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Abstract 

In this work, we address short-term batch process scheduling under uncertainty in which the scheduling 

model is contaminated with uncertain data in the objective function, the right-hand side vector and in the 

constraint matrix, introduced by price, demand, and processing time or conversion rate uncertainty, 

respectively. We apply a two-stage robust optimization/multi-parametric programming procedure for the 

approximate solution of the scheduling model which translates into a multi-parametric mixed integer 

linear (mp-MILP) problem. We demonstrate that the proposed approach contributes to the construction 

of a pro-active scheduling strategy and show that it is an attractive alternative to the rigorous robust 

optimization approach in terms of providing a tight estimate of the optimal scheduling policy.  

Keywords 

Process Scheduling, Mixed Integer Linear Programming, Multi-Parametric Programming. 

Introduction

                                                           

* To whom all correspondence should be addressed 

The area of scheduling of chemical and 

pharmaceutical processes has received significant attention 

in industry and academia. For key contribution in this field 

we refer to the excellent reviews of Floudas and Lin (2004, 

2005), Li and Ierapetritou (2008a) and Verderame et al. 

(2010). Most of the work is concerned with scheduling 

models in which all data are assumed to be available. In 

fact, processes may be subject to uncertainty arising from 

variations in the market demand, product prices, 

processing times, etc. Hence, the optimal scheduling policy 

related to the nominal values may not be optimal or even 

feasible anymore once a deviation from the nominal values 

has occurred. Pro-active scheduling is motivated by the 

need to address uncertainty upfront in order to avoid 

repetitive online optimization in response to disturbances. 

In the open literature, an approach to account for the 

presence of uncertainty in the model is robust optimization, 

which aims at finding scheduling policies that are feasible 

for all possible realizations of the parameters (Lin et al. 

(2004), Janak et al. (2007), Li and Ierapetritou (2008b)). 

On the other hand, multi-parametric programming has also 

found promising applications in process scheduling under 

uncertainty (Ryu et al. 2007, Ryu and Pistikopoulos 

(2007), Li and Ierapetritou (2007)) when the number of 

parameters is small. In this work, we employ a combined 

robust optimization and multi-parametric programming 

approach, also referred to as two-stage method (Wittmann-

Hohlbein and Pistikopoulos (2011)), as a pro-active 

scheduling strategy for short-term batch processes. We 

show that the two-stage method (i) allows for the efficient 

treatment of all types of uncertainty in the underlying 

mathematical model and (ii) in comparison with a rigorous 

robust optimization approach is less conservative and also 

remains flexible towards the incorporation of the 

parameters once their actual values are known. For any 

instance, the close-to-optimal scheduling policy is then 

derived via function evaluation without any further need 

for optimization. 



  
 

Problem Formulation 

We consider short term scheduling of batch processes. 

In particular, we use the unit specific event based model 

which is a continuous time formulation featuring the 

concept of event points (Ierapetritou and Floudas (1998)). 

Event points are time related instances at which tasks start 

in units. Binary variables that are introduced into the 

model denote the activation status of a task at a unit at an 

event point. The objective in scheduling is the 

maximization of profit although other criteria such as the 

minimization of make-span may also be considered. The 

scheduling formulation needs to account for material 

balances between all products produced and consumed, 

satisfy capacity and storage constraints, enforce allocation 

and sequencing constraints assigning tasks to suitable 

units, and fulfill time/duration constraints. Market demands 

must also to be met. The deterministic scheduling 

formulation which corresponds to a mixed-integer linear 

problem reads as follows:  
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The presence of uncertainty transforms the scheduling 

model into the general multi-parametric mixed-integer 

linear model (P), 
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 (P) 

with all matrices and vectors having appropriate 

dimensions,                                   (analogously for E(θ)), 

and           denoting the vector of parameters. For example, 

price uncertainty introduces objective function coefficient 

(OFC) uncertainty, demand uncertainty affects the entries 

of the right-hand side (RHS) constraint vector b, and 

production time and conversion rate uncertainty affect the 

entries of the constraint matrices A and E, respectively, and 

introduce so called left-hand side (LHS) uncertainty into 

the model. For the explicit solution of (P), multi-

parametric programming techniques aim to derive the 

optimal solution without exhaustively enumerating the 

parameter space (Pistikopoulos (2009)). The presence of 

LHS-uncertainty poses a challenge in multi-parametric 

mixed integer linear programming. Therefore, we employ a 

combined robust optimization/multi-parametric 

programming procedure for the approximate solution of 

(P) as outlined in the next chapter. 

Two-Stage Method for general mp-MILP Problems 

In the first step of the two-stage algorithmic 

procedure, (P) is immunized against uncertainty in the 

constraint matrix A which yields a partially robust RIM-

mp-MILP problem featuring OFC- and RHS-uncertainty, 

as well as LHS-uncertainty related to the constraint matrix 

E, whereas in the second step the explicit optimal solution 

of the robust model is derived by applying a suitable multi-

parametric programming algorithm (Faísca et al. (2009)). 

The combined robust optimization/multi-parametric 

programming procedure is computationally efficient, 

providing a tight lower bound on      of (P). Here, 

alongside the worst-case oriented formulation we also 

discuss an alternative robust model which allows 

controlling the degree of conservatism of the solution.  

The worst-case oriented partially robust counterpart of (P) 

The pair      
 
is called a partially robust feasible 

solution of (P) if  

 FbyE( θ xA(  ))    : 
maxmin  (1) 

for any feasible θ. Incorporating (1) into (P) yields the 

formulation of the partially robust counterpart (RC) of the 

general mp-MILP problem (P),  
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where                                                         denote
 
the 

range and the nominal value of θl, l=1,…,q, respectively. 

Every feasible solution of (RC) is a partially robust feasible 

),( yx

ll

N

llll
 

maxminmax
:,2/)(:

)(z

 


q

l

l

l

N
AAA

1
)( 

q
R



  

solution of (P). Note that the conventional worst-case-

oriented robust counterpart of (P) corresponds to a fully 

deterministic MILP problem, see Lin et al. (2004) and 

Ben-Tal and Nemirovski (1998), respectively, whose 

solutions are immune against all data variations. Clearly, 

every feasible solution of the robust counterpart is also 

feasible for (RC), and consequently for (P). 

The partially robust counterpart of (P) with an adjustable 

degree of conservatism of the solution 

If in practice not all parameters are likely to change 

from the nominal value, then the worst-case oriented 

robust counterpart may be too restrictive. An approach that 

allows adapting the degree of conservatism of the solution 

is presented in Bertsimas and Sim (2003, 2004). Here, it is 

adapted to solely protect the solution against uncertainty in 

A. Assume that the entries of A are modeled as 

independent, symmetric and bounded random variables 

where aij
N 

denotes the nominal value and aij
R
 the range of 

aij for all i, j, respectively. We denote by Ji
a
 the set of 

uncertain coefficients of A that appear in the i-th constraint 

of (P). The parameter Γi
a
 is called the budget parameter, 

marking the trade-off between robustness of the solution 

and conservatism of the model. It holds 
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If Γi
a
 is an integer, which is a sufficient assumption in 

our framework, the solution is immune against up to Γi
a
 

uncertain coefficients in the i-th constraint of A. 

We say that the pair         is partially robust feasible 

with respect to Γi
a
 if 
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for any feasible θ. Incorporating (2) into (P) yields the 

partially robust counterpart (RCΓ), 
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which is also a RIM-mp-MILP problem. Note that 

setting Γi
a
= |Ji

a
 | reflects the most conservative model 

which is equivalent to the worst-case oriented approach as 

employed in (RC). 

A decomposition algorithm for RIM-mp-MILP problems 

We outline the steps of the algorithm presented in 

Faísca et al. (2009) for the solution of (RC) and, 

analogously, of (RCΓ). The master problem (M) is derived 

from (RC) by treating the parameter θ as an optimization 

variable. The optimal integer node y
opt 

of (M) is input to 

(RC) which then yields mp-LP sub-problem (S). The 

critical regions of (S), each a subset of the feasible set of 

parameters in which a particular basis remains optimal are 

uniquely defined by the LP optimality conditions (Gal 

(1979)).  

Between every master and sub-problem iteration the 

master problem is updated. A new MINLP problem is 

solved to global optimality for each one of the current 

critical regions. Integer cuts are introduced into the 

formulation of (M) in order to exclude previously visited 

integer solutions and parametric cuts ensure that only 

integer nodes that are optimal for (RC) for a certain 

realization of the parameters are considered. The cuts are 

given by 
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with K denoting the number of previously identified 

integer solutions in this region, and 

,1       ,....,Kk)(sy)L(dx)H(c
k

TT
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where sk(θ) is the optimal objective value of (RC) at 

the integer node related to index k. The algorithm 

terminates in a region where the master problem is 

infeasible. We retain an envelope of parametric profiles 

(Dua et al. (2002)) and collect all integer nodes and 

corresponding continuous solutions that have been 

identified to be optimal for certain points within a critical 

region. Function evaluation and direct value comparison of 

the objective values for the parametric profiles stored in 

the envelope determine the optimal solution of (RC) at any 

parameter realization.  

Note that the critical regions of (RC) obtained by the 

decomposition algorithm are polyhedral convex and that 

the solutions stored in the envelope are piecewise affine 

functions. The number of regions is influenced by the 

number of integer nodes and constraints. For a thorough 

study of the computational complexity of the algorithm, the 

reader is referred to Faísca et al. (2009). 

Computational Studies 

Example 1. The production process whose STN-

representation is given in Figure 1 consists of three tasks 

that take place in three separate units. The final product S3 

and its purified version, S4, are sold off to the market. We 

assume price, demand, and processing time uncertainty for 

the mixing task. The data for Example 1 are presented in 

Table 1. 

Employing the two-stage method, the partially robust 

model (RC) enforces feasibility of the solution for all 

scenarios of the variable terms of the processing time. The 
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corresponding partially robust duration constraint reads as 

follows: 
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The partially robust counterpart (RC) with 5 event 

points over a time horizon of 12 hours involves 185 

constraints and 15 integer variables. The decomposition 

algorithm requires the solution of 9 MINLP master 

problems solved to global optimality and 3 mp-LP sub-

problems. Three integer nodes have been identified to be 

optimal for certain regions of the feasible parameter space. 

The critical regions are depicted in Figure 2 and the 

objective function values associated to the solutions stored 

in the envelope of parametric profiles are given in Table 2. 

For the lack of space the solutions stored in the envelope 

are not given. In all but one critical region the optimal 

partially robust scheduling policy has been identified. In 

region CR1, the envelope contains two candidate solutions 

among which, for every parameter realization, the optimal 

partially robust schedule of Example 1 is always included.  

For example, consider θ
*
=(0.5,-0.5) 

T 
   CR1. At this 

point, function evaluation yields z1=128.6 associated with 

the first profile and z2=116 with the second profile, 

respectively, Direct comparison identifies the first profile 

to be the optimal partially robust scheduling policy at θ
*
. 

The corresponding Gantt-Chart of the optimal partially 

robust scheduling policy at θ
*
 is presented in Figure 3. In 

comparison, the exact optimal value of Example 1 at θ
*
 is 

z=144. The deterministic worst-case oriented robust 

counterpart of Example 1, however, is infeasible. 

 

Figure 1.   STN-Representation of Example 1 

Table 1.  Data for Example 1 

Unit Capacity Task Processing 

Time (τij) 

Unit 1 100 Mixing 4.5+θ2 

Unit 2 75 Reaction 3.0 

Unit 3 50 Separation 1.5 

 

State Storage Initial 

Amount 

Price Demand 

S1 - - 0 - 

S2 100 0 0 - 

S3 100 0 0.7 - 

S4 - 0 1+θ1 50-20θ1 

 

 θ1 θ2 

Range -1≤θ1≤0.5 -0.5≤θ2≤0.5 

 

Figure 2.   Critical Regions of Example 1 with 
Two-Stage Method  

Table 2.   Envelope of Partially Robust Profits 
of Example 1 

 Critical Region  Profit 

CR1 {0≤θ1≤0.5,-0.5≤θ2≤0.5} 
-8.3θ1θ2+62.2θ1-20.6 θ2+84.9 

50θ1-16θ2+83.9 

CR2 {-0.19≤θ1≤0.5,-0.5≤θ2≤0.5} -8.3θ1θ2+62.2θ1-20.6 θ2+84.9 

CR3 
{-θ1+0.4θ2≤0.62,  

θ1≤-0.19,-0.5≤θ2≤0.5} 
-20θ1

2+46θ1-19θ2+82.4 

CR4 
{-θ1+0.9θ2≤0.7, -1≤θ1,  

θ1-0.4 θ2≤-0.6, -0.5≤ θ2} 
-20θ1

2+50θ1-16θ2+86.4 

CR5 

{θ1-0.9θ2≤-0.7,-θ1+ 

0.8θ2≤0.9,-1≤θ1, θ1-0.4 θ2≤ 

-0.6,θ2≤0.5} 

-20θ1
2+50θ1-16θ2+86.4 

 

 

 

 

 

 

 

 

 

Figure 3.   Gantt-Chart of the Optimal 
Partially Robust Scheduling Policy of   

Example 1 at θ
*
=(0.5,-0.5)

T
  

Example 2. The process involves the production of 

two final products and several intermediate products as 

depicted in the STN-representation, Figure 4.The reaction 

tasks R1, R2 and R3, respectively, take place in one of two 

units, U1 and U2, and there are separate units for heating 

and separation. Because of the lack of space, for the data 

of Example 2 we refer to Ierapetritou (1998). The prices 

and the demands of the final products S8 and S9 vary and 

there is uncertainty in the production rates of S8 and the 

intermediate product S7: 


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Furthermore, we know that at most one of the 

production rates for S7 and S8, respectively, in U1 and U2 

is likely to change from the nominal value. Hence, within 

the two-stage method we embed the partially robust model 

(RCΓ) with an adjustable degree of conservatism of the 

solution. Conversion rate uncertainty affects the constraints 

accounting for the material balances. The amount of a state 

(raw, intermediate, or final product) at any event point has 

to be less than the maximum storage capacity and, 

naturally be always non-negative. For every triplet                                                    

                                                         we introduce 

the budget parameter      . The corresponding storage 

constraint, immunized against conversion rate uncertainty, 

reads as follows: 
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where the superscripts N and R denote the nominal 

value and the range, respectively, of the production rate. In 

a similar way we are able to derive the robustified 

constraints related to the non-negativity of the amounts of 

S7 and S8 at every event point. Note that the uncertain 

coefficients of the constraint matrix are, in fact, not 

independent. Therefore, a sensible choice of the budget 

parameters is necessary to ensure consistency between 

different constraints and event points in order to derive a 

meaningful robust model, i.e.                              . 

Enforcing that the solution is protected against the 

derivation of at most one production rate from the nominal 

value, we set                   . The two-stage method applied to 

Example 2 with 5 event points over a time horizon of 8 

hours requires the solution of 7 MINLP problems and one 

mp-LP problem. The solutions of the partially robust 

model are independent of θ3 and θ4. In total 6 critical 

regions have been identified which are depicted in Figure 

5. In each of the regions one solution is stored. Therefore, 

the optimal partially robust scheduling policy of Example 

2 has been determined and we depict the overall partially 

robust profit in Figure 6.  

Note that setting                     resembles the worst-case 

oriented approach, i.e. all production rates are likely to 

change from the nominal values, whereas by setting                           

       no deviation is supported. In comparison, the 

rigorous worst-case oriented robust MILP model of 

Example 2 yields a profit of  z=615.32 which is a lower 

bound on the optimal partially robust profit with respect to                     

     , as depicted in Figure 6, but also on the 

optimal partially robust profits for                       . 

 

Figure 4.   STN-Representation of Example 2 
with Nominal Conversion Rates 

 

Figure 5.   Critical Regions of Example 2 with Two-

Stage Method 

 

Figure 6.   Optimal Partially Robust Profit (Surface 

Plot) and Optimal Worst-Case Oriented Robust Profit 

(Grid Plot) of Example 2 

Conclusions 

In this work, we have addressed short-term batch 

process scheduling contaminated with uncertainty in the 

data using a two-stage method which combines state-of-

the-art robust optimization and multi-parametric 

programming techniques. We obtain an optimal partially 

robust scheduling policy that yields a tight lower bound on 
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the overall profit and is less conservative than the rigorous 

robust optimization approach. The two-stage method is 

able to deal with all types of uncertainty in the scheduling 

model, in particular with disturbances in the entries of the 

constraint matrices which are the most challenging types of 

uncertainty in multi-parametric mixed-integer linear 

programming. The benefit of multi-parametric 

programming as a tool for pro-active scheduling is that the 

model is solved offline with the parametric profiles being 

stored in a look-up table. Hence, once the true values of 

the parameters are known, the optimal partially robust 

scheduling policy is readily obtained via function 

evaluation from the profiles stored in the look-up table. 

Within the two-stage method, as an alternative to the 

worst-case oriented partially robust model we presented 

the formulation of a partially robust model that allows 

controlling the robustness of the model and conservatism 

of the solution which then has been applied to batch 

process scheduling as studied in Example 2.  
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Appendix 

Notation 

H  Time horizon 

sj
IIIi

,
,  Tasks, tasks performed in unit j/processing state s 

i
JJj ,  Units, units suitable for performing task i 

Ss   States 

Nn   Event points 

sn
x  Amount of state s sold to market at event point n 

ssn
stist ,  Amount of state s at event point n, initial amount  

ijn
b  Amount of material undertaking task i in unit j at  

event point n 
f

ijn

s

ijn
tt ,  Starting/finishing time of task i in unit j related to  

event point n  

ijn
w  Activation status of task i in unit j at event point n 

s
C  Price of state s 

s
R  Demand of state s 

p

si

c

si
 ,  Proportion of state s consumed/produced during 

task i 
max

s
ST  Maximum storage capacity of state s 

maxmin
,

ijij
VV  Minimum/maximum capacity for task i in unit j  

ij
  Mean processing time of task i in unit j 

ijij
 ,  Constant/variable term of processing time for task i 

in unit j with 

minmax
3

2
:,

3

2
:

ijij

ij

ijijij

VV 





 

 


