
Opti: Lowering the Barrier Between Open

Source Optimizers and the Industrial

MATLAB User

Jonathan Currie, ∗ David I. Wilson ∗∗

∗ Electrical & Electronic Engineering, Auckland University of
Technology, New Zealand

∗∗ Industrial Information & Control Centre, Auckland University of
Technology, New Zealand

Abstract: For those interested in tackling industrial optimization problems, typical approaches
include either purchasing a sophisticated and often specialised solver perhaps with accompanying
consulting support, using an internet-based optimization server or using a Matlab toolbox.
While there are a number of open source optimization solvers that enable one to solve a wide
range of continuous and discrete, linear and nonlinear, medium and large-scale optimization
problems, only a few contain useable pre-compiled binaries for Windows. The initiative described
in this work, Opti, bridges this gap by providing an intuitive object-based general optimization
platform that interfaces with many of those freely available, and those with low or no-cost
licence requirements, high-quality optimization codes all accessible within the rapid development
environment Matlab. The user needs not compile or build the various tools, but still leverages
off the advantages of using high-end desktop hardware (such as 64bit multi-core processors) and
remaining in a powerful and familiar development environment.

Keywords: Optimization, Open Source, OPTimization Interface (OPTI), Matlab

1 Introduction

The ability to optimize is becoming an increasingly
important part of engineering design, particularly in this
cost-conscious globally-aware environment in which we all
now operate. This realisation that optimization is now
not just something that is tacked on after a successful
prototype is actually running, but is actually something
that is considered from the outset. One only needs to
look at the number of dedicated engineering design pack-
ages such as process simulation, finite element analysis,
or multi-physics simulation software packages that now
include an optimization module. One can also look at the
increasing numbers of undergraduate engineering courses
that demand optimization as part of the core engineering
education.

However there is a problem: practical optimization
problems, i.e. those where it is anticipated that the eco-
nomic payoff to attempt a computer solution is significant,
tend to be large-scale, involve binary decision variables,
and show an ordinate sensitivity to formulation. This
situation results in groups specializing in optimization
with expensive tools applied to hand-crafted situations.
This solves the problem for those with such potentially
beneficial problems that they can afford to employ the
optimization consultants, but the barrier is still very high
for those others, the majority of whom could potentially
benefit from optimization.

In our experience within an academic-based industrial
consulting group, (i2c2.aut.ac.nz), we see a strong re-
luctance to use optimization on a regular and routine basis.
The interesting observation is that that reluctance still
persists even when the client is competent in the basics

of optimization, and is confident in the underlying process
models. We believe that the expense of robust high-quality
optimization code, coupled with the difficulty in setting
up the problem (GAMS/AMPL etc notwithstanding) is
to blame. What has changed recently in our dealings with
industrial clients primarily in the process, oil and gas
and utility industries is the comfort and familiarity, and
hence strong reliance on Matlab. While there could well
be more sophisticated proto-typing environments from a
computer science perspective (such as Python or Ruby),
or environments more cost effective (such as Scilab or
Octave), or environments that have garnered domain spe-
cific loyalty (such as R amongst statisticians), nothing
approaches the market presence of Matlab for such a
wide diverse group comprised of scientists and engineers.

We regularly talk to competent engineers and technol-
ogists whose primary interest and expertise is in their own
domain. They are not optimization specialists, nor partic-
ularly comfortable in sophisticated coding environments,
but they do want to solve their particular optimization
problem, typically in a hurry. We term this group the
‘industrial Matlab user’ as noted in the title of this
paper. Often they are not particularly impressed with the
assurance of a global optimum since anything better than
the status quo is a saving. Finally, it is clear that probably
the one reason why they have taken the time and effort to
talk to us (academics) is that they have not readily found
suitable optimisation toolkits on the internet.

1.1 The optimization problems of interest

The failure to find suitable optimisation toolkits is
interesting because optimization problems, at least on the

surface, are succinctly described by a compact mathemat-
ical problem, i.e.

minx (J (x)) = f(x)

subject to constraints. These constraints may be linear
or nonlinear, and may involve continuous or discontin-
uous variables. However this problem is sufficiently well
described so that a number of mathematical programming
languages have evolved such as GAMS or AMPL or MPS
(or the other half dozen that Wikipedia will display when
queried) that allow the user to describe the problem in a
common format in order to send to different solvers.

1.2 Outline

This paper describes an optimization framework that
we found useful, and from analysing web traffic to our
own site, and other similar initiatives we would argue
is also of interest to many others. The paper does not
introduce a new optimization algorithm, nor do we purport
to definitively know the best algorithm for a given purpose.
What we do offer though is a platform that allows the
user to construct optimization problems in an environment
(Matlab) and on hardware (Windows) that with which
they are probably familiar.

Section 2 describes the toolbox and three case studies
show how one uses the toolbox in section 3. Finally
section 4 ends with some conclusions and a description
of some future potential developments.

2 The Opti toolbox

The contribution of this paper is a flexible optimization
toolbox, Opti, that allows an object-orientated flexible
interface to a number of high quality free or low-cost
solvers. We made the design decision early on that the
toolbox would be Matlab based and intended for 32 and
64 bit hardware running Windows. These decisions are
motivated by our industrial clients’ requirements; they are
uninterested in solutions running on Linux, typically do
not have the motivation to gather, debug the make files
and subsequently compile the various applications that are
needed in other optimization collections.

We also find that not only are industrial clients willing
to invest in Matlab, but they appreciate the powerful
language, the post-processing capabilities, and the ability
to interface with external hardware. This tends to alleviate
the need to use a specialised mathematical programming
language such as AMPL, Fourer et al. [2002] or GAMS,
(www.gams.com).

2.1 Included solvers

The key component of the toolbox is the collection
of solvers designed for a wide variety of optimization
problems including linear programs (LPs), quadratic pro-
grams (QPs) with optional integer variables (MILPs and
MIQPs), and nonlinear optimization. The current list of
solvers and a matrix of their capabilities is given in Ta-
ble 1, and is expected to continue to grow with active
development.

The Opti Toolbox also interfaces to solvers or compo-
nents that are not strictly open source such as QSOPT
which has been kindly provided by the authors for inclu-
sion in the toolbox, as well as binaries such as CPLEX that
are accompanied with various, though not particularly
onerous for academic users at least, licence restrictions.

We have included hooks to these solvers in our collec-
tion, (but not the solver themselves) because, while not
strictly open source, they are available to the motivated
user to download and register.

Since the toolbox is built around an object, the generic
solver can inspect the object to automatically decide the
most appropriate algorithm, or check that the requested
algorithm is suitable for the optimization problem. We
have included our own favourites as defaults in the toolbox,
but of course the user is most welcome to overrule these
opinions.

2.2 Compiling considerations for the Optimization Li-
braries

Since most of the solvers in Table 1 are readily avail-
able, they can in principle be interfaced with Matlab.
The reality is however less than half of the solvers provided
make files for compiling with Visual Studio, and fewer still
provided working binaries with Windows. Consequently
one must not only compile from source the various codes
in various languages, but also link them together and
interface them all to the Matlab gateway routines. One
of the motivations of developing the Opti toolbox is to
relieve the user from these messy and non-trivial details.

A second complication is that the Matlab MEX files
must be compiled for the specific version of Matlab that
are being used, meaning one cannot mix 32bit and 64bit
versions. In order to achieve maximum performance and
compatibility, we have compiled all solvers from source to
both 32bit and 64bit libraries, and compiled win32 and
win64 Matlab interfaces, all supplied with the toolbox.

2.2.1 FORTRAN vs C++ The included solvers listed
in Table 1 may be written in FORTRAN, C, C++ or a
mixture of all three. An example is the parallel linear equa-
tion solver MUMPS, from graal.ens-lyon.fr/MUMPS/
described in Amestoy et al. [2000], with the core numerical
routines implemented in FORTRAN, while the interface
API, top level functions and third party graph parti-
tioning library METIS, (glaros.dtc.umn.edu/gkhome/
views/metis), are coded in C. This causes an added
compilation problem, requiring the user to either use f2c
to convert the code to C (may be inefficient and require
the f2c library to be linked), or the user to have a sep-
arate FORTRAN compiler such as the Intel FORTRAN
compiler. The route taken will vary how the FORTRAN
functions are called, noting FORTRAN functions will be
capitalized, while f2c may append a leading underscore.
Further problems may also arise if using C++ which ‘man-
gles’ the function names if not declared within an ‘extern
C’ block. This can lead to problems if C++ functions are
called from FORTRAN.

Most of the compiling issues described above are solved
using the right combination of #define and preproces-
sor definitions when compiling and linking, provided the
source code is written to accommodate Visual Studio and
Windows platforms. Nonetheless determining the correct
combination of compiler directives is time consuming and
error-prone, especially with limited Windows compilation
documentation and detracts from the core task of indus-
trial optimization.

2.2.2 The MEX Interface In order to use any external
solver with Matlab, a Matlab Executable or MEX file
is required. The MEX file implements a standard gateway

Table 1. Optimization solvers incorporated in Opti optimisation toolbox.
O — Open Source, A — Academic License, $ — Commercial

Solver LP MILP QP MIQP NLS NLP MINLP

BONMIN × O https://projects.coin-or.org/Bonmin

CBC × O https://projects.coin-or.org/Cbc

CLP × × O https://projects.coin-or.org/Clp

CPLEX × × × × A www-01.ibm.com/software/integration/

optimization/cplex-optimizer

GLPK × × × O www.gnu.org/software/glpk/glpk.html

IPOPT × O www.coin-or.org/Ipopt/

L-BFGS-B × O users.eecs.northwestern.edu/~nocedal/

lbfgsb.html

LEVMAR × O www.ics.forth.gr/~lourakis/levmar/

LM DER × O www.netlib.org/minpack/

LP SOLVE × × O lpsolve.sourceforge.net/5.5

MATLAB × × × × $ www.mathworks.com/products/optimization/

NL2SOL × O people.sc.fsu.edu/~jburkardt/f_src/

nl2sol/nl2sol.html

NLOPT × O ab-initio.mit.edu/wiki/index.php/NLopt

OOQP × × O pages.cs.wisc.edu/~swright/ooqp/

OPTI (built-in) × × × × × O www.i2c2.aut.ac.nz

QSOPT × A www2.isye.gatech.edu/~wcook/qsopt/

routine between Matlab and the solver library, such that
it can be called as if it were a built-in Matlab function.
The MEX file is typically written in C or C++, and
must be compiled using a Matlab compatible compiler.
While some libraries supply a pre-written MEX interface,
or others have a MEX interface supplied by a 3rd party,
the task of configuring all the required source files, header
files, libraries, preprocessor definitions and configuration
settings can be a daunting process.

Therefore a clear advantage of our toolbox supplying
pre-built solver binaries effectively skips this compilation
step, allowing the user to optimise immediately. However
for future solver versions or bug fixes, we intend to provide
detailed instructions on how to compile each solver using
Visual Studio, and a Matlab script to automatically
include all required header files and libraries and compile
the MEX interface in one function call.

For solvers that do not provide a MEX interface we
have written one to implement the core functionality of
the solver, allowing its use in the toolbox. We have also
encountered a few solvers providing either out-of-date, or
incorrect MEX interfaces which we have modified to allow
their use. Typical problems include problems with sparse
matrix indicing or depreciated API calls.

2.3 Setting Solver Options

Solving a large-scale or complex optimization problem
will often require the user to customize the solver options
in order to obtain faster convergence, and/or a satisfactory
solution. Options can include simple adjustments from
maximum iterations or tolerances, through to scaling step
algorithms and nonlinear variable identification. TheOpti

Toolbox provides two means of setting options for all
solvers, a common low-level interface, and a solver specific
advanced settings interface.

The low-level interface is called optiset and allows
the user to specify general options such as maximum iter-
ations, display settings, convergence tolerances and time-
out settings. These settings are deemed general to most
solvers and the optiset function allows simple viewing
and modifying of the current options. The solver specific
interface is a function which exists for each solver, such as

ipoptset for the nonlinear solver IPOPT. It allows cus-
tomization of advanced options such as scaling algorithm,
Hessian evaluation, linear constraints, and derivative test-
ing. The resulting structure is then passed to optiset for
inclusion in the problem definition.

2.4 Reading Common Optimization Files

WhileMatlab provides a powerful modelling language
for defining and simulating complex problems, quite often
it is advantageous to utilize existing models created in
other standard formats such as MPS or AMPL. Our
toolbox includes routines for reading both MPS and LP
models which were adapted from the Coin-Or Utilities
project, and for parsing AMPL .NL models which was
adapted from the AMPL Solver Library from Netlib.
These routines generate a general Matlab structure with
appropriate fields completed including function handles
for the arbitrary nonlinear functions, which can be passed
directly to the Opti constructor or used by any Matlab

function.

2.5 Alternative Optimization Collections

As acknowledged, collecting optimization solvers and
providing a common interface is not unique, but we believe
we have added specific functionality which does distinguish
this approach. Perhaps the most similar project to the
Opti Toolbox is OpenOpt, (Kroshko, D. L. [2011]), which
is a Python based optimization framework. Using many of
the same solvers as well as those included in the Python
framework (e.g. NumPy and SciPy), OpenOpt can solve
a larger range of optimization problems. However other
than the solvers supplied with Python, and the supplied
OpenOpt solvers, the user is still required to build and
compile Opti supplied solvers such as GLPK and IPOPT.

An alternative package is NLOPT, (Johnson [2011]),
which is a C/C++ based nonlinear optimization package
which contains over 20 global and local optimization algo-
rithms, including both derivative and derivative free algo-
rithms. NLOPT includes interfaces to number of languages
includingMatlab and Python. While a precompiled 32bit
Windows DLL is provided, and CMake scripts for auto-
mated Visual Studio compiling, the user will still have to

build and link the MEX file for it to run with Matlab.
The Opti Toolbox provides pre-built versions of NLOPT
for 32 and 64bit Matlab, including a modified API for
simpler constraint handling and algorithm selection.

3 Optimization Case Studies

As we have acknowledged, one of the aims of the
toolbox was to reduce the complexity of setting up and
then solving an optimization problem by providing an easy
to use and flexible problem constructor, and, if required,
automatically identifying the type of problem to solve. In
this section we introduce three case studies and illustrate
how one could solve them using the toolbox.

3.1 MPS Formatted Mixed Integer Linear Program

A common problem format for LPs and MILPs is
the Mathematical Programming System (MPS) format.
For this case study we are using the MILP problem
bienst1.mps from the benchmark collection available
from Mittelmann, H. [2011]. The single line

prob = coinRead(’bienst1.mps’)

reads in the MPS file using the COIN-OR Utilities MPS
reader and automatically creates a general Matlab struc-
ture containing the optimization problem description.
Sparse matrices will be generated for the linear constraints,
and if a quadratic objective is specified, for the QP H
matrix as well. To build an opti object, the constructor
is given the problem structure

Opt = opti(prob)

which will check the inputs for errors, determine the
problem type, and return a Matlab opti object with
problem description

--
Mixed Integer Linear Program (MILP) Optimization
min f’x
s.t. Ax <= b

Aeqx = beq
lb <= x <= ub
xi = Integer / Binary

--
Problem Properties:
Decision Variables: 505
Constraints: 1165
Linear Inequality: 448 [896 nz]
Linear Equality: 128 [1288 nz]
Bounds: 561
Integer Variables: 28
--

To actually solve the optimization problem, the user
simply passes the object to the solve routine

[x,fval,exitflag,status] = solve(Opt)

which when solved using the GNU LP solver GLPK,
returns an optimal solution of 46.75 in 133s. If the user
wishes to compare this result with for example the CPLEX
implementation, then one simply overrides the default
solver and resolves.

opts = optiset(‘solver’,‘CPLEX’);

Opt = opti(prob,opts);

[x,fval,exitflag,status] = solve(Opt)

In order to obtain a list of the available MILP specific
solvers currently installed, the following command can be
entered:

checkSolver(’all_MILP’)

--
OPTI MILP SOLVERS:

CPLEX - IBM ILOG CPLEX
CBC - COIN-OR Branch and Cut
GLPK - GNU Linear Programming Kit
LP_SOLVE - LP_Solve
OPTI - OPTI Supplied Solver
--

3.2 Quadratic Programs from Model Predictive Control

In our recent work, Currie and Wilson [2010, 2011]
we have developed the jMPC Toolbox for generating and
simulating linear Model Predictive Controllers (MPC)
within Matlab, Currie [2011b]. As an optimal control
strategy, MPC requires an optimization problem to be
solved at each sample. Essentially the MPC algorithm
delivers a future sequence of control moves, ∆u over the
immediate future control horizon, Nc, such that a cost
function involving a weighted sum of output deviations
and input movements is minimized. The objective func-
tion is constrained by linear plant dynamics and possible
linear output, input, and input rate constraints. In this
formulation, the objective function and constraints are

min
∆u

j =
1

2
∆uTH∆u+ fT∆u

subject to: A∆u ≤ b

which is a standard Quadratic Program (QP). The char-
acterisation of QPs from an MPC problem is that they are
always convex, continuous but can have large dimensions
and exhibit ill-conditioning. For unstable systems with
long horizons, the magnitude of the matrix elements can
require large dynamic ranges.

Furthermore since the QP is to be solved at each
sample time, and we are aiming to control high speed
applications that demand kilo-hertz sampling rates, we
need to carefully test potential QP solvers across a wide
range of models, horizons and possible weighting functions.

One of the utilities provided with the jMPC Toolbox,
mpc_qps, randomly generates a dynamic plant model with
a customizable number of inputs, outputs and states, and
formulates the relevant MPC QP with selected prediction
and control horizons. This problem can then be used to
test various QP solvers for speed in order to obtain high
speed MPC. Using the Opti Toolbox, the generated MPC
QP can be solved using the following code:

QP = mpc_qps(Np,Nc,n_in,n_out,n_states);

prob = optiprob(‘H’,QP.H,‘f’,QP.f,‘ineq’,QP.A,QP.b)

Opt = opti(prob)

[x,fval] = solve(Opt)

which builds an opti problem, passes it to the constructor,
and then solves it using the best QP solver available.

Another feature of the Opti Toolbox is the ability to
automatically generate the contour plot with constraints
for any two-dimensional optimization problem. For exam-
ple Fig. 1 shows the objective contours and associated
constraints of a simple 2D QP with additional integer con-
straints such as might be encountered in communication
MPC applications where there are a mixture of continuous
and logical constraints as noted in Axehill [2005]. Such
utility plots can be useful for the new user to better
visualise their optimization problems.

Figure 1. An automatically generated contour plot of the
integer QP optimization problem

3.3 Steam Utility System Nonlinear Program

Our research centre has also been involved in the opti-
mization of utility systems and has developed the JSteam
Toolbox, Currie [2011a], for building and simulating in-
dustrial utility systems within Matlab. At the core of
the JSteam toolbox is a hand-optimized dynamically
linked library (DLL) written in C++, allowing high speed
thermodynamic and unit operation calculations, making it
suitable for higher level optimization.

Because of the requirement of the thermodynamic
engine DLL to generate the objective function, solving
via an online optimizer such as NEOS is not possible
due to the dependency on local libraries. Furthermore,
in many industrial applications it may be impractical, or
even downright forbidden to link to external web-based
applications. A better solution is to use a local optimizer
installed on the user’s PC, possibly interfaced using C
or C++ directly to the optimizer, or to a local version
of GAMS. Alternatively the user could use Matlab to
handle calling the library functions (via a MEX file or
loaded via the .NET interface), and Opti Toolbox can use
a simple function handle just as any other NLP.

An example utility system is presented in Figure 2. The
system contains three headers, as well as a mix of common
equipment such as turbines and steam users. It also models
the complete energy balance of the system, including a
demineralized water return and complete deaerator energy
model. The two flows exiting the dual stage turbine (red
arrows, M1, M2) are chosen as the decision variables, to
minimize the following cost function:

minx (J (x)) = MFGCFG −GEPE +MDWCDW

subject to: 0 ≤ M1 ≤ M1max

0 ≤ M2 ≤ M2max

where MFG is the mass flow of fuel gas to the steam
boilers, CFG is the cost the fuel gas per unit of mass,
GE is the generated electricity from the turbines, PE is
the price paid for generated electricity, MDW is the mass
flow of demineralized water required, and CDW is the cost
of demineralized water per unit of mass. The system is
bound constrained between no exit flow from a stage in
the turbine, and the maximum flow set by the equipment
limits.

Figure 2. Nonlinear steam utility system with two decision
variables

The original operating condition had the dual stage
turbine operating with minimal flows, and the letdown
valves (blue arrows) were making up the existing steam
flow required downstream. From inspection the optimum
exists when the letdown flows are zero, and the dual stage
turbine flows are set to meet the downstream demand,
which also generate electricity. This problem exhibits
strong nonlinear behaviour because once the dual stage
turbine flows exceed the required demand, they cause an
excess of steam which is vented, at a cost of fuel gas to
generate the vented steam. Using the JSteam Toolbox, the
model can be easily built using a JSteam object, and saved
as a Matlab function (in this case Opt3Hdr.m) to be used
by the optimizer:

% Nonlinear optimization problem

JStm = JSteam(); % Setup JSteam

optfun = @(x) Opt3Hdr(JStm,x(1),x(2));

% Upper & lower bound Constraints

lb = [0,0];

ub = [75,75];

% Build Problem

prob = optiprob(‘obj’,optfun,‘bounds’,lb,ub);

% Configure Solver & Build Object

nopts = nloptset(‘algorithm’,‘LN_NELDERMEAD’);

opts = optiset(‘solver’,‘nlopt’,‘solverOpts’,nopts);

Opt = opti(prob,opts)

% Solve optimization problem

x0 = [5,25];

[x,fval,ef,stat] = solve(Opt,x0)

As the above problem does not provide a function
for the objective function gradient, we have used the
derivative free Nelder-Mead solver included in the NLOPT
collection. The solver returns in less than 2 seconds with an
optimal solution which as estimated, minimized the flows
of the letdown valves to the tolerance of the solver specified
at 10−8. These types of optimization problems are actively
studied given the significant economic savings possible.
Several authors have approached this problem using MILP,
(Aguilar et al. [2007]), and MINLP (Grossmann [1985],
Bruno et al. [1998]), formulations, and the above example
shows that a similar integer constrained problem could be
posed and solved using the Opti Toolbox.

A utility function is also provided to automatically
benchmark the included solvers for a given problem type.
For example to benchmark the supplied NLP solvers, one
simply types

optiBench(‘NLP’)

which will run all available NLP solvers using standard
settings across the first 50 in the Hock-Schittkowski col-
lection, Hock and Schittkowski [1981], and generate a

benchmark plot shown in Figure 3. Note only one of the
many NLOPT solvers has been used in the benchmark and
others could well perform better on individual problems
within the collection. We note in passing that IPOPT from
A.Wächter [2002] clearly sets the standard for these sorts
of problems.

Figure 3. A comparison of nonlinear optimisers applied
to the 50 Hock-Schittkowski test problems. The plot
shows the time taken versus the cumulative fraction
of solved problems for three different solvers.

4 Conclusions and an outlook

The development of this optimization toolbox based
around a flexible object data structure containing the
solvers, gateway routines, various utility functions for
data exchange and plotting was motivated by our own
needs for developing optimal controllers, and developing
utility optimization software for industrial clients. We
do not suggest that this initiative is particularly novel,
but we would argue that it is unique in areas that are
important and largely overlooked by similar initiatives.
These include features such as that it is designed for
32 and 64 bit Windows, it does not require the user to
compile or assemble the software, and it uses the Matlab

development environment. We also make no particularly
strong claims about the quality of our various optimizers,
but we do note that some of our included solvers enjoy a
high regard in the optimization community.

We have chosen three different illustrative optimiza-
tion case studies representing the typical types of indus-
trial optimization problems that our research group is
readily asked to perform. These include large and sparse
LP/MILPs, QPs for high speed controllers, and nonlinear
optimization in the steam utility domain. What was im-
portant in this paper was not the optimization problem
per se, but the ease with which the user can formulate
the problem, make changes to the objective function or
solver options, or even the solver, and the advantages of
embedding this in such a power development environment
such as Matlab for model development, and pre- and
post-processing. It is worth noting that the number of
hits as recorded on various internet pages dealing with
our collection and similar Matlab-based optimization

collections is in the order of tens of thousands. This group,
we termed the ‘industrial Matlab user’, is clearly looking
for an optimization toolkit with a low entry barrier.

Acknowledgments

Financial support for this project from the Industrial
Information and Control Centre, School of Engineering,
AUT University, New Zealand is gratefully acknowledged.

References

O. Aguilar, S. J. Perry, J.-K. Kim, and R. Smith. De-
sign and optimization of flexible utility systems subject
to variable conditions: Part 1: Modelling framework.
Chemical Engineering Research and Design, 85:1136–
1148, 2007.

P. R. Amestoy, I. S. Duff, and J. Y. L’Excellent. Multi-
frontal parallel distributed symmetric and unsymmetric
solvers. Computer Methods in Applied Mechanics and
Engineering, 184(2-4):501 – 520, 2000.

A.Wächter. An Interior Point Algorithm for Large-Scale
Nonlinear Optimization with Applications in Process
Engineering. PhD thesis, Carnegie Mellon University,
USA, 2002.

Daniel Axehill. Applications of Integer Quadratic Pro-
gramming in Control and Communication. PhD thesis,
Linköping, Sweden, 2005.

J. C. Bruno, F. Fernandez, F. Castells, and I. E. Gross-
mann. A rigorous MINLP model for the optimal synthe-
sis and operation of utility plants. Chemical Engineering
Research and Design, 76:246–258, 1998.

J. Currie. JSteam Toolbox. A MATLAB Steam Modelling
Toolbox, 2011a. Available from www.i2c2.aut.ac.nz.

J. Currie. jMPC Toolbox. A MATLAB Model Predictive
Control Toolbox, 2011b. Available from www.i2c2.aut.
ac.nz.

Jonathan Currie and David I. Wilson. Lightweight Model
Predictive Control intended for embedded applications.
In 9th International Symposium on Dynamics and Con-
trol of Process Systems (DYCOPS), pages 264–269, Leu-
ven, Belgium, 5–7 July 2010.

Jonathan Currie and David I. Wilson. Interpolated Model
Predictive Control: Having Your Cake and Eating it
Too. In Australian and New Zealand Annual Chemical
Engineering Conference, Chemeca, Sydney Australia,
18–21 September 2011.

Robert Fourer, David M. Gay, and Brian W. Kernighan.
AMPL: A Modeling Language for Mathematical Pro-
gramming. Brooks/Cole, 2002.

I. E. Grossmann. Mixed-integer programming approach
for the synthesis of integrated process flowsheets. Com-
puters and Chemical Engineering, 9:463–482, 1985.

W. Hock and K. Schittkowski. Test examples for nonliner
programming codes. In Lecture Notes in Economics and
Mathematical Systems, number 187. Springer, 1981.

Steven G. Johnson. The NLopt nonlinear-optimization
package. Available from ab-initio.mit.edu/nlopt,
2011.

Kroshko, D. L. OpenOpt. Available from openopt.org,
2011.

Mittelmann, H. MILP Benchmark MPS Files. Available
from plato.asu.edu/ftp/milp, 2011.

