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Abstract 

This paper presents an overview of the current process systems opportunities in power generation, 
storage and distribution. It puts in perspective how process systems engineering (PSE) has contributed to 
the area and explores the current technical problems that PSE can contribute to. Fuel cells, solar cells, 
wind turbines, flow batteries and rechargeable batteries as well as their interactions with the smart grid 
are considered. PSE has contributed and will contribute to the design and optimal operation of the 
individual power generators and power grids, through mathematical modeling, control and optimization. 
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1. Introduction  
The increasing cost of generating power from fossil fuels 
and increasing  public awareness about the negative 
environmental impacts of using fossil fuels for power 
generation have made power generation from renewable 
sources, such as solar radiation, tides, wind, geothermal 
and biomass, more attractive. Furthermore, the cost of 
power generation from renewable sources is decreasing 
quickly. For example, excluding tax credits and other 
incentives the price paid for wind based electricity in 2006 
was 5 to 8.5 cents/kWh (Wiser and Bolinger, 2008). 
However, units generating power from renewable sources 
are located at disperse locations, and renewable sources are 
intermittent. The disperse nature and intermittency of 
renewable sources place major burdens on the transmission 
grid and have generated significant interest in “Smart 
Grid” technology. This paper deals with the smart grid 
challenge as well as the current challenges in power 
generation (from renewable sources) and storage. It also 
highlights some potential opportunities for the PSE 
community.  

1.1. The Power Grid and Renewable Source Impacts 
A large-scale electric power system is a rather complicated 
interconnection of many systems. At one end there are 
generation units that convert available energy sources 
(either fossil, nuclear or renewable) into electric energy. 
This generated power must then be transported to load 
centers via high voltage AC transmission lines. The 
received energy is then delivered to individual customers 
via a distribution network. During operation, one of the 
highest priorities is the availability of high quality power to 
all consumers at all times. Such reliability is difficult to 
achieve, because of two challenges:  

(a) Consumer demand is continually changing and cannot 
be controlled by the power provider, and  

(b) With current storage technology, electric energy is 
virtually impossible to store in large quantities.  

Consequently, a provider must track consumer demand to 
send dispatch commands to the generators. Furthermore, 
these dispatch commands must be aware of the power flow 
limitations imposed by the transmission and distribution 
network.  Failure to implement a suitable dispatch policy 
will result in poor power quality (erratic voltage levels) 
and in the worst case in power outages. The poor power 
quality is addressed by the implementation of a power 
management strategy, which considers small fluctuations in 
power demand over small time-scales (seconds to 
minutes). Fundamental to power management is the 
concept of spinning reserves. The idea is that a generator 
can quickly increase or decrease power output within a 
reasonably sized window of power conditions. Power 
outage can be prevented by energy management, which 
considers large demand changes over large time-scales. 
Fundamental to energy management is the fairly 
predictable nature of consumer demand. The basic idea is 
that generation facilities can schedule to provide power 
within specific time periods.  

While an overall power balance, between consumers 
and generators, is necessary for reliable operation, 
constraints imposed by the transmission network must also 
be considered. One constraint is the capacity limit of each 
transmission line. Additionally, there are capacity 
constraints imposed by adjacent lines. The effect of the 
second constraint is made more complicated (but in some 
ways more manageable) by the AC nature of most 
transmission systems. As such, determination of the actual 
flow of power through a network requires solution of a set 
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of nonlinear balance equations. These load flow relations 
are an integral part of the power and energy management 
policies described previously. On the scale of years and 
decades, consumer demand for power will increase. As 
such, power producers must identify expansion plans with 
regard to generation units as well as the transmission 
network.  

As renewable sources, such as wind and solar, are 
introduced to the system, additional burden will be placed 
on the transmission network. Renewable sources tend to be 
located dispersedly at great distances from load centers and 
will likely require significant expansion of the transmission 
hardware (Lindenberg et al., 2008). In addition, renewable 
sources are inherently intermittent and non-dispatchable. 
With capacity factors of 30 to 40%, power output from 
renewable sources will vary from zero to three times the 
average. Short term variations in power output (due to 
wind gusts and small clouds) are also expected. It is further 
noted that the power production gaps created by renewable 
sources must be made up by the remaining dispatchable 
sources.  Another important change in the power industry 
is the introduction of deregulation. Under this scenario, 
power generators and transmission lines are owned and 
operated by entities independent of the electric utility, and 
must compete to provide services at the lowest cost. This 
additional level of operational complexity has created 
significant activity, as researchers scramble to develop new 
analysis and design methods to address the market based 
system.   

1.2. Organization of this Paper 
We begin with an overview grid level power system 
modeling, control and optimization, and illustrate parallels 
between these techniques and those of the PSE community. 
Section 3 highlights challenges in the power generation, 
with a focus on renewable sources, their impact on the grid 
as well as the dispatchability of other generators. Section 4 
discusses storage technologies and their role in grid 
operation and planning.  

There are several other approaches to renewable-based 
grid challenges that are not discussed in this paper, but are 
noteworthy. One is the use of High Voltage DC (HVDC) 
transmission lines, which are more efficient than AC lines 
and provide a mechanism for direct manipulation of power 
flow (Flourentzou et al., 2009). Another approach is the 
use of Flexible AC Transmission Systems (FACTS), for 
greater utilization of existing grid hardware by allowing 
power flow control in AC lines (Ford et al., 2008). A third 
approach is conversion to fuel-based energy carriers. The 
most common is hydrogen, although many other liquid 
fuels are being considered (Ogden, 1999; Momirlan and 
Veziroglu, 2002; Simbeck and Chang, 2002; Steinfeld, 
2005). Many are also looking to encourage consumer 
participation through the introduction of real time pricing. 
The largest impact of real time pricing is expected to be 
with regard to industrial and large commercial consumers. 
In large commercial buildings, the energy used by Heating 

Ventilation and Air Conditioning (HVAC) is close to 30% 
of total usage (Conti et al., 2009). Utilization of active and 
passive Thermal Energy Storage (TES), to shift HVAC 
power consumption to periods of low demand will reduce 
the burden placed on energy management policies (Henze 
et al., 2004; Oldewurtel et al., 2010; Qin et al., 2012; 
Mendoza-Serrano and Chmielewski, 2012). In the 
industrial sector, opportunities to improve energy and 
power management are both possible. For example, the 
cost of energy intensive operations can be reduced by 
moving to a period of low power demand (Roos and Lane, 
1998; Kirschen, 2003; Karwan and Keblis, 2007; 
Baumrucker and Biegler, 2010). In the case of power 
management, the idea is to relinquish control of power 
usage to the power provider, who will use this 
manipulation to improve power quality of the network. As 
one would expect, premium revenue can be received for 
fairly small modifications in plant operation (Parvania and 
Fotuhi-Firuzabad, 2010; Nguyen et al., 2011). 
 
2. Power System Operation and Planning 
Fundamental to power system operation and planning is 
the notion of load flow analysis (Grainger and Stevenson, 
1994). The objective of load flow analysis is to determine 
appropriate manipulations to balance power between 
generators and consumers. At the core of these calculations 
is a nodal analysis. If the phaser voltage at each bus k is 
denoted as Ek=Ukejθk and collected into a vector E = [E1 E2 
… EN]T, then the current in (or out) of bus k from an 
external source (or sink) is Ik=YkE, where Yk is the 
admittance vector containing characteristics of the 
transmission lines attached to bus k. The phaser power in 
(or out) of bus k is Sk=Ek Ik

* (where Ik
* is the complex 

conjugate of Ik), which is usually expressed in complex 
rather than phaser form: Sk=Pk +jQk. The real component, 
Pk, represents active (or actual) power into bus k, while the 
imaginary, Qk, represents reactive power.  Though reactive 
power is not directly related to mechanical power put into 
the generator, it is central to regulating system voltage.  In 
sum, each bus of the network is governed by the following 
complex valued relation: Pk +jQk = Ek Yk

*E*. In addition, 
each bus contains four variables, Pk, Qk, Uk and θk (other 
combinations of four variables could have been selected, 
but these four are the usual convention). Thus, to 
completely specify the network, two of these variables 
should be specified for each bus. In general, buses that are 
providing power to consumers (load buses) have Pk and Qk 
specified by the load condition and one would like to 
determine if voltage magnitude constraints are satisfied. If 
the bus is connected to a generator, then in most cases Pk, 
is specified (by the mechanical power input) and Uk is 
regulated to a specific value. In this case, one should 
determine if the voltage angle and reactive power needed 
to satisfy network conditions are feasible for the generator. 
To account for line losses, which are functions of the 
power flows, at least one generator must have its real 
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power unspecified. Such a bus is usually denoted as a slack 
bus. In addition, one of the slack busses must have its 
voltage angle specified and will serve are the reference bus 
for the whole network. If the load flow setup defines a 
single bus as the slack bus, then the network will be 
completely specified and all variables can be calculated. If 
more than one slack bus is defined, then the system will be 
under-specified, since Pk , Qk  and θk will all be unspecified 
for the non-reference slack buses. Such a scenario will give 
additional freedom in determining which generator will 
make up for line losses and changes in power demand.  

2.1. Power Management  
In general, power management will occur at two time-
scales. At small time-scales (on the order of seconds), an 
understanding of load flow properties is needed, but 
explicit load flow calculations are not performed. 
Specifically, there is a strong coupling between real power 
and voltage angle as well as between reactive power and 
voltage magnitude. Such relations provide a basis for 
feedback control at the small time-scales; that is, if real 
power demands increase, then the generators will sense this 
change by a small decrease voltage angle, and compensate 
by slightly increasing mechanical power to the generator. 
Similarly, a drop in voltage magnitude can be compensated 
by increasing reactive power. Publications on voltage and 
frequency control include (Weedy and Cory, 1998; 
Marwali et al., 2004; Blaabjerg et al., 2006; Kim et al., 
2008; Venkat et al., 2008; Hovgaard et al., 2011).  In Kim 
et al. (2006), a power-control strategy of a grid-connected 
hybrid generation system with versatile power transfer was 
presented. Their hybrid system was a combination of 
photovoltaic (PV) array, wind turbine, and battery storage 
via a common dc bus.  

At larger time-scales (on the order of minutes) the 
system operator performs explicit load flow calculations. 
These form the basis of higher level controllers within the 
operational hierarchy. The load flow relations are used to 
define an Optimal Power Flow (OPF) problem, where the 
objective function is usually a combination of generation 
costs, transmission losses and reactive power reserves. The 
operator may also add a set of security constraints to meet 
the so called N-1 criterion. These guarantee that suitable 
operation will be possible if one of the generating units 
drops out of service (operation with N-1 units). While 
nonlinearity of the OPF problem suggests the possibility of 
multiple local optima, this issue is usually of little concern, 
since at the time-scale of interest only small perturbations 
are imposed at each time step and the primary objective is 
feasibility rather than optimality. This is reflected by the 
solution procedures usually employed, which are gradient 
based and use the current condition as the initial condition 
for the solver. The computational cost of OPF problems is 
in general significant, especially in the context of the time 
constraints required. Specifically, it is not uncommon to 
find systems with hundreds or thousands of buses and 

sample times on the order of seconds. More details on OPF 
can be found in (Bacher, 1993; Glavitsch, 1993; Ilic and 
Zaborszky, 2000; Zhang and Li, 2010).  

An alternative to the OPF approach is to exploit the 
time-scale differences in the various performance 
objectives to construct a control system hierarchy. Under 
this scenario, a hierarchical (multi-layer) control system is 
used. Primary controllers regulate frequency by 
manipulating active power, secondary controllers regulate 
voltage within a region by manipulating reactive power, 
and tertiary controllers regulate voltage between regions 
(Ilic and Liu, 1996).  

Another important issue is the estimation of system 
conditions (Grainger and Stevenson, 1994; Abur and 
Exposito, 2004). The mathematical structure of the power 
flow estimation problem is similar to the static nonlinear 
data reconciliation problem frequently encountered in the 
process industries. Owing to the large size of a power 
system, the problem of cost effective sensor network 
design is also an important issue, where the methods in 
Bagajewicz (2000) may be applicable.  

2.2. Energy Management 
In contrast to power management (with the objective of 
regulating instantaneous power), energy management has 
the objective of ensuring power is available during longer 
time intervals (i.e., sufficient energy is available). Integral 
to energy management is the prediction of future power 
demand, either day-ahead or hour-ahead. These predictions 
are then used to identify commitments from the generating 
units. If all generating units are operated by a single entity, 
and thus can be dispatched at will, then the Unit 
Commitment Problem (UCP) is rather straightforward to 
construct. In this case, the objective is similar to OPF 
problem, but more focused on economics. In addition, a 
UCP includes unit start-up and shut-down decisions 
(integer variables) as well as ramp rate constraints. In 
general, slowly responding units (nuclear and coal) are 
active in the day-ahead schedule, while fast responding 
units (gas turbine and hydro-electric) are active in hour-
ahead scheduling. In both cases, additional constraints are 
used to ensure sufficient levels of spinning reserve are on 
hand to implement the power management policy. Sample 
publications on UCP are (Grainger and Stevenson, 1994; 
Sheble and Fahd, 1994; Ilic and Zaborszky, 2000; Richter, 
2007; Marcovecchio et al., 2011; Zamarripa et al., 2011). 
To address the intermittency of renewable sources, many 
are working to augment user demand predictors to include 
prediction of generation from renewable sources, which 
can be directly incorporated into existing UCP 
formulations. However, an expectation of additional error 
in these predictions has motivated uncertainty-based 
formulations (Takriti et al., 1996; Carpentier et al., 1996; 
Nowak and Romish, 2000; Ozturk et al., 2004; 
Constantinescu et al., 2011).  

Under a deregulated scenario (i.e., all generating units 
are not operated by the same entity), the question of unit 
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commitment becomes much more interesting. In this case, 
an Independent System Operator (ISO) will hold auctions 
for day-ahead and hour-ahead commitments (Philipson and 
Willis, 1999; Lo and Yuen, 2001). As expected, a 
significant body of literature has been developed for the 
analysis and prediction of unit commitment characteristics 
under deregulation (Ilic and Liu, 1996; Takriti et al., 2000; 
Arroyo and Conejo, 2000; Ilic and Zaborszky; 2000; 
Shahidehpour et al., 2002; Richter, 2007; Li et al., 2007).    

2.3. Expansion Planning   
The power and energy management problems just 
discussed assume that a fixed set of hardware is available. 
However, to address the challenge of meeting future power 
demands, one must consider the question of where and 
when new generating units and transmission lines should 
be installed. In the power literature, this problem is usually 
denoted as the Transmission Expansion Planning (TEP) 
problem (Villasana et al., 1985; Khator and Leung, 1997; 
Romero et al., 2002; Lee et al, 2006). A central challenge 
in TEP is disparity in time scales; that is, the predicted 
performance depends on large time-scale decisions (where 
and when to upgrade) as well as small time-scale variables 
(how do postulated upgrades impact unit commitments). 
The TEP problem is also burdened by the sheer size of 
existing networks, where problems containing 10,000 or 
more buses are common. To address the computational 
challenge, numerous model approximations and 
optimization algorithms have been proposed (Latorre et al., 
2003). Of particular note are the efforts aimed at dealing 
with the additional uncertainty created by renewable 
sources (Yang and Wen, 2005; Billinton and Wangdee, 
2007; Yu et al., 2009; Xiao et al., 2011) as well as those 
addressing market deregulation (Roh et al., 2007; de la 
Torre et al., 2008; Motamedi et al., 2010).     
 
2.4. PSE Opportunities   
We see three PSE opportunity areas in power distribution 
systems. The first is in the area of power management 
control using the hierarchical approach of Ilic and Liu 
(1996). This philosophy greatly parallels the hierarchical 
control structures used in chemical plants and seems to be 
underutilized by the power industry. The second is in the 
area of state estimation. Recent advances in information 
technology have made available new techniques to 
measure voltage angle differences between buses separated 
by great distance. While these methods have created much 
excitement within the power industry, the resulting 
estimation problem is very similar to the nonlinear data 
reconciliation problems frequently solved in the chemical 
industry. The third PSE opportunity is with respect to the 
TEP problem, which is likely the most challenging 
optimization problem facing the power community, 
especially if one considers the time-dependent and N-1 
variations of the problem. It seems that the computational 
strides in mixed integer and nonlinear programming made 

by the PSE community could be brought to bear on the 
important problem.         
 
3. Power Generation  
In the context of grid coordination, power sources can be 
classified in terms of their dispatchability (Kalich, 2011). 
At the lowest level is nuclear, which cannot be shut-down 
and in most cases has limited ability to change power 
output (see Na et al. (2005) for the exception). As such, 
nuclear power is not considered an asset to power or 
energy management and may even be a detriment when 
total demand decreases below the nuclear base-load. The 
opposite extreme is natural-gas-based sources. The simple 
cycle variety or Combustion Turbine (CT) is characterized 
has having fast start-up and shut-down capabilities (on the 
order of 15min), but limited power output flexibility once 
started. As such CTs contribute mostly to hour-ahead 
aspects of energy management (Due to their high fuel 
costs, CT are usually the last units schedule in day-ahead 
planning.) The combined cycle variety (CCCT) is more 
efficient than CT and has greater power output flexibility. 
However, CCCTs are much slower in start-up and shut-
down (on the order of several hours). As such, CCCTs 
contribute mostly to the regulation aspects of power 
management and day-ahead aspects of energy 
management. While many coal plants were designed for 
based load operation, they do have output flexibility and 
can be shut-down. However, start-up is slow (one the order 
of several hours, depending on the start state of warm or 
cold). Output flexibility is also quite slow on a percent of 
nameplate basis, but due to their large size coal plants can 
provide substantial flexibility on an absolute basis. As 
such, coal plants commonly play a significant role in both 
power and energy management. Hydroelectric power has 
significant power output flexibility, and if geographically 
available will likely play a large role in both power and 
energy management. However, limitations with respect to 
reservoir levels must be carefully observed.  

In the context of grid management, most renewable 
sources are classified as anti-dispatchable. That is, in 
contrast to a non-dispatchable source (i.e., no change in 
power output), anti-dispatchable sources do change power 
output levels, but the grid operator usually has no (or very 
little) influence over these changes. Thus, a renewable 
source is more appropriately classified as a disturbance, in 
the sense that it puts additional burden on both power and 
energy management objectives. However, this uncertainty 
in renewable power output does not mean a lack of 
predictability. Similar to power demand forecasting, 
significant efforts are being made to develop highly 
accurate forecasts of renewable power output (Zavala et 
al., 2009; Wu and Hong, 2007), and will provide an 
important piece to the energy management challenge.  

Solar and wind energy systems are attractive power 
generating sources due to their availability and topological 
advantages, especially for local power generations in 
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remote areas. Especially since the oil crises of early 1970s, 
they have become increasingly significant and cost-
effective, leading to extensive studies on the utilization of 
solar and wind energies as alternative sources of energy.  
However, solar and wind energy systems have two 
disadvantages: (a) their power production dependence on 
unpredictable weather and climatic conditions, and (b) 
mismatch between the availability of solar and wind 
energies and the consumer power demand.  

3.1. Wind Sourced Generation  
In the United States, the cumulative 17 GW of wind 
capacity installed by the end of 2007 is able to supply 
roughly 1.2% of the nation’s electricity consumption 
(DOE, 2008b). To meet 20% of the demand of electricity 
in 2030, U.S. wind power capacity has to reach more than 
300 GW (DOE, 2008a). This is 17 times larger than 
today’s total installed wind capacity.  

There have been a number of papers on modeling the 
time characteristics of wind power. For example, Petru and 
Thiringer (2002) studied wind turbines to develop a 
mathematical model suitable for use in power grid 
simulations. The model accounted for aerodynamic 
conversion, drive train, and generator representation. The 
model was validated using field measurements from a stall-
regulated fixed-speed wind turbine.  

Because of the stochastic nature of wind velocity (Van 
der Hoven, 1957), wind energy conversion systems cannot 
be operated efficiently without the use of an optimal 
control system; automatic control is a very useful tool to 
ensure high efficiency and reliability of wind power 
conversion systems.  

For wind power systems, solving a global dynamic 
multi-objective optimization with performance indices 
including energy conversion efficiency, mechanical 
reliability, and quality of the energy has been proposed 
(Munteanu et al., 2009). Control techniques, such as PI 
control, maximum power point strategies and gain-
scheduling techniques, sliding-mode techniques, feedback 
linearization control and robust control, have been applied, 
assessed and compared in (Munteanu et al., 2009). 
Bhowmik et al. (1999) used a brushless doubly fed 
machine to develop a variable-speed wind power 
generator. The controller used a wind-speed-estimation-
based maximum power point tracker and a heuristic-
model-based maximum efficiency point tracker to optimize 
the power output of the system. Their strategy is applicable 
to all doubly fed configurations such as conventional 
wound-rotor induction machines. Regardless of wind 
turbine technology, the replacement of conventional 
generation with wind will result in higher rates of change 
of system frequency. The magnitude of the frequency 
excursion following a loss of generation may also increase. 
Power management or modification of wind turbine inertial 
response characteristics is needed to facilitate increased 
levels of wind generation, especially in small isolated 
power systems. Lalor et al. (2005) studied the impact of 

increasing wind penetration on frequency control on the 
Ireland electricity system. Song et al. (2000) investigated 
variable speed control of wind turbines using nonlinear and 
adaptive algorithms, which was shown to be able to 
achieve smooth and asymptotic rotor speed tracking. 
Hansen et al. (2006) studied the control of a wind farm 
consisting of doubly fed induction generators. They used a 
multi-level (cascade) control system to regulate the wind 
farm power production to the reference power ordered by 
the system operators. The master controller controls the 
power production of the whole farm by sending out 
reference power signals to each individual wind turbine, 
while the slave controller ensures that the reference power 
signal send by the central control level is achieved.  Spie et 
al. (1995) used an adaptive maximum power point tracking 
strategy to implement an efficiency maximization loop in 
parallel with the regular maximum tip speed ratio tracker, 
without the measurement of mechanical quantities. The 
overall power output of the generation system was 
increased with a minimal increase in controller cost.  

3.2. Solar Sourced Generation 
Solar energy systems are also attractive power generating 
sources due to their availability and topological 
advantages, especially for local power generations in 
remote areas. However, a stand-alone solar energy system 
cannot provide a continuous power supply due to seasonal 
and periodical variations (Zhou et al., 2010).  

Mathematical models of solar cells can predict the 
performance of the cells, the IV curve and the cells 
efficiency, provide a better understanding of the physics 
behind the photo-conversion processes, and can be used in 
the design and optimal operation of the cells. Generally, 
mathematical models can be developed on the basis of two 
different viewpoints, detailed level and system level. 
Hence, a photovoltaic system can be modeled to describe 
the cell characteristics, module characteristics, orientation 
and geometric characteristics, array-level characteristics, 
power conditioning unit level characteristics, plant-level 
characteristics, operations and maintenance characteristics 
and so on (Smith and Reiter, 1984).  

Currently the silicon-based solar cell is the dominant 
commercialized photovoltaic technology. However, the 
new emerging technology relying on nanocrystalline 
materials and conducting polymer films has gained 
substantial momentum due to its lower cost and higher 
flexibility (Grätzel, 2001). Although modeling of the solid 
state solar cell has been extensively investigated and 
comprehensive models are available for this technology 
(Smith and Reiter, 1984; Liu and Dougal, 2002; Alam and 
Alouani, 2010), the new generation of solar cell still needs 
to be studied as the physical phenomena occurring in the 
cell can be substantially different. Examples are dye 
sensitized and bulk heterojunction solar cells with 
inclusion of electrochemical processes and exciton-charge 
recombination (Grätzel, 2009; Hwang et al., 2009). In 
summary, a solar cell system model can be developed by 
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accounting for phenomena such as photovoltaic, electro-
thermal and direct heating and cooling processes (Liu and 
Dougal, 2002). Different approaches including equivalent 
circuit modeling and continuum modeling have been 
introduced as an effective way to predict the cell system 
behavior (Anta et al., 2006; Ferber and Luther, 2001; 
Ferber et al., 1998; Kern et al., 2002). Because of the 
nonlinear dependence of the current-voltage characteristics 
of the cells on temperature and irradiance level, the models 
are highly nonlinear (Brunton et al., 2009). 

For any type of solar cells, high efficiency is the key 
factor toward the large scale applications (Pelanchon and 
Mialhe, 1990). In this respect, optimization studies are 
indispensible. Simulation studies should be performed to 
obtain the optimal design parameters at different 
irradiances. The decision variables are those characteristics 
of solar cell design which can be manipulated to achieve 
the optimization goal depending on the type of the solar 
cell (Girardini and Jacobsen, 1991). As an example in the 
case of silicon solar cells, major design parameters involve 
rear point contact area coverage, substrate doping 
concentration, and cell thickness (Huang and Moroz, 
2011). Another important feature to consider in 
optimization studies is the sensitivity of efficiency to 
variations in the cell design parameters (Girardini and 
Jacobsen, 1991). 

To optimize solar array performance under varying 
environmental conditions and load disturbances, a 
maximum power point tracker should be employed to deal 
with the nonlinear and time-varying nature of the systems 
(Solodovnik et al., 2004). Consequently, the operating 
current and voltage at which the power output of a cell is 
maximum, varies with the environmental conditions. A 
switching power converter is usually implemented to 
accomplish this task (Brunton et al., 2009). The maximum 
power output can be achieved by employing an appropriate 
duty ratio at the converter control input (Solodovnik et al., 
2004). The controller should be able to track the time-
varying maximum power reference point and to reject 
static load disturbances while the system should be 
asymptotically stable. For maximum power point tracking, 
the solar cell array current can be estimated using a state 
observer (Kim et al., 2006). Linear observers may not 
perform well due to the existence of nonlinearities, 
unknown parameter variations, uncertainties and 
unmeasured disturbances. 

3.3. Fuel Cells  
A fuel cell is an energy conversion device that produces 
electricity directly from the chemical potential energy of a 
fuel.  Fuel cells are classified on the basis of the electrolyte 
used in the system. The type of the electrolyte of a cell also 
determines the operating temperature of the fuel cell. The 
most common commercially available fuel cells today are 
polyelectrolyte membrane fuel cells (PEMFCs), solid 
oxide fuel cells (SOFCs), phosphoric acid fuel cells 
(PAFCs), and molten carbonate fuel cells (MCFCs). 

Commercial fuel cell systems are comprised of a fuel cell 
stack and the so-called balance-of-plant (BOP). The 
balance of plant pre-processes and provides suitable fuel to 
the stack’s anode and pre-heats air and provides it to the 
cathode.  The primary components of a fuel cell are an ion 
conducting electrolyte, an anode, and a cathode.  In this 
section, for brevity only PEMFCs and SOFCs are 
considered. As the electrolyte of a SOFC can be oxygen 
ion conducting, proton conducting or both, we also limit 
our focus to the SOFCs in which the electrolyte conducts 
oxygen ions only.  

Materials for an oxygen-ion-conducting SOFC are 
generally yttria-stabilized zirconia (YSZ) for the 
electrolyte, strontium-doped lanthanum manganite (LSM) 
for the cathode, nickel/YSZ for the anode, and doped 
lanthanum chromite or high-temperature metals for the 
interconnect (Bavarian et al., 2010). A SOFC usually 
operates at a temperature range of 700 to 1000°C. At these 
high operating temperatures, oxygen anions migrate 
through the electrolyte. When a fuel gas containing 
hydrogen flows over the anode, negatively charged oxygen 
ions move across the electrolyte to oxidize the fuel. The 
oxygen is supplied, usually from air, at the cathode. 
Electrons generated at the anode move through an external 
load to the cathode, completing the circuit and supplying 
electric power. These fuel cells have a generating 
efficiency up to about 60 percent. A desired application of 
SOFCs is in large, stationary power plants. Their high 
operation temperatures allows for “co-generation”; that is, 
using waste heat to generate steam for a variety of 
applications such as space heating, industrial processing, 
and steam turbines to make more electricity. 

Polyelectrolyte membrane (PEM) fuel cells have a 
polymer electrolyte in the form of a permeable sheet. This 
membrane is thin and light, and it typically operates at low 
temperatures (about 80oC).  A PEMFC has a membrane-
electrode assembly (MEA) that includes a polymer 
electrolyte membrane that conducts protons.  Typically a 
perfluorosulfonic acid ionomer membrane, such as 
Nafion® (introduced by DuPont), is used. The MEA is 
positioned between flow channels that supply the reactants 
to the MEA at both the anode and cathode sides. Hydrogen 
atoms lose their electrons (become ionized) at the anode, 
and the (positively charged) protons diffuse through one 
side of the porous membrane and move towards the 
cathode. The electrons are transported from the anode to 
the cathode through an external circuit (load) and provide 
electric power. At the cathode the electrons, protons and 
oxygen from the air react and form water. Efficiency for a 
PEMFC is typically 35 to 45% (Hoogers, 2003).  A 
PEMFC requires an external fuel processing system to 
convert fuels such as methanol or gasoline to hydrogen. 

The type and the level of details included in a 
mathematical model depend on what the application of the 
model is. For real-time applications, the model equations 
should be solvable in real-time. This requirement at the 
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present time limits drastically the set of models that can be 
used. In fuel cell modeling the art is not to include every 
complexity but to include enough details to predict the 
variables of interest accurately enough. Accounting for 
every complexity in fuel cell modeling leads to the 
development of very complex, multi-time-scale, multi-
dimensional models, which may be hard to solve even with 
the present computers and numerical methods. An 
extensive list of papers on modeling the fuel cells can be 
found in the two recent review papers (Bavarian et al., 
2010; Hajimolana et at., 2011).   

Fuel cells are inherently multi-time-scale systems.  
The multi-time-scale nature is a consequence of the 
involvement of processes with significantly different 
response times (Zenith and Skogestad, 2009).  Electronic 
components of a fuel cell have the fastest responses, while 
the thermal processes in a fuel cell usually have the slowest 
responses. The existence of the significantly different time 
constants, e.g., from 1 ms to 10,000 s, in a fuel cell makes 
the governing dynamic equations very stiff. However, it 
allows one to simplify the model systematically based on 
the time scale of interest (Bavarian et al., 2010).   

A SOFC or a PEMFC can have one (stable), three 
(two stable and one unstable) or five (three stable and two 
unstable) steady states depending on the operation 
conditions (Bavarian e at., 2010). The problem of steady 
state multiplicity including hot spots in SOFCs and wet 
spots in PEMFCs should be considered critical in the 
operation of the cells. In SOFCs, steady-state multiplicity 
is cause by the positive feedback between oxygen ion 
migration and heat production (Mangold et al., 2006), and 
in PEMFCs by the positive feedback between proton 
migration and water production (Moxley et al., 2003). 
While there have been many theoretical stability studies, 
there have a few attempts to validate the theoretical results 
experimentally. An interesting study is to operate a fuel 
cell at an unstable steady state in real time 
(experimentally).  An evaluation of the advantages and 
disadvantages of operating a fuel cell at each (unstable or 
stable) steady state is needed. 

Optimization is conducted to obtain optimal operating 
conditions and design specifications of fuel cell systems, 
especially when these systems are integrated with fuel 
processing systems and/or are used together with other 
power generating and storage systems. The design of fuel 
cells is a challenging task due to several physical 
phenomena that should be optimized simultaneously to 
achieve proper fuel cell operation. Fuel cell design is a 
multi-objective, multi-variable problem. To design fuel 
cells by computational design, a mathematical formulation 
of the design problem needs to be developed. The problem 
is then solved using a numerical optimization method and a 
fuel cell model. In the past decade, the fuel cell community 
has paid more attention to the computational design of fuel 
cells.  

In a recent review paper, Secanell et al. (2011) have 
discussed the strengths, limitations, advantages, and 
disadvantages of optimization formulations and numerical 
optimization algorithms in the design of fuel cell and fuel 
cell systems. They highlighted the importance of 
developing numerical optimization formulations for the 
design of fuel cell and fuel cell systems. They also 
provided a discussion on the state-of-the-art in fuel cell 
optimization and suggested future research directions in 
the area of fuel cell and fuel cell systems design. 

Kim and Peng (2007) formulated a combined power 
management/design optimization problem for the 
performance optimization of a fuel cell hybrid vehicle. 
This included subsystem-scaling models to predict the 
characteristics of components of different sizes. A 
parameterizable and near-optimal controller was used for 
power management optimization. Simulation results 
demonstrated that combined optimization can efficiently 
provide excellent fuel economy. Song et al. (2004) 
conducted one- and two-parameter numerical optimization 
analyses of the cathode catalyst layer of a PEM fuel cell 
with the objective of optimizing the current density of the 
catalyst layer at a given electrode potential. Catalyst design 
parameters, such as Nafion content, platinum loading, 
catalyst layer thickness and porosity, were considered. 
Numerical analysis showed the existence of a global, 
optimal solution for each one-parameter optimization.  

The control problem in a fuel cell system is a multi-
objective one.  A fuel cell system should be controlled 
effectively to ensure (a) the system supply of required 
power in the presence of rapid variations in the external 
loads, (b) high efficiency of the system, and (c) long life of 
the system, among others. Fuel cell heat and water 
management, fuel and air supply and distribution, electric 
drive, and main and auxiliary power management have 
been studied to improve the performance and durability of 
fuel cells.  Another control problem in fuel cells is the 
phenomenon of oxygen/fuel starvation, which may occur 
when there is a sudden large increase is the load power. In 
this case, the partial pressure of oxygen/fuel decreases 
significantly, accompanied by a rapid decrease in cell 
voltage, which in turn shortens the life of the fuel cell stack 
(Pukrushpan et al., 2004). The need for control strategies 
that can regulate optimally the fuel cell operating 
conditions is recognized in the literature (Varigonda and 
Kamat, 2006).  There have been many studies focused on 
controller design for both SOFCs and PEMFCs. A detailed 
review of many papers on this topic can be found in 
(Bavarian et al., 2010).           

The maximum power output drawn from a fuel cell 
system depends on the fuel feed composition and flow rate 
(fuel utilization), heat removal (radiator), active area of 
MEA, air flow rate, air humidity (for PEMFCs), and feed 
temperature, among others. One objective in fuel cell 
control is to maintain optimal temperature, membrane 
hydration (in case of PEMFCs), and partial pressures of the 
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reactants across the electrolyte to avoid degradation as the 
current drawn by the load varies (Pukrushpan et al., 2004).  
Water and thermal management, and prevention of fuel and 
air starvation, which can permanently damage the stack 
during load transients, should be treated carefully 
(Varigonda and Kamat, 2006; Pukrushpan et al., 2005).  
Control of BOP components in fuel cell systems is also of 
critical importance.  As an example, the temperature of a 
reforming catalyst of a natural gas fuel processor system 
must be maintained at a certain level. There is a trade-off 
between the catalyst damage prevention and the methane 
reaction rate. High temperature will permanently damage 
the partial oxidation catalyst bed, while low catalyst 
temperature slows down the CH4 reaction rate and may 
lead to carbon deposition. Control objectives and priorities 
for a fuel cell can be different depending on the type of the 
fuel cell. While CO poisoning of the fuel cell catalyst is 
another hurdle that should be considered in PEMFCs with 
an integrated fuel processor, SOFCs have no such CO 
poisoning problem (Varigonda and Kamat, 2006). Optimal 
start-up, operation and shutdown of the stack and system 
components are important in both SOFCs and PEMFCs.  
When a fuel cell operates within an electrical grid, the fuel 
cell control system should also act in coordination with 
other control systems in the grid. 

Previous control studies of fuel cells indicate that a 
multi-level (multi-layer) control structure should be used 
for fuel cells (Ahmed and Chmielewski, 2011; Lauzze and 
Chmielewski, 2006). Pure feedback and combined 
feedback and feedforward loops should be used in inner 
loops. Ratio control for ensuring adequate supply of fuel 
and air is also needed. The outer loop should have an 
optimization-based supervisory controller to ensure high 
overall efficiency of the fuel cell stack and the BOP. PI 
controllers for the inner feedback loops have been shown 
to be adequate (Bavarian et al., 2010). 

Only a very limited number of variables and 
parameters can be measured in a typical fuel cell.  
Temperature is usually measured at a few points inside the 
cell stack as well as at the fuel reformer, and gas 
compositions are either not measured or measured rarely.  
Information on variables that are not measured can be 
obtained using an observer/estimator (Soroush, 1998). The 
central part of an observer is a process model. A few 
studies have focused on observer design in fuel cells. One 
of the obstacles in achieving reliable and efficient control 
for fuel cells is the inadequacy of existing hydrogen partial 
pressure sensors. Most of hydrogen sensors suffer from 
slow response times, low accuracy, and high cost (Arcak et 
al., 2004; Jardine, 2000). To overcome these problems, 
one approach is to estimate hydrogen partial pressure using 
an observer.  Arcak et al. (2004) designed an adaptive 
observer for hydrogen partial pressure estimation in a 
PEMFC. Das and Mukherjee (2007) designed an observer 
for estimation of species concentrations in an SOFC with a 
reformer.  Lin and Hong (2005) presented a sliding-mode 

state observer to estimate the unmeasurable gas 
temperatures inside a SOFC from measurements such as 
that of gas pressure.  Jin-Woo and Keyhani (2007) 
presented an asymptotic observer to estimate the load 
current from measured line-to-line load voltage.  
 
3.4. PSE Opportunities   
In the area of wind generation, it seems that the application 
of hierarchical control methods to turbine operation will 
yield improvements in conversion efficiency, grid 
coordination and reductions in equipment fatigue. While 
others have begun this effort, the hierarchical control 
experience of the PSE community will likely shed new 
light. In the area of solar thermal generation, the methods 
of dynamic optimization, which are typically applied to 
chemical plants, will likely be of great utility. In solar cells, 
novel modeling and optimization in fabrication will likely 
yield meaningful efficiency gains. In the area of fuel cells, 
balance of plant optimization is a fertile but challenging 
opportunity, due to a non-obvious set of design objectives 
and the severe nonlinearity of the process.  

 
4. Energy Storage 
Energy Storage Systems (ESSs) can be categorized into 
those designed for power and energy management. Power 
management technologies include rechargeable batteries, 
flywheels and flow batteries and, capacitors. We discuss 
rechargeable batteries and flow batteries herein. Energy 
management technologies include pumped hydro storage, 
compressed air energy storage and thermal energy storage, 
all of which are discussed herein.  

4.1. Rechargeable Batteries 
A battery includes one or more electrochemical cells. Each 
cell has an electrolyte, a positive electrode (anode), and a 
negative electrode (cathode). Reversible electrochemical 
reactions play the central role in the power storage and 
release processes in a rechargeable battery. During 
discharge, electrochemical reactions occur at the two 
electrodes generating a flow of electrons through an 
external circuit.  Once an external voltage is applied across 
the electrodes, the reactions are reversed (battery is 
recharged). Batteries have several advantages for electrical 
energy storage applications. They respond very rapidly to 
load changes and can accept co-generated and/or third-
party power. Furthermore, the batteries usually have very 
low standby losses and high energy efficiency (60–95%).  
Their short lead time, ability to withstand sitting and 
modularity are of great importance (Chen et al., 2009). 
However, because of factors such as small power capacity, 
low energy densities, high maintenance costs, a short cycle 
life and a limited discharge capability, large-scale utility 
battery storage has been rare until quite recently. Batteries 
that are currently being used and/or have potential for 
utility-scale energy storage applications include nickel 
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cadmium, sodium sulphur, sodium nickel chloride, lead 
acid, and lithium ion (Chen et al., 2009). 

At the present time, lithium-ion (Li-ion) batteries are 
considered as the most promising battery system for hybrid 
electric vehicles, plug-in hybrid electric vehicles and 
electric vehicles applications. However, a battery 
management system that can guarantee safe and reliable 
operation is lacking. A better understanding of aging and 
other performance degrading mechanisms in the batteries 
will facilitate the development of the management system.  

Generally, there are different classes of models from 
nonlinear and coupled PDEs to simple linear ODEs. The 
first principles give wide varieties of models depending on 
different hypotheses, which depend on the utilization 
(input) of the battery.   A decade ago, research in this area 
was more focused on developing chemical models (Ong 
and Newman, 1991), and control researchers worked more 
with electrical models extended by simple chemical 
properties. Since then, many have worked on reducing 
electrochemical models to make them useable in real time, 
leading to some good results (Smith and Rahn, 2008; 
Forman et al., 2011; Cai and White, 2008; Smith et al., 
2007). Chaturvedi et al. (2010) also presented a compact 
model that can be used to study the Li-ion battery. Their 
simple approximate model is commonly known as the 
single particle model. Research continues in this field in 
order to take into account more phenomena, such as 
thermal effects. 
        Researchers are currently faced with two problems: 
(1) very little variation of the battery open voltage with the 
state of charge, which complicates the estimation of the 
charge from the voltage, and (2) the necessity to know the 
level of ageing of a battery. To address these two 
problems, attempts have been made to reduce first-
principles models while keeping all effects necessary for 
the estimation and to develop a suitable estimation method. 
One can start with Newman 1D model (4 nonlinear PDEs) 
with some chemical assumptions and without taking into 
account the thermal effects yet considering the double 
capacitance layer (Ong and Newman, 1991). This model is 
valid above 50 Hz. To account for electrochemical 
processes, Buttler-Volmer equation is used. The 
dependence of concentration on electrolyte ionic 
conductivity is accounted for. The developed model 
represents the system well, but the hurdle is parameter 
estimation and input-excitation identification. So, one 
needs to reduce the model with some physical, chemical or 
mathematical assumptions linked to the inputs. To achieve 
this goal, different approaches are available, based on the 
assumption of uniform density (Smith and Rahn, 2008), 
quasi-linearization and Pade approximation (Forman et al., 
2011), proper orthogonal decomposition (Cai and White, 
2008), finite element method (Smith et al., 2007), and 
reformulation of the problem (Chaturvedi et al., 2010). 
There is a need to obtain an accurate reduced-order ODE 
model to accurately estimate physical parameters linked to 

battery ageing. Another interesting problem is the 
development of optimal charging policies that minimize 
ageing in a battery (maximize the life of the battery). 

4.2. Flow Batteries 
Flow batteries store electricity in a form of chemical 
energy known as electrolytes. While electrolytes flow 
through the cell, electricity is produced via electrochemical 
reaction. Electrolytes are regenerated and stored externally 
in tanks. Various electrolytes such as vanadium redox 
(VRB), zinc bromine (ZnBr), and polysulfide bromide 
(PSB) can be used in flow batteries. The storage period of 
flow batteries ranges from seconds to hours. Typical cycle 
efficiency is about 75 to 85% with a rating of 30 kW to 
15MW (Chen et al., 2009) and a maximum storage 
capacity of 120 MWh.  

The total capital cost of flow batteries in the range of 8 
to 10 MW and 2 to 4 hours of storage is 1,400 to 4,700 
$/kW) (EUC SETIS, 2011). The life-cycle time of flow 
batteries is about 10 to 15 years (EUC SETIS, 2011). The 
time-response of flow batteries from zero to full power is 
of the order of seconds (less if the electrolyte is primed). 
The reported energy storage capacity and power accessible 
domain of flow batteries facilities are roughly between 100 
kWh to 500 MWh and 50 kW to 50 MW, respectively.   
4.3. Pumped Hydro Storage 
Pumped Hydro Storage (PHS) consists of two water 
reservoirs at different elevations. Surplus electricity is used 
to pump water from the low elevation reservoir to the high 
elevation reservoir (converting the electric energy to 
potential energy). As water flows back to the lower 
reservoir, a turbine is used to recover the stored energy. 
Storage capacity is dependent on elevation and reservoir 
size. PHS is characterized as a mature technology with 
large storage capacity, a long storage period, high cycle 
efficiency and relatively low capital cost per unit of 
energy. Typical cycle efficiency is about 70 to 85%, with 
power flow ranging from 100 MW to 3000 MW (Chen et 
al., 2009). The main drawback of PHS is that geological 
conditions limit the placement of such facilities. Currently, 
there are over 200 units and 100 gigawatt (GW) of PHS in 
operation worldwide (Chen et al., 2009).  

The total capital cost of hydro-pumped storage 
facilities strongly depends on the site and whether an 
existing dam infrastructure is used. The total capital cost 
for nominal capacities between 200 MW to 500 MW is 
1,400 to 5,150 $/kW (EUC SETIS, 2011). Energy and 
power accessible ranges of hydro-pumped storage facilities 
have been reported to be between 5 MWh to 50 GWh and 
1 MW to 5 GW, respectively. Their time-response from 
zero to full power is in the order of several minutes. The 
expected life of a hydro-pumped storage is 50 to 60 years 
(EUC SETIS, 2011).  

4.4. Compressed Air Energy Storage  
Compressed Air Energy Storage (CAES) consists of a 
reservoir and a set of gas turbines. Surplus electricity is 
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used to drive compressors to compress air (typically to 40-
80 bar) which is then stored in an underground reservoir or 
storage tank. To recover the stored energy, the compressed 
air is released from the reservoir and used in a gas turbine 
(where its usual air compression stage is bypassed). 
Characteristics of CAES are that it can be operated 
efficiently during partial load conditions, and can switch 
quickly between generation and compression modes. Also, 
CAES is based on commercially available technology with 
a relatively long storage period, high efficiency and 
relatively low capital cost. Typical cycle efficiency of 
CAES is about 70 to 90%. Typical rating of CAES is about 
50 to 300 MW with a storage capacity ranging from 580 
MWh to 2860 MWh (Chen et al., 2009). Unfortunately, 
CAES is limited to favorable geologic conditions.  

 Because of the requirement for a geological cavern, 
the capital cost of CAESs is also site specific. The capital 
cost is in the range of 570 to 1650 $/kW for a plant with a 
nominal capacity of about 300 MW (EUC SETIS, 2011). 
For small-scale, above ground CAES with capacities 
between 10 to 50 MWe, the total capital cost is in the 
range of 1050 to 3750 $/kW (EUC SETIS, 2011). The 
expected life of CAES technologies is about 25 to 30 years 
(EUC SETIS, 2011). The time-response from cold 
conditions to maximum capacity is of the order of several 
minutes (EUC SETIS, 2011).  

4.5. Thermal Energy Storage  
Thermal Energy Storage (TES) works by heating or 
refrigerating specific materials (Chen et al., 2009). The 
High Temperature TES (HTTES) options currently in use 
and under development include molten salt storage, room 
temperature ionic liquid, concrete storage and phase 
change materials. Aquiferous Low TES (ALTES) utilizes a 
refrigeration cycle to ice water during off-peak hours and 
then later use to meet cooling needs during peak hours. 
ALTES is particularly suitable for large commercial 
buildings. Cryogenic TES (CES) is a new electricity 
storage system (Ordonez, 2000). Cryogen (e.g. liquid 
nitrogen or liquid air) is generated by off-peak electricity. 
During peak hours, heat from the surrounding environment 
boils the cryogen to drive a cryogenic heat engine and 
generate electricity. CES could have a relatively high 
energy density (100 to 200 Wh/kg), low capital cost per 
unit energy, and a relatively long storage period (Chen et 
al., 2009). However, CES has relatively low cycle 
efficiency (40 to 50%) according to current energy 
consumption for air liquefaction (Chen et al., 2009).  

4.6. PSE Opportunities   
In the area of batteries (both rechargeable and flow) the 
PSE opportunity is in estimation; that is, estimation of 
battery state of charge and aging (material degradation). 
The opportunity stems from highly nonlinear, spatially 
distributed models required to accurately describe 
batteries. The opportunity with regard to energy 
management type storage is to apply the methods of 

dynamic optimization and incorporate these storage units 
into the TEP problems discussed in Section 2.3.       

5. Concluding Remarks 

This paper presented an overview of the current systems 
engineering opportunities in power generation, storage and 
distribution. Major power generation and storage systems 
as well as power management strategies were reviewed, 
and open systems engineering problems in each category 
were pointed to. It is concluded that the process systems 
engineering can contribute significantly to the design and 
optimal operation of power generation and smart grid 
systems. Standing out are optimization and optimal 
control, which will be needed increasingly, as the costs of 
power generation will rise and more dispersed renewable 
energy sources will be commissioned.     
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