1+∆ k  and keep it the same as k∆ . 

For step 6(a), we define the first-order criticality 
measure kχ  in the following manner 
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We note that kχ  is defined in terms of ROM-based 
functions because of the first-order correction. Since the 
constraint set of (14) is convex and the objective function 
positive, it can be proved that kχ  is a first-order 
criticality measure, which vanishes only when kx  is a 
first-order critical point. 

Part FOC is patterned after the SQP-filter algorithm 
proposed by Fletcher et al. (2002). All assumptions made 
by Fletcher et al. are satisfied and similar convergence 
properties hold. For a detailed convergence analysis, see 
Agarwal and Biegler (2011). 

PSA Case Study 

In this section, we apply the ROM-based filter trust-
region algorithm to optimize a a two-bed four-step 
isothermal pressure swing adsorption process, as shown in 
Figure 1, with an 85%-15% N2-CO2 feed mixture. The 
operation consists of four distinct operating steps; 
pressurization, adsorption, depressurization (counter-
current), and light reflux (or desorption). We maximize 
CO2 recovery subject to a constraint on CO2 purity. We 
consider five decision variables, high pressure hP , low 

pressure lP , step times pt and at , and adsorption feed 

velocity au . The optimization problem is described below 
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A lower bound of 50% for CO2 purity is reasonable as the 
cycle lacks any CO2 enriching step and thus, we cannot 
achieve high purity with this cycle. 

   

Figure 1:  A two-bed four-step PSA cycle 

   

Figure 2:  CO2 purity and recovery 

We develop a ROM for the PSA process and use it 
with the filter algorithm to solve problem (15). Figure 2 
shows CO2 purity and recovery with iterations, while 
Figure 3 shows iterations spent in Part ZOC and FOC, 



  
 

 

restoration phase iterations, and the progress of hP  and 

pt . The algorithm begins in restoration phase in ZOC, 

which remains active till 4th iteration. Part ZOC then 
continues to improve the objective until 35th iteration. 
After that, ROM is not able to predict descent even after 
increasing POD subspace dimension. Hence, algorithm 
switches to Part FOC. The algorithm terminates after 51st 
iteration. We observe that the algorithm allows moves 
which increase infeasibility while improving objective. 
Such flexibility leads to convergence in fewer iterations. 

A key observation is the value of pt  which increases 

steadily in Part ZOC but starts decreasing and hits the 
lower bound once Part FOC starts. We infer that the 
(ROM) gradient of the objective function with respect to 

pt  has an opposite sign during optimization in Part ZOC, 

which gets corrected in Part FOC. Once hP  reaches its 
upper bound, no further improvement is possible in the 
objective and thus Part ZOC terminates after 35th iteration 
due to this incorrect gradient. 

   

Figure 3:  Iterations for Part ZOC and FOC 

Table 1 lists the optimization results. Using finite 
difference gradients we conclude that the algorithm 
converged to a local optimum. 

Conclusions 

Trust-region based methodology provides an 
excellent adaptive framework to systematically utilize 
reduced-order models for optimization since it not only 
restricts the validity zone of the reduced-order model, but 
also provides a robust and globally convergent algorithm. 
In particular, we develop a filter-based trust-region 
framework since it allows steps that can achieve greater 
reduction in the objective by increasing infeasibility in a 
controlled manner. We follow a hybrid strategy and 
incorporate Part ZOC to avoid expensive gradient 
calculations. For the PSA case study, we observe that 35 
iterations out of the total 51 are carried out in Part ZOC of 

the algorithm, which is quite encouraging as it delays 
expensive gradient evaluations for FOC. Thus, we infer 
that a hybrid strategy and POD subspace augmentation 
are potentially useful tools for optimization with ROMs. 
Future work will explore the improvement of this strategy 
through the addition of second order corrections and 
better tuning parameters. 

Finally, the performance of the algorithm relies 
heavily on the quality of ROM and its ability to accurately 
predict the descent direction. In future, alternate 
methodologies will be explored to build efficient ROMs. 

Table 1: Optimization results for PSA case study 

  
No. of variables in ROM 52247 
Trust-region iterations 51 
Total CPU time 1.36 hrs 
Optimal Ph 
Optimal Pl 
Optimal tp 
Optimal ta 
Optimal ua 
Optimal CO2 purity 
Optimal CO2 recovery 

300 kPa 
40 kPa 
35 sec 

187.91 sec 
12.77 cm/sec 

50.01% 
97.26% 
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