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Abstract 

We propose a computationally-tractable optimization-based framework for risk management in midterm 

process planning under uncertainty. We employ stochastic programming to account for the uncertainty in 

which a scenario-based approach is used to represent the underlying probability distribution of the uncertain 

parameters. The problem is formulated as a two-stage stochastic program with recourse that is extended to 

incorporate the statistically-significant risk measure of Conditional Value-at-Risk (CVaR). However, since a 

large number of scenarios are often required to capture the uncertainty of the problem, the model suffers 

from the curse of dimensionality. To circumvent this problem, we propose a solution strategy with relatively 

low computational burden that involves a combination of simulation, scenario-based stochastic programming 

with recourse appended with risk management, and statistical-based scenario reduction technique. First, we 

solve an approximation of the risk-inclined multiscenario model for a number of randomly generated 

scenarios with an objective of minimizing the standard deviation of the Monte Carlo sampling estimator, 

which results in a convex stochastic quadratic program. The advantages of solving the approximation 

problem are two-fold: First, it only requires the use of a small number of samples. Second, we may utilize 

the standard deviation value of the Monte Carlo estimator (i.e., the objective value) within a scenario 

reduction procedure to determine the minimum number of scenarios that is theoretically required to obtain an 

optimal solution. Subsequently, the VaR parameters of the model are simulated for incorporation in a mean–

CVaR stochastic linear programming approximation of the all-encompassing risk-averse planning model. 

The proposed strategy is implemented on a petroleum refinery planning case study with satisfactory results 

that illustrate how solutions with relatively affordable computational expense can be attained in a risk-

conscious modeling framework in the face of uncertainty. 
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Introduction

The process systems engineering (PSE) community 

has been instrumental in carrying out a key role in 

extending the systems engineering boundaries from a sole 

focus on process systems to the incorporation of important 

business issues. The latter involves the inevitable 

consideration of uncertainty in decision-making that gives 

rise to a need for risk management in enhancing the 

robustness of process planning activities under numerous 

possible operating scenarios. Various approaches have 

been devised to optimize planning problems under 

uncertainty in the PSE domain, mainly involving scenario-

based two-stage and multi-stage stochastic programming 

with recourse, chance-constrained optimization, fuzzy 

programming, flexibility analysis, and robust optimization 

(Sahinidis, 2004). A closely-related research strand 

considers the notion of risk in handling process planning 

under uncertainty. An early work in PSE by Bok et al. 

(1998), which drew inspiration from the Nobel Prize 

winning work of Markowitz’s mean–variance model 

(1952, 1959) and the robust stochastic programming 

approach of Mulvey (1995), involves risk management 

using variance and has been applied to capacity expansion 



  

 

 

planning of chemical processing networks. More recent 

work have applied the Conditional Value-at-Risk measure 

in research and development activities pipeline 

management (Colvin and Maravelias, 2011); operational 

planning of large-scale multipurpose multiproduct 

industrial batch plants (Verderame and Floudas, 2010); 

and strategic planning of the petroleum industry supply 

chain (Carneiro et al., 2010). CVaR has also been 

employed as a post-optimality measure in the capacity 

investment planning of multiple vaccines (Tsang et al., 

2007). This work seeks to propose a stepwise sequential 

optimization-based framework with relatively low 

computational burden for addressing risk management 

using CVaR in process planning problems under 

uncertainty. 

Conditional Value-at-Risk Risk Measure 

CVaR is a risk measure originally intended to be 

employed for reducing the probability that an investment 

portfolio will incur high losses. It is closely related to the 

risk measure Value-at-Risk (VaR) that measures the 

maximum expected loss in the value of a risky entity at a 

certain confidence interval over a given period under 

normal market conditions. CVaR is the expected loss 

given that the actual loss exceeds some VaR threshold at 

the same confidence level (Rockafellar and Uryasev, 2002; 

Szego, 2002). For instance, at a one week 95% confidence 

interval, VaR reports a single value with 95% certainty 

that that is the value of the maximum expected loss. CVaR 

measures the expectation that the value is greater than 

VaR. Within a production planning setting, for instance, if 

VaR for a commercial product is $1 million at a one-

month 99% confidence interval, this implies that there is a 

1% probability that the value of the product will drop more 

than $1 million over any given month. CVaR is the 

expected loss in the product value that is greater than $1 

million over the same duration associated with the same 

confidence interval. 

Problem Statement 

The midterm production planning problem addressed 

in this work can be stated as follows. We are given the 

following information: 

 available process units and their yields and capacities; 

 costs of crude oil and refined saleable products; 

 capital and operating costs of process units; and 

 market demands by customers for products. 

Our goal is to determine the amount of materials that are 

processed in each process stream of each process unit by 

considering the following uncertain parameters: 

 market demands, i.e., production amounts of desired 

products; 

 prices of crude oil and saleable products; and 

 product yields of crude oil from chemical reactions in 

the crude distillation unit 

It is assumed that: 

 the uncertain parameters of prices, costs, and demands 

are externally imposed, that is, they are exogenous 

uncertainties;  

 the uncertain parameters are independent random 

variables that exhibit the behavior and properties of 

discrete probability distribution functions; and 

 the physical resources of the plant are fixed. 

Model Formulation and Proposed Solution Strategy 

The problem is formulated as a recourse-based two-

stage stochastic program with a multiobjective weighted 

mean–risk objective function as given by the following 

(Ruszczyński and Shapiro, 2009; Ahmed, 2006): 
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where Q(x,) is the second-stage recourse costs function 

and (x,) is the dispersion statistic adopted as a proxy to 

represent the risk function. Provided that the vector of 

random parameters  has a small number of possible 

realizations (or scenarios), it is computationally intractable 

to solve problem (SP) exactly with current state of 

computing power and solution algorithms. The two major 

approaches for approximately solving SP are by 

performing: (1) numerical integration over the random 

continuous probability space  (e.g., Pistikopoulos and 

Ierapetritou, 1995); and (2) discretization of the underlying 

probability measures or distributions of the continuous 

space  by using a finite number of scenarios. In this 

work, we consider the latter approach in formulating the 

following approximating problem to (1) by utilizing 

discrete scenarios: 
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To solve problem (2) to optimality, we propose a 

sequential stepwise optimization-based solution strategy, 

as shown in Figure 1, that involves a combination of 



  

 

simulation, optimization of scenario-based two-stage 

stochastic programs with recourse appended with risk 

management, and statistical-based scenario reduction 

technique. 

STEP 1. Scenario generation using Monte Carlo simulation-based pseudorandom 

number generation

Discretize uncertainty space by random sampling of uncertain parameters with fixed 

lower & upper limits

STEP 5. Solution of risk-averse multiscenario mean-CVaR single-stage stochastic 

linear program

Optimize x for maximum risk-averse profit for fixed scenarios of NSmin

STEP 2: Solution of risk-inclined multiscenario model incorporating scenario 

reduction

 STEP 2.1. Minimize Monte Carlo sampling standard deviation estimator to estimate 

optimal solution x*

 STEP 2.3. Determine minimum no. of scenarios NSmin required for optimal solution

Input from historical data analysis

(e.g., prices, demands, and yields)

STOP: Optimal solution of maximum risk-

averse profit

optimal x* (as initial values) and NSmin

STEP 4. Simulation of Value-at-Risk (VaR)

 STEP 4.1. Compute value function for each scenario for fixed x*

 STEP 4.2. Determine VaR values from cumulative distribution function for desired 

confidence level

STEP 3: Solution of risk-inclined multiscenario model using reduced scenarios

Optimize x using NSmin to estimate optimal solution x**

NSmin

Convergence

criterion:

x* – x** ≤ e?

Add no. of 

scenarios

NO

NSmin

YES

 

Figure 1.   Proposed solution strategy 

Step 1. Scenario Generation Using Monte Carlo 

Simulation-Based Sampling 

We first employ a Monte Carlo approach using 

pseudorandom number generation to generate scenarios 

that approximate the original full space of the probability 

distribution, which underlies the uncertain parameters. 

Step 2. Formulation and Solution of Risk-Inclined 

Multiscenario Model Incorporating Scenario Reduction 

Procedure 

Using the generated random samples of scenarios in Step 

1, we estimate the expected value function in program (2) 

by employing the Monte Carlo-simulation based sampling 

estimator z  that is given as (Liu and Sahinidis, 1996; 

Hammersley and Handscomb, 1964): 
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Using z , we compute an approximate solution for 

program (2) by considering an objective function of 

minimizing the standard deviation ̂  of z  that is given by 

(You et al., 2009; Mak et al., 1999; Shapiro and Homem-

de-Mello, 1998): 
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Thus program (4) yields a stochastic linear program that 

entails affordable computational load. 

Step 3. Formulation and Solution of Risk-Inclined Model 

with Reduced Scenarios 

Subsequently, we utilize the value of ̂  in a scenario 

reduction procedure that allows us to determine the 

minimum number of scenarios, NSmin that is theoretically 

required to obtain the same optimal solution as given by 

program (4) for a desired level of accuracy within a 

specified confidence interval H (You et al., 2009; Shapiro, 

2000; Liu and Sahinidis, 1996). The formula for 

computing NSmin is given by: 
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where / 2 ˆ2

NS

z
H  

 . We set a convergence criterion for the 

difference between the optimal objective value of Steps 2 

and 3 to a small number e (typically 0.005). If this 

criterion is not satisfied, we elect to backtrack to Step 1 to 

consider a larger number of scenarios that is more 

representative of the problem. 

It is noteworthy that the value of Steps 2 and 3 lies in 

the minimization of uncertainty, albeit not so much of risk 

for the reason that variance is a symmetric metric that 

penalizes both the downside risk, which is desirable, as 

well as the upside risk (which is not desirable) as pointed 

out by Samsatli et al. (1998). The idea is to relegate an 

explicit handling of the minimization of risk to a later step 

(Step 5), which offers the advantage of using the optimal 

solution from Step 2 as initial values for the solution of a 

risk-averse model that only needs to consider a reduced 

number of scenarios (NSmin) and is hence, computationally 

tractable. 

Step 4. VaR Simulation 

In this step, we formulate appropriate value functions for 

the uncertain parameters to simulate the values of VaR 

using NSmin and the optimal solution from Step 3 by 



  

 

 

estimating their associated cumulative distribution 

function (CDF). The values are incorporated in the next 

step to solve the ultimately desirable risk-averse 

optimization program. 

Step 5: Formulation and Solution of Mean–CVaR 

Stochastic Program 

The risk-averse model admits a mean–risk structure in its 

objective function using the risk measure CVaR. We adopt 

the computationally-attractive linear programming 

approximation of CVaR proposed by Rockafellar and 

Uryasev (2000): 
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Formulation of the CVaR-based objective function that 

yields a convex optimization problem is given by: 
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Numerical Example 

We illustrate the proposed solution strategy on a case 

study involving midterm petroleum refinery planning 

taken from Khor et al. (2008). Uncertainty in prices, 

demands, and yields are considered, initially using 100 

scenarios (Step 1). Formulation of the risk-inclined 

multiscenario refinery planning model is as follows (Step 

2): 
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The objective function for the approximating problem to 

(9) that minimizes the standard deviation of the Monte 

Carlo estimator is given by: 
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  (11) 

Optimal solution of the risk-inclined program is indicated 

on the refinery flow diagram in Figure 2. 
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Figure 1.   Optimal solution of the risk-inclined 

program (Step 2) 

The value function for price uncertainty is formulated as: 
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while the value function for aggregated uncertainty in 

demands and yields is given by: 
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For the purpose of prototyping, we employ manual 

intervention to estimate the CDF for a value function by 

plotting the value function for each of the NSmin against its 

corresponding cumulative probability. The plots are used 

to determine VaRprofit and VaRpenalty at the a priori desired 

confidence level of 95% as shown in Figures 3 and 4. 

 

 

Figure 3.   Cumulative distribution function for 

determining VaRprofit (Step 4) 

 

Figure 4.   Cumulative distribution function for 

determining VaRpenalty (Step 4) 

Finally, the linear value functions give rise to a stochastic 

linear programming approximation of the mean–CVaR 

risk-averse program: 
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Table 1 summarizes the important optimal results while 

Table 2 provides the model size and computational 

statistics for the risk-averse refinery planning model. 

Table 1. Computational results for the risk-averse 

refinery planning model 

Parameter Value 

NSmin (Step 3) 25 

VaRprofit (Step 4) $12,900/day 

VaRpenalty (Step 4) $183,800/day 

Confidence level  (Step 5) 0.95 

Optimal risk-averse profit (Step 

5) 

$25,760/day 

Table 1. Model size and computational statistics 

for the risk-averse model 

Solver GAMS/CPLEX 

Number of continuous variables 521 

Number of constraints 265 

CPU time/resource usage  0.136 s 

Number of iterations 180 

Concluding Remarks 

In this work, we have proposed an optimization-based 

framework with relatively low computational expense for 

handling risk management in process planning under 

uncertainty. We incorporate the use of the risk measure 

CVaR within the proposed framework that affords a 

computationally-attractive linear programming 

formulation. The framework also features the application 

of a Monte Carlo-based scenario reduction scheme to 

determine the minimum number of scenarios required to 

obtain an optimal solution in computationally-tractable 

fashion. An immediate future work is to extend the 

approach to a multiobjective optimization formulation, 

which yields a Pareto curve of optimal solutions, that is 

capable of examining the tradeoffs between the typically 

conflicting objectives of expected profit and risk. 
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Notation 

Sets and Indices 

 

I set of materials i 

ID set of i under demand uncertainty, ID  I 

IY set of i under yield uncertainty, IY  I 

J set of processes j 

K set of conditions k under demand uncertainty = {k1, k2} 

with k1: shortfall due to underproduction; k2: surplus 

due to overproduction 

M set of conditions m under yield uncertainty = {m1, m2} 

with m1 represents shortage in yield and m2 represents 

excess in yield 

N set of uncertain parameters n = {1, , NP} 

S set of scenarios s = {1, , NS} 

 set of possible occurrences of  

 

Deterministic Parameters 

 

ai,j yield coefficient of material i in process j 

ci deterministic unit sales price of product type i 

di market demand for product type i 

ix , ix  lower and upper bounds on flowrate of material i 

 

Stochastic Parameters 

 

,s ia  yield coefficient of material i per realization of scenario 

s 

di,s demand for product i per realization of scenario s 

ps probability of scenario s 

Vn Monte Carlo sampling variance estimator 

 confidence level to compute VaR and CVaR 

1, 2 risk factors (weights) 

 random variables vector of uncertain parameters 

 

Recourse Parameters 

 

,i sc  stochastic unit sales price of product i per realization 

of scenario s 

h() second-stage right-hand side vector that is a function 

of  

Q(x, ) second-stage recourse costs function 

q(),r() second-stage vector of recourse penalty costs that is a 

function of  

1,i kq  fixed penalty cost per unit demand di,s of 

underproduction k1 of product i per realization of 

scenario s (also the cost of lost demand) 

2,i kq  fixed penalty cost per unit demand di,s of 

overproduction k2 of product i per realization of 

scenario s (also the cost of inventory to store 

production surplus) 

1,i mr  fixed unit penalty cost for shortage in yield m1 from 

material i for product k 

2,i mr  fixed unit penalty cost for excess in yield m2 from 

material i for product k 

T() second-stage technology matrix that is a function of  

W() second-stage recourse matrix that is a function of  

 

First-Stage Deterministic Decision Variables 

 

x vector of first-stage decision variables 

xi flowrate of material i 

 

Second-Stage Stochastic Recourse Decision Variables 

 

VaRprofit

 
acceptable loss variable of Value-at-Risk (VaR) 

under price uncertainty  

VaRpenalty

 
acceptable loss variable of Value-at-Risk (VaR) 

under aggregated demand and yield uncertainty 

,i sx  flowrate of material i per realization of scenario s 

y vector of second-stage decision variables 

1, ,i s my  amount of shortage in yield m1 from material i per 

realization of scenario s 

2, ,i s my  amount of excess in yield m2 from material i per 

realization of scenario s 

1, ,i s kz  amount of unsatisfied demand for product i due to 

underproduction k1 per realization of scenario s 

2, ,i s kz  amount of excess product i due to overproduction k2 

per realization of scenario s 

 

 


