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Abstract 

This paper deals with two topics from state and parameter estimation. The first contribution of this work 

provides an overview of techniques used for determining which parameters of a model should be 

estimated. This is a question that commonly arises when fundamental models are used as these models 

often contain more parameters than can be reliably estimated from data. The decision of which 

parameters to estimate is independent of the observer/estimator design, however, it is directly affected by 

the structure of the model as well as the available data. The second contribution is an overview of recent 

developments regarding the design of nonlinear Luenberger observers, with special emphasis on exact 

error linearization techniques, but also discussing more general issues, including observer discretization, 

sampled data observers and the use of delayed measurements.  
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Introduction

The use of fundamental models for process monitoring 

and control has become increasingly popular in recent 

years. However, the performance of a particular 

application does not only depend upon the algorithms used 

but also upon the quality of the model. This realization has 

led to several new research directions over the last few 

decades, two of which are reviewed in this work. One of 

these research areas focuses on the use of nonlinear 

models, and procedures required for dealing with these 

nonlinear models, to more appropriately describe a 

nonlinear system. 

One type of approach for improving model accuracy, 

regardless if these are linear or nonlinear models, is to 

estimate model parameters from data. While there has been 

a significant interest in algorithms used for parameter 

estimation, the questions of how many and which 

parameters should be estimated have only been addressed 

more recently. The first part of this paper provides an 

overview of existing methods for selecting parameters for 

estimation.  

The second part of this paper reviews theory and 

algorithms of nonlinear Luenberger observers for state and 

parameter estimation, focusing on recent methods and 

results from nonlinear systems theory. In a sense, this work 

complements a review paper presented at the previous 

CPC on particle filters and moving horizon estimators 

(Rawlings & Bakshi, 2006).  

      

 



  
 

Regularization techniques for parameter estimation of 

complex dynamic models 

This section focuses on parameter estimation which 
plays an important role in process monitoring as well as 
mathematical modeling. Despite significant advances over 
the last few decades, this topic is still an active area of 
research and several review articles dealing with parts of 
this problem have been published in the last decade 
(Ashyraliyev et al., 2009; Chou & Voit, 2009; Dochain, 
2003; Esposito & Floudas, 2000; Jimenez-Hornero, 
Santos-Duenas & Garcia-Garcia, 2009; Maria, 2004; 
McLean & McAuley, 2011; Moles, Mendes & Banga, 
2003). Oftentimes, parameter estimation deals with the 
algorithms used for performing the estimation; in fact the 
second contribution of this work focuses on methodologies 
for estimating states and parameters. However, it is equally 
important to decide which parameters of a model should be 
estimated, why a particular subset of the parameters should 
be estimated, and also how accurate the estimation results 
will be based upon available data. This section provides a 
review of existing techniques that can answer these 
questions. One of the motivating factors behind these 
techniques is that complex systems, e.g., chemical reaction 
networks, can contain dozens to hundreds of parameters 
(Schoeberl et al., 2002), however, it is often not possible to 
estimate more than a handful of these. In these cases, the 
accuracy of the estimates, and the model predictions 
resulting from these estimates, are strongly affected by the 
parameters chosen for estimation. 

One challenge arising from estimation of complex 
systems is that the estimation problem is ill-conditioned. 
The reason for this is that a complex model contains a 
large number of parameters but not all of them are 
identifiable even if an unlimited amount of noise-free data 
would be available. Accordingly, the effects that changes 
in the parameters have on the outputs are correlated and 
the solution to the estimation problem is not unique. 
Furthermore, experimental data inevitably contain noise 
and the amount of available data is often limited. These 
limitations regarding the availability and quality of the data 
pose further challenges to the estimation problem since the 
optimal solution of the parameter values can be sensitive to 
variations in the data (Gutenkunst et al., 2007). 
Furthermore, similarly to what is widely-known in system 
identification, parameters that best fit the training data are 
not necessarily the best ones from a practical point of view 
(Slezak et al., 2010). Therefore, estimation of a complex 
system does not merely deal with determining the optimal 
solution to the data fitting problem but instead needs to 
focus on computing a solution which is robust to variations 
in the experimental data. 

A second challenge that arises from estimation of a 
complex system is associated with the computational 
burden. Since a closed-form solution of the differential 
equations which describe a model is generally not 
available, it is only possible to evaluate the model via 
simulations. Since parameter estimation deals with solution 
of an optimization problem, the model needs to be 
evaluated repeatedly which can quickly result in estimation 

problems that are computationally prohibitive even for 
medium-scale problems. 

A large number of techniques have been presented in 
the literature to address these problems in one way or 
another. A brief review of these techniques is provided in 
this section. The review is not meant to be comprehensive 
as this research area spans many different subtopics and is 
also an active area of research in many different fields of 
engineering. Instead, the work presented in this section 
focuses on techniques used for selecting a set of 
parameters for estimation. The reason for focusing on this 
area is that no review of existing techniques has previously 
been published in this field and that this approach aids 
regularizing ill-conditioned estimation problems.  

This section is organized as follows. The formulation 
of the estimation problem for dynamic systems is presented 
next. After that, a general framework for regularization is 
proposed and three commonly used regularization 
techniques are compared. The following section focuses on 
the parameter selection procedure, which is one of the 
regularization approaches. As parameter selection 
encompasses a variety of methods, only the popular 
orthogonalization method is investigated further in the 
following section. This section concludes by presenting 
some suggestions for possible future research in this field. 

 
Model formulation for estimation of dynamic systems 

 
Parameter estimation aims to infer parameter values 

from available data so that the model predictions can 
accurately reflect the data (van den Bos, 2007). To 
estimate parameters of a dynamic system, a regression 
model is formulated that involves the differential 
equations. This formulation is presented in this subsection. 

A time-invariant dynamic system is described by a set 
of ordinary differential equations as 

      
      

x t =f x t ,u t ,θ

y t =g x t ,u t ,θ






 (1) 

where x is the state vector, u is the input vector, y is the 
output vector, and θ is the parameter vector. 

The first step in parameter estimation is to derive an 
expression representing the parameter-output relationship. 

For the dynamic model shown in equation (1), the output y 
can be evaluated by model simulations, assuming that the 

initial state  x 0 , the input profile  u t , and the 

parameter vector θ are available. The resulting parameter-

output relationship is denoted by  y t,θ  which is time-

dependent, and generally lacks a closed-form solution 
expression.

 The next step is to formulate the regression model by 
discretizing the output profiles and by including noise 

information. Given a set of time points  1 2 mt ,t , ,t , the 

output is sampled as 

         
T

1 1 1 m n 1 n mh θ = y t ,θ , ,y t ,θ , ,y t ,θ , ,y t ,θ      (2) 

where y1, y2, …, yn are entries in the output vector y. After 
sampling, the continuous output profiles are discretized 
and the discretized output vector is only a function of the 



  

parameters, denoted by  h θ . Since all measurements 

contain some level of noise, the data available for 
estimation are given by 

 y=h θ +ε  (3) 

where y  is the data vector,  h θ represents the model 

prediction, and ε denotes the noise vector. Apart from the 
model structure, information about the noise distribution 
plays an important role in parameter estimation. This 
distribution determines both formulation of the 
optimization problem for parameter estimation and the 
statistics of the estimated parameter values. In practice, a 
description of the noise is usually not accurately known 
and it is often assumed to be Gaussian, denoted by 
ε~N(0,σ

2
I) where the mean vector is 0 and the covariance 

matrix is 2σ I . 

The third step in parameter estimation is to formulate 
an optimization problem which computes the parameter 
estimates as the optimal solution to the problem. Maximum 
likelihood estimation is commonly used, which estimates 
parameters by maximizing the likelihood function. In the 
case of Gaussian noise, maximum likelihood estimation 
reduces to least squares estimation, which computes the 
parameter estimates by minimizing the difference between 
the model prediction and the measured data as 

     
T

θ
θ̂=arg min y h θ y h θ    (4) 

where the difference is measured by the squared Euclidean 
norm. 

It should be noted that estimation of a complex system 
is usually an ill-conditioned problem, i.e., the optimal least 
squares solution may be very sensitive to variations in the 
data. One approach to deal with this problem is to perform 
regularization to avoid ill-conditioning. 

 
Regularization of ill-conditioned parameter estimation 
problems 

 
When the estimation problem is ill-conditioned, a 

variety of regularization techniques can be applied to 
compute a robust solution. However, no detailed review of 
these regularization techniques exists in the literature and 
there is lack of a unified framework as part of which these 
regularization techniques can be viewed. Formulating such 
a general framework for regularization can provide insights 
into the commonalities but also into the differences that 
exist between the different techniques and, ultimately, help 
select an appropriate method. An attempt to present such a 
unified framework is made in this subsection where the 
framework combines three commonly used regularization 
techniques. Since regularization techniques for a nonlinear 
system are frequently extensions of those for a linear 
system, the linear case is investigated first. 

The linear version of the regression model given by 
equation (3) is assumed be given by 

y=Hθ ε  (5) 

The design matrix H is assumed to have a full column 
rank. If the design matrix is rank-deficient then the 
columns which are linearly dependent on others can be 
eliminated as well as the associated parameters. In this 

case, the reduced model will generate identical predictions 
to the original model and can be used for estimation. For a 
linear model, a closed form of the least squares solution 
can be computed and is given by 

 
1

T Tθ̂ H H H y


   (6) 

Though widely used, least squares estimation will 
encounter difficulties when the design matrix is close to a 
rank-deficient matrix. In this case, the estimation problem 
is ill-conditioned and the optimal solution is extremely 
sensitive to the noise contained in the data. To illustrate 
this point, the covariance matrix of the parameter estimate 
is computed as 

 
1

2 T 2 1 TˆVar θ σ H H σ VΛ V


   
 

 (7) 

where the eigenvalue decomposition of the cross product 
matrix is applied:  

T TH H VΛV  (8) 

The matrix Λ is diagonal and diagonal entries are 
eigenvalues of the cross product matrix H

T
H or the squared 

singular values of the design matrix H. The fact that the 
design matrix H is close to rank deficiency implies that 
some diagonal entries in Λ are close to zero. Consequently 

some diagonal entries in 
1 , which are reciprocals of 

these small entries in Λ, are very large. A result of this is 

that a small amount of noise (denoted by a small 
2σ ) can 

cause a large variance in the parameter estimates. 
A regularization technique can be included in the least 

squares problem to reduce the effect of noise on the 
parameter estimates. Three commonly used regularization 
methods are investigated here, i.e., ridge regression (Box 
& Draper, 2007), principal component analysis (Jolliffe, 
2002), and parameter selection (Miller, 2002).  

In ridge regression, the term λI is added to the least 
squares solution shown in equation (6) and the resulting 
parameter estimate is given by 

 
1

T T

RRθ̂ H H λI H y


    (9) 

where λ is a nonnegative tuning parameter. The matrix 
TH H λI  can be made to be far from being rank 

deficient if λ is set to be sufficiently large. If λ = 0 then the 
solution reduces to the ordinary least squares estimate. The 
well-known Levenberg–Marquardt algorithm commonly 
found in numerical analysis also uses a ridge regression 
technique (Marquardt, 1963). 

Principal component analysis (or truncated singular 
value decomposition) and parameter selection deal with an 
ill-conditioned problem from a model-reduction 
perspective. When the design matrix H is close to being 
rank deficient, then this can be viewed as the problem 
where only some part of the procedure results in an ill-
conditioned problem, while other parts may be easy to 
solve. The solution to this problem is to identify and, in a 
subsequent step, truncate the parts of the problem which 
result in an ill-conditioned parameter estimation problem. 
The remaining parameter estimation problem should be 
smaller in size and easier to solve. 

One model reduction approach involves orthogonal 
projections. A projection matrix, denoted by P, has more 
rows than columns and satisfies 



  
 

TP P I  (10) 

The projected parameter vector is given by 
T

Pθ P θ  (11) 

The original model given by equation (5) then reduces 
to 

Py HPθ ε   (12) 

where the least squares estimate of the reduced model is 

 
1

T T T T

Pθ̂ P H HP P H y


   (13) 

The key to implement a regularization technique via such a 
model reduction approach is to determine an appropriate 
projection matrix. 

Principal component analysis computes the projection 
matrix P by the eigenvalue decomposition shown in 
equation (8). The diagonal matrix Λ is partitioned into two 
sub-matrices by ordering the diagonal entries from the 
largest one to the smallest one 

1

2

 
   

 
 (14) 

where Λ1 contains the diagonal entries which are large and 
Λ2 only has small diagonal entries. Accordingly, the matrix 
V in the eigenvalue decomposition can be partitioned as 

 1 2V V  V  (15) 

Principal component analysis uses the projection 
matrix given by 

1P V  (16) 

Parameter selection makes use of a different approach that 
can be described within this same framework. Parameter 
selection places an additional constraint on the projection 
matrix, i.e., the reduced parameters by the projection are a 
subset of the original set of parameters. Suppose a subset 
of parameters is selected and denoted as 

1 2 s

T

S i i iθ θ ,θ , ,θ     (17) 

where i1, i2, …, is are indices of the reduced parameters. 
Then the projection matrix is given by 

1 2 si i iP e ,e , ,e     (18) 

where ei denotes the i-th column of the identity matrix. 
Even though the three regularization techniques have 

been separately derived, they can be viewed as different 
approaches within the same framework. They all share the 
same basic idea which is that constraints are added to 
reduce the feasible region of the estimation problem.  

Formally, the regularized parameter estimation 
problem can be expressed as 

   

 

T

R
θ

ˆ      θ arg min y Hθ y Hθ

s.t.  C θ 0

  



 
 (19) 

where Rθ̂  denotes the parameter estimate with 

regularization. The different technique vary in how the 

constraint function  C θ  is selected. To illustrate the 

constraints geometrically, a case of two parameters is 
considered where the parameter space is given by a plane. 
Fig. 1 displays the constraints as well as the corresponding 
feasible regions for the three regularization techniques. 

 

  T 2ridge regressio  C θ  = θ: θn r

rV2   T

2principal component  C θ  analysi = Vs: θ

  2parameter selec  C θ  ion: = θt

2θ

1θ

 
Figure 1. Feasible range and constraint for each 

regularization method. 
 
The feasible range of ridge regression is a circle with 

radius equal to r. The value of r is dependent on the value 
of λ in the ridge regression solution shown in equation (9). 
For a general multi-dimensional parameter space, the 
feasible range of ridge regression is given by a hyper-
sphere. 

The feasible range of principal component analysis is 
a line, the direction of which is denoted by the first 
principal component. This line is perpendicular to the 
second principal component, here shown by the vector V2. 
In a general case, the feasible range is a linear subspace 
spanned by the columns in V1 in the expression shown in 
equation (15). 

Similarly to principal component analysis, the feasible 
range of parameter selection is also given by a line. 
However, the linear subspace resulting from parameter 
selection is spanned by a subset of the original parameter 
axes while the subspace returned by principal component 
analysis can be arbitrary and combined by all original 
parameters. In this case, the feasible range of parameter 
selection is the axis of the selected parameter θ1 which is 
equal to setting θ2 = 0.  

Another regularization approach is to add a penalty 
term to the objective function, such as 

       
T T

R
θ

ˆ      θ arg min y Hθ y Hθ γ Lθ Lθ      (20) 

where the coefficient γ 0  and the matrix L are tuning 

parameters. If γ 0  then the problem reduces to the 

ordinary least squares estimation. The expression shown in 
equation (20) can be regarded as the Lagrange form of the 
constrained optimization problem shown in equation (19). 
By properly selecting the tuning parameters shown in 
Table 1, the solution of the problem, including a penalty 
function from equation (20), is identical to the constrained 
problem shown in equation (19). 

 

Table 1. 
Selection of tuning parameters for the three 

regularization methods 

Method γ L 

Ridge regression λ I 

Principal component analysis ∞ 
T

2V  

Parameter selection ∞ 
T

S
I  

 
For ridge regression, the coefficient in the penalty 

term is chosen as γ λ and the matrix L is set to the 



  

identity matrix. For principal component analysis, the 
matrix L is chosen as the transpose of V2 of the eigenvalue 
decomposition shown in equation (15). Lθ is the projection 
of the parameter vector θ onto the subspace spanned by V2, 
which corresponds to the small eigenvalues of the cross 
product matrix from equation (8). The coefficient γ is set 
to a large number to move the parameter values away from 
the linear space spanned by V2. A similar approach is 

applied for parameter selection where S  denotes the 

indices of the unselected parameters and the matrix 
S

I  

consist of columns of the identity matrix corresponding to 
the unselected parameters. The coefficient γ is set to a 
large number so that the unselected parameters approach 
zero. 

It should be noted that even though the general 
expression shown in equation (19) or (20) looks simple, it 
is non-trivial to determine the constraints or the tuning 
parameters for a regularization technique even for a linear 
model. 

Many applications of ridge regression can be found in 
the literature; for some examples see (Ancheyta, Sanchez 
& Rodriguez, 2005; Ashyraliyev, Jaeger & Blom, 2008; 
Katare et al., 2004; Sandelinet al., 2006; Tobajas et al., 
2007). Similarly, several applications of principal 
component analysis are found in (Bindlish, Rawlings & 
Young, 2003; Degenring et al., 2004). The focus of the 
following section is placed on parameter selection. 
Parameter selection has recently attracted increasing 
attention due to the following features: 

 Interpretability. Parameter selection is not 
merely a mathematical solution to ill-conditioned 
estimation problems. It also provides a powerful 
tool for model analysis, e.g. the results indicate 
which parameters are important for a model’s 
dynamic behavior and they also provide insight 
into the correlation of the effect that different 
parameters have on the outputs. 

 Simplification. Parameter selection reduces the 
number of decision variables in the least squares 
problem since the unselected parameters are all 
fixed at a given value. This feature is very useful 
for estimation of complex models where the 
computational effort associated with the 
optimization might be a problem. This is 
specifically the case for online optimization-based 
control (e.g. MPC) or filtering (e.g. MHE). 

Compared with parameter selection, ridge regression 
is a purely mathematical regularization algorithm which 
provides little information with regard to interpretability 
and does not reduce the optimization problem. Principal 
component analysis reduces the computational effort, 
however, the reduced parameters are linear combinations 
of all of the original parameters. Since the original 
parameters can even have different units, linear 
combinations of these parameters are not always trivial to 
interpret with regard to their physical meaning. 

 
Regularization by parameter selection 

 
Procedures for selecting a subset of parameters for 

estimation from all the parameters of a model fall into one 

of the following two categories: heuristic methods and 
optimization-based methods. A review of commonly used 
parameter selection methods is presented in this 
subsection. 

Heuristics for parameter selection are derived based 
on the effects that variations in the parameters have on the 
model outputs. For example, if a variation in a parameter 
value has only a marginal effect on the model outputs then 
it is going to be difficult to estimate this parameter as even 
small amounts of noise in the measurements will have a 
significant impact on the estimated value. Similarly, if the 
effect that a variation of a parameter has on the outputs is 
correlated to the effect that variations of other parameters 
have, then it is not possible to uniquely determine the 
values of these parameters as the parameter estimation 
problem becomes ill-conditioned. However, in each of 
these two cases, it is possible to eliminate this parameter 
from consideration for estimation as this parameter does 
not result in a unique effect on the outputs that is required 
for a good fit. Since estimation of all parameters is neither 
desired nor necessary, estimation of a subset of parameters 
can both regularize an ill-conditioned estimation problem 
and simplify the associated optimization problem.  

To quantitatively investigate parameter effects, local 
sensitivity analysis is often applied. Local sensitivity is 
defined as the partial derivative of the output with respect 
to the parameter: 

 
i

i

h θ
s

θ





 (21) 

where si denotes the sensitivity vector of the parameter θi. 
If the model is linear as shown in equation (5) then the 
sensitivity vector of a parameter reduces to the column of 
the design matrix H corresponding to this parameter. For a 
nonlinear model of the form shown in equation (3), 
generated by the dynamic system from equation (1), the 

sensitivity profile of 
iy θ   can be computed by solving 

the sensitivity equations  

T

i i i

T

i i i

d x f x f

dt θ x θ θ

y g x g
    

θ x θ θ

   
 

   

   
 

   

 
(22) 

together with the model equations. The sensitivity vector si 

is constructed by sampling   iy t θ   at the same 

sampling points which generate the output data from 
equation (2). 

Based on the sensitivity analysis, the criteria for 
parameter selection are: 

 Magnitude of the effect: The norm of the 
sensitivity vector of a selected parameter should 
be of significant value compared to the norms of 
the sensitivity vectors for other parameters. 

 Uncorrelated effect: The sensitivity vectors of 
selected parameters cannot be highly correlated. 

Some heuristic methods using these two rules for 
parameter selection are shown in Table 2. The 
orthogonalization method (Yao et al., 2003; Lund & Foss, 
2008) forms a special case as it involves a simple 
procedure and the results are easy to interpret. This method 



  
 
will be discussed separately as it is the most popular 
parameter selection technique.  

Though simple to use, heuristic-based methods often 
use an ad hoc approach to balance the two criteria, i.e., 
magnitude of the effects and correlation among the effects, 
and the performance of the resulting estimation problem 
can often not be guaranteed. A more systematic way for 
parameter selection is to formulate an optimization 
problem. The sensitivity matrix which consists of the 
sensitivity vector as shown in equation (21) for each 
parameter has a direct relationship with the Fisher 
information matrix (Walter & Pronzato, 1997): 

T

2

1
F S S

σ
  (23) 

where F denotes the Fisher information matrix and 

1 2 pS= s ,s , ,s    is the sensitivity matrix. The scaling factor 

21 σ has no effect on the following selection procedure 

and it can be assumed to be equal to unity without loss of 
generality. The inverse of the Fisher information matrix 
provides a lower bound for the covariance matrix of the 
parameter estimate. Therefore, the sensitivity matrix is 
directly related to the estimation accuracy and parameters 
can be selected to improve the estimation accuracy. 

An experimental criterion function can be applied to 
the sensitivity matrix to quantitatively evaluate the 
estimation accuracy. The experimental criteria are named 
alphabetically and the most important criteria are: 

    

   

-1
T T

A

1 2 p

T T

D

1 2 p

A-criterion:  φ S S trace S S

1 1 1
                                   + + +                                   

λ λ λ

D-criterion:  φ S S det S S

                                   λ λ λ

E-crite

 

 
   

 

 







   

 

T T

E min

1 2 p

rion:   φ S S λ S S

                                    min λ ,λ , ,λ



 

 

(24) 

where the criterion φ is a matrix function and λ1, λ2, …, λp 
are eigenvalues of S

T
S. Each criterion is a function of the 

eigenvalues. Since the eigenvalues of S
T
S are the squared 

singular values of S, the two criteria for parameter 
selection, i.e., magnitude of the effects and correlation 
among the effects, can be quantitatively evaluated and 
simultaneously taken into account by using an 
experimental criterion. For example, it is easy to check if a 
sensitivity vector in S has a small norm or if a submatrix of 
S has vectors that are linearly dependent, resulting in a 
small criterion value. A good subset of parameters for 
estimation can be selected by maximizing an experimental 
criterion. Among the criteria, the D-criterion is the most 
commonly used one, as it characterizes the volume of the 
confidence region of the parameter estimates (Walter & 
Pronzato, 1990). 

Using any of the experimental criteria, the 
optimization problem for parameter selection can be 
formulated as 

 

1 2 s j

* T

L L
z

L

1 2 p

i i i j i

i

              z arg max  φ S S

s.t.         S SL

              S s s s

              L e e e ,  with i  that z 1

              e  is the i-th column of the identity matrix

              z





   

   





p

i i

i=1

{0,1}  and z s 

 
(25) 

This is a mixed integer nonlinear programming 
problem. A binary decision vector z is introduced to 
denote which parameters are selected. If the entry zi = 1 
then the parameter θi is selected. Otherwise, the parameter 
is not selected. The number of selected parameters is set to 
s, which is equal to the numerical rank of the sensitivity 
matrix S. The matrix SL is the sensitive matrix of the 
selected parameters and it is computed from the sensitivity 
matrix of all parameters S multiplied by the selection 
matrix L. The selection matrix consists of columns from 
the identity matrix corresponding to the binary vector z.  

The main challenge of optimization-based methods is 
that the combinatorial problem is non-trivial to solve. The 
total number of combinations for selecting s parameters 

from a set of p parameters is  p! s! p-s ! . The optimal 

solution may be difficult or even impossible to find if a 
significant number of parameters need to be selected from 
a large set of possible parameters. Instead, alternative 
formulations for equation (25) are often used to determine 
a sub-optimal solution with a reduced computational 
burden. These techniques include the sequential selection 
procedures, stochastic search techniques, and heuristic 
reduction approaches. 

Sequential methods like forward selection are popular 
due to their simplicity (Blanchet, Legendre & Borcard, 
2008). Forward selection decomposes the multi-
dimensional search for the combinatorial problem to a 
sequence of one-dimensional searches. Only one parameter 
is selected at each step. The selected parameter is 
determined so that the objective function is maximized 
when it is added to the set of previously selected 
parameters. 

Stochastic methods like genetic algorithm are another 
alternative for determining a sub-optimal solution for 
equation (25) with a manageable computational cost (Chu 
& Hahn, 2007). One property of a genetic algorithm is that 
it is based upon a population of potential solutions and 
might return several viable candidates of parameter sets to 
be selected. This property can be very useful as it is 
usually not possible to determine that one set of parameters 
is superior to all other ones for estimation. If a collection 
of potential parameters sets is computed then experience 
with the process can be used to make a final selection of 
which of these parameter sets to estimate.  

Heuristic reductions such as a parameter clustering 
method (Chu & Hahn, 2009) can also be used for 
determining a sub-optimal set of parameters for estimation. 
Parameter selection via parameter clustering considerably 
simplifies the combinatorial problem by reducing the 
feasible range of the binary decision variables. Parameters 



  

which have similar effects on the model outputs can be 
clustered into groups by a hierarchical clustering 
algorithm. Since parameters in a group are not 
distinguishable from each other, only one parameter needs 
to be estimated per group. The set of parameters for 
estimation is determined by selecting the representative 
parameters for each group. Since the number of groups is 
significantly smaller than the number of parameters, the 
optimization problem given by equation (25) can be solved 
for this subset of parameters. Alternatively, it is often 
possible to even perform an exhaustive search as the 
number of possible combinations is reasonably small. 
Numerical experiments have shown that clustering 
methods can find a good solution which in many cases is 
even identical to the optimal solution (Chu & Hahn, 2009).  

 

Table 2. 
Methods for parameter selection. 

Method Reference(s) Feature 

Orthogonaliza
tion 

Lund & Foss, 
2008 
Yao et al., 2003 
 

Orthogonal projection is 
applied to extract the 
effect of a parameter 
covered by previously 
selected parameters and 
the magnitude of the not 
yet covered effect 
determines which 
parameter is selected at 
each step. 

Collinearity 
index 

Brun, Reichert 
& Kunsch, 2001 
 

Collinearity indices, 
based on the smallest 
eigenvalue or the 
condition number of the 
sensitivity matrix, are 
applied to select 
parameters. 

Relative gain 
array 

Sandink, 
McAuley & 
McLellan, 2001 

Parameters are regarded 
as inputs and methods for 
determining proper 
input/output pairings in 
multivariate control are 
applied to select 
parameters. 

Hankel 
singular value 

Sun & Hahn, 
2006 

Parameters are regarded 
as inputs and  balancing 
is used to rank parameters 
by their importance to the 
effect that they have on 
the outputs. 

Hybrid 
Li, Henson & 
Kurtz, 2004 

PCA is used to determine 

the initial selection and 
subsequent parameters 
are selected based on the 
distance to the previously 
selected parameters. 

D-optimal 

Brun et al., 
2002 
Chu & Hahn, 
2007 

Parameters are selected 
by optimizing the D-
optimality criterion. 

Combined D- 
and modified 
E- crietion 

Machado et al., 
2009 
Weijers & 
Vanrolleghem, 
1997 

Parameters are selected 
by optimizing the 
combined D and 
modified E criterion. 

 
 

Parameter selection via orthogonal projection 
 
Among the various methods for parameter selection, 

the orthogonalization method is the most widely used one. 
This technique is simple to implement since the procedure 
is directly related to the well-known Gram-Schmidt 
orthogonalization method. It is a sequential selection 
procedure and the criterion used to select a parameter at 
each step can provide insights into the relationship among 
parameters. The technique was originally presented as a 
heuristic method (Yao et al., 2003) and later identified as a 
forward selection which maximizes the D-criterion (Chu & 
Hahn, 2007). However, the idea to perform parameter 
selection via an orthogonalization procedure can be traced 
back much earlier for linear rank-degenerate least squares 
problems (Golub, Klema & Stewart, 1976; Golub & van 
Loan, 1996) where an alternative orthogonalization 
approach via a Householder transform was applied. 
Extensions of the orthogonalization procedure via 
Householder transform to nonlinear models have also been 
reported (Hiskens, 2001; Velez-Reyes & Verghese, 1995). 
Recently, the orthogonalization method has been extended 
to investigate prediction accuracy of a model and not just 
identifiability of the parameters (Chu, Huang, & Hahn, 
2009), where the same orthogonalization procedure is 
applied, however, a different criterion is used to select the 
parameter at each step. 

The orthogonalization method has been widely used for 
analysis of complex models, e.g. biochemical pathways 
(Gadkar, Gunawan & Doyle, 2005; Jaqaman & Danuser, 
2006; Yue et al., 2006), chemical reaction networks (Kou 
et al., 2005; Lin, Biegler & Jacobson, 2010; Puskas et al., 
2005), and industrial process systems (Burth, Verghese & 
Velez-Reyes, 1999; Hiskens, 2004; Ma et al., 2008). Since 
the orthogonalization method is important in both theory 
and practice, a detailed description of the technique is 
provided next. 

The orthogonalization method aims to determine a set 
of orthogonal bases from the sensitivity vectors. The norm 
and linear dependence of sensitivity vectors are taken into 
account simultaneously in the orthogonalization procedure. 
The orthogonalization method can be implemented by 
either the Gram-Schmidt algorithm (Yao et al., 2003; Lund 
and Foss, 2008) or the Householder transform (Hiskens, 
2001; Velez-Reyes & Verghese, 1995). The two 
orthogonalization procedures return identical result. The 
procedure involving Householder transforms is more 
numerically stable than the Gram-Schmidt algorithm 
(Golub & van Loan, 1996), however, the latter is simpler 
to interpret.  

Parameter selection via the Gram-Schmidt 
orthogonalization procedure involves the following steps: 

 
Step 0 (Initiation). Set the number of selected parameters 

to zero, i.e., i 0 , and the projected sensitivity 

vectors to the original sensitivity vectors as 
(0)

i is s , 

i 1, ,p   

Step 1 (Selection). Select the parameter indexed by k 
which is determined by 

 
T

(i) (i)

j j
j

k arg max s s  (26) 



  
 

Step 2 (Stopping test). If  
T

(i) (i)

k ks s λ  (given threshold 

level) then stop. 

Step 3 (Projection). Let 
 

 

T
(i) (i)

j k(i+1) (i) (i)

j j kT
(i) (i)

k k

s s
s s s

s s
   and 

return to Step 1 with i i 1  . 
 
The key step in the algorithm is to project the 

sensitivity vectors of the unselected parameters onto the 
space orthogonal to that spanned by the sensitivity vectors 
of the previously selected parameters. The projection aims 
to remove the parameter’s effect on the output covered by 
the previously selected parameters. The parameter which 
has the largest not yet covered effect is selected at each 
step. 

Fig. 2. illustrates parameter selection via the Gram-
Schmidt orthogonalization procedure. Four parameters are 
investigated and their sensitivity vectors are drawn in the 
figure. The first selected parameter is the one with the 
longest sensitivity vector, i.e., θ2 is selected. Then the 
sensitivity vectors of the unselected parameters, θ1, θ3, θ4, 
are projected onto the plane perpendicular to the sensitivity 
vector of θ2. The projected sensitivity vector with the 

largest length is determined to be 
 1

3s , which results in θ3 

being selected as the parameter for this step. The 
projection is applied again and the remaining sensitivity 
vectors are projected on to the line perpendicular to the 

sensitivity vector 
 1

3s . The parameter θ4 is selected at this 

step since its projected sensitivity vector is longer than that 
of the parameter θ1. The sequence of selected parameters is 
θ2, θ3, and θ4. From the figure it can be seen that the length 
of the sensitivity vectors is reduced after each projection. 
The remaining length of the sensitivity vectors can be used 
as a stopping criterion for the algorithm. 

 

0

(1)

1 1s s

(1)

2 2s s

(1)

3 3s s

(1)

4 4s s(2)
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(2)

3s

(2)

4s

 
Figure 2. Illustration of the orthogonalization method 

via the Gram-Schmidt algorithm. Sensitivity vectors for 
each step have the same color (red for the initial step, blue 

for the first step, and green for the second step). 
 

Even though the orthogonalization method is simple 
and easy to interpret, it is not clear how selection improves 
the estimation performance. The link between the 
orthogonalization method and selection based upon the D-
criterion was derived in Chu & Hahn (2007), where it was 
shown that the orthogonalization method is a forward 
selection which maximizes the D-criterion. The proof in 
Chu & Hahn (2007) was made based on QR factorization. 
In this work, a more direct proof is based on the Schur 
complement: 

At the initial step the longest sensitivity vector is 
chosen for initialization of the orthogonalization method. 
Given that the cross product of a vector is a scalar which is 
equal to the squared norm of the vector and the 
determinant of a scalar is itself, the longest sensitivity 
vector is also the one which maximizes the D-criterion if 
one parameter is selected. After the initial step (i ≥1) of the 
procedure, the sensitivity matrix of the previously selected 

parameters is assumed to be 
 i-1

S  and a new sensitivity 

vector, assumed to be 
 i-1

s , is added. Then the new 

sensitivity matrix is given by      i i-1 i-1
S S s 

 
 and the 

D-criterion is 
    
    
       

       

                      

i iT

D

i iT

i-1 i-1 i-1 i-1T T

i-1 i-1 i-1 i-1T T

-1
i-1 i-1 i-1 i-1 i-1 i-1 i-1 i-1 i-1 i-1T T T T T

φ S S

det S S

S S S s
det

s S s s

det S S s s s S S S S s

  
  
   



 







 

(27) 

where the matrix given by 

                
-1

i-1 i-1 i-1 i-1 i-1 i-1 i-1 i-1T T T Ts s s S S S S s  is the 

Schur complement of 
   i-1 i-1TS S . 

By calculating the Schur complement, the determinant 
is decomposed into the product of two terms. The first 
term is the determinant of the previous sensitivity matrix 
which does not change by adding the new sensitivity 
vector. Adding the new sensitivity vector only changes the 
second term. Forward selection determines which 
parameter should be added such that the determinant will 
be maximized. The result is that the parameter selected by 
forward selection is the one with the largest value of the 
Schur complement, which can be further expressed as 

                

             

     

         
   

-1
i-1 i-1 i-1 i-1 i-1 i-1 i-1 i-1T T T T

-1
i-1 i-1 i-1 i-1 i-1 i-1T T T

i-1 i-1 i-1T

T
i-1 i-1 i-1 i-1

i iT

s s s S S S S s

s I S S S S s

s P s

P s P s

s s















 
(28) 

where           
-1

i-1 i-1 i-1 i-1 i-1T TP I S S S S   is a projection 

matrix. This matrix projects 
 i-1

s  to 
 i

s  in the space 

orthogonal to the columns in  i-1
S  and 

   i iTs s  is the 



  

squared norm of the projected vector. Therefore, the 
procedure for adding a new parameter via forward 
selection with the D-criterion is identical to the 
orthogonalization method. 

The connection between the orthogonalization method 
and forward selection provides insights into the 
orthogonalization procedure. Due to this connection, the 
orthogonalization method can be compared and integrated 
with other methods used for parameter set selection. The 
approach cannot guarantee that an optimal solution is 
found, just like any other forward selection procedure, 
however, it is simple to implement and can be applied to 
large-scale systems. Furthermore, it can provide a good 
initial guess of which parameters to estimate and it can also 
be used as a guideline to determine the number of 
parameters that should be selected for estimation. 

Nonlinear Luenberger Observers  

The previous section reviewed techniques for dealing 

with models which are overparameterized. While it has 

been discussed in detail how one can determine which 

parameters of a model should be estimated from data, the 

actual task of parameter estimation has not been dealt with 

so far. In order to address this point, this section will 

present an overview of one class of observer, i.e., 

nonlinear Luenberger observers, which can be used for 

state and parameter estimation. 

State estimation plays a key role in process monitoring 

and process control applications. When the process 

dynamics is approximately linear, the classic Kalman filter 

or Luenberger observer provides an effective method for 

on-line state estimation. However, in the presence of 

process nonlinearities, it is well-known that linear state 

estimators or observers can be inadequate (Soroush, 1998). 

For this reason, there have been many research efforts over 

the past decades to develop nonlinear state estimation 

methods for chemical processes, which use the nonlinear 

process model and account for the nonlinear dynamic 

behavior (Bastin & Dochain, 1990; Dochain, 2003; 

Kantor, 1989; Kazantzis & Kravaris, 2000; Kurtz & 

Henson, 1998; Rajaraman et al., 2004; Rajaraman et al., 

2006; Singh & Hahn, 2005; Soroush, 1997; Soroush, 1998; 

Valluri and Soroush, 1996). It should be noted that the 

focus of the techniques discussed in this section will be on 

observer-based approaches and not on moving-horizon 

estimators or particle filters as advances involving these 

techniques have been discussed at a paper presented at the 

previous CPC (Rawlings & Bakshi, 2006). 

One approach that has been tried by many researchers 

and industrial practitioners in an attempt to handle process 

nonlinearities has been the extended Kalman filter (Gelb, 

1974) and, more recently, along the same lines, the 

extended Luenberger observer (Zeitz, 1987).  In this 

approach, the design is based on an approximate local 

linearization of the system around a reference trajectory. 

Even though the extended Kalman filter has found many 

industrial applications, there have been many studies that 

established its serious difficulties in the presence of strong 

process nonlinearities (e.g. Kantor, 1989; Valluri and 

Soroush, 1996).  

This section will try to give an overview of some 

alternative approaches for handling process nonlinearities 

in observer design, originating from nonlinear systems 

theory, and aiming at overcoming the difficulties of the 

extended Kalman filter / extended Luenberger observer.  

The mathematical formulation will be deterministic and the 

class of applications that will be targeted will be primarily 

related to process monitoring. It could also include 

parameter estimation problems, when these are 

appropriately reformulated as state estimation problems for 

an extended system that accounts for the nature of 

parameter variability (e.g. random steps, random ramps, 

etc.).  

In particular, in the present work, we consider 

unforced nonlinear systems 
dx

f (x)
dt
y h(x)





                                                             (29) 

with nx being  the state vector, y  the measured 

output, 
n n nf : , h :      nonlinear functions. 

The objective is to construct a state observer to generate an 

estimate of the state vector x, driven by the output 

measurement y. 

The understanding here is that system (29) represents 

a chemical process, including its control loops. 

It is possible to generalize the well-known Luenberger 

observer (Luenberger, 1966; Luenberger, 1971; Chen, 

1984) to nonlinear systems as follows:   

ˆdx
ˆ ˆf (x) L(y h(x))

dt
                                     (30) 

where nx̂ is the estimate of the state vector and L is a 

constant gain vector. The choice of L will determine the 

stability properties of the error dynamics, and the question 

is if it would be possible to select the observer gain L to 

guarantee rapid decay of the error over a large enough 

operating region. In general, analysis beyond a small 

neighborhood of an equilibrium point can be very difficult.  

More generally, it is possible to consider a Luenberger 

observer with state-dependent gain:   

ˆdx
ˆ ˆ ˆf (x) L(x)(y h(x))

dt
                                        (31) 

and this opens up many more possibilities. In fact, under 

certain conditions, it is possible to select the gain function 

L(x)  to “shape” the resulting error dynamics. In this 

direction, there has been a rich systems theory literature, 

involving a variety of mathematical approaches, including 

high-gain observers (Ciccarela et al., 1993; Ciccarela et al., 

1995; Gauthier et al., 1992; Gauthier & Kupka, 1994; 

Gauthier & Kupka, 2001), observer error Lyapunov 

function methods (Tsinias, 1989; Tsinias, 1990), exact 

linearization methods (Andrieu & Praly, 2006; Astolfi & 

Praly, 2006; Guay, 2002; Kazantzis & Kravaris, 1998; 

Kreisselmeier & Engel, 2003; Krener & Isidori, 1983; 

Krener & Respondek, 1985; Krener & Xiao, 2002; Krener 

& Xiao, 2005; Xia & Gao, 1989; Xiao, 2006a) and 



  
 

optimization-based approaches (Kang, 2006; Moraal & 

Grizzle, 1995; Rao et al., 2003; Zimmer, 1994).  

It would not be possible to review the entire spectrum 

of theoretical ideas and results on nonlinear observers in a 

single review paper. Instead, we will focus on those results 

that are applicable to general nonlinear systems and, at the 

same time, are directly amenable to engineering 

calculations. There have a number of new developments in 

the past decade, but there has not been a review paper to 

“put the pieces together” in a unified framework, from an 

applications perspective. This will be attempted in the 

present section. 

Exact Linearization of the error dynamics, with prescribed 

eigenvalues 

In exact linearization design methods, the objective is 

to build an observer so that the resulting error dynamics is 

linear in curvilinear coordinates, and with pre-specified 

rate of decay of the error. This leads to the following 

selection of the state-dependent observer gain (Kazantzis 

& Kravaris, 1998):   
1

T
L(x) (x) b

x


 
  

                                             (32) 

where T(x)  is an invertible function from n to n that 

satisfies the system of linear partial differential equations:   
T

(x)f (x) AT(x) bh(x)
x


 


                                   (33) 

and the matrices A and b are design parameters.  

Under the above choice of gain, the observer (31) can 

be expressed in transformed coordinates ˆz T(x) as:   

1

dz
Az by

dt

x̂ T (z)

 



                                                       (34)  

which means that the observer has linear dynamics in 

transformed coordinates. Moreover, the error dynamics 

follows the differential equations:  

   
d

ˆ ˆT(x) T(x) A T(x) T(x)
dt

                              (35)  

hence the rate of decay of the error in curvilinear 

coordinates is governed by the eigenvalues of the matrix A. 

The key to the application of the exact linearization 

method is the linear partial differential equation (33). 

Existence, uniqueness and invertibility of the solution can 

be guaranteed under appropriate non-resonance conditions 

between A and the Jacobian of f(x), observability of (29) 

and controllability of (A,b) (see Kazantzis & Kravaris 

(1998)  and Krener & Xiao (2002) for details on local 

results, Andrieu & Praly (2006) and Astolfi & Praly (2006) 

for global results). 

 Computationally, equation (5) can be handled via a 

power series solution (Kazantzis & Kravaris, 1998). The 

computational effort increases with the size of the state 

vector x and the truncation order of the power series.  

Comparing the observer under consideration to the 

constant-gain observer (30), one can immediately see the 

advantage:  the observer has guaranteed error convergence 

properties that can hold far beyond a neighborhood of the 

equilibrium point. Of course, there is a cost involved: it is 

the computational effort in solving the associated partial 

differential equations.  

Observer for state and disturbance estimation 

Problems of simultaneous state and disturbance 

estimation can be handled as state estimation problems for 

an extended system. Consider  

dx
(x,w)

dt

y (x,w)





F

H

                                                 (36) 

where x  is the state vector and w  is the vector of 

disturbances, which are assumed to be of known nature 

(e.g. step, ramp, …) but unknown size. In the case of 

constant or step disturbances, they will satisfy dw
0

dt
 ; 

more generally, 

  

dw
(w)

dt
 S                                                      (37) 

Thus, the problem of state and disturbance estimation 

becomes a problem of state estimation for the extended 

system of (36) and (37), i.e. of  

(x,w)xd

wdt (w)

y (x,w)

  
  
    





F

S

H

                                                  (38)  

with state ext

x
x

w

 
  
 

. Therefore, a state observer can be 

built for the extended system  

 
ˆ ˆˆ (x,w)xd

ˆ ˆ ˆ ˆ(x,w) y (x,w)
dt ˆ ˆw (w)

  
  

      

 
F

+L H
S

           (39)  

so that the error dynamics is linear and with prescribed 

eigenvalues, following the method outlined in the previous 

subsection (Kravaris et al., 2007).  

In some applications, it may be desirable to implement 

the state and disturbance observer in modular form 

(Friedland, 1986), with a basic observer built for the 

disturbance-free part of the process dynamics and, on top 

of it, a disturbance observer and a state-estimate corrector, 

as shown in the following figure: 

 

Figure 3.   State & disturbance observer in 
modular form 

Given an observer design for the extended system (38) 

via the exact linearization method of the previous 

subsection, it is possible to convert the observer equations 



  

to the above modular structure (Kravaris and Savoglidis, 

2008). The modular implementation necessitates some 

additional, relatively straightforward calculations, but has 

advantages from the point of view of fault detection and 

isolation applications. 

It should be noted that disturbance estimation cannot 

just result in improved process monitoring, but can be used 

for improving feedback control as the controller can make 

use of this additional information about the disturbance to 

be rejected. 

State observer in discrete time 

Chemical processes are typically continuous-time 

systems, but the state observer operates in discrete time, 

and it is driven by discrete-time output measurements 

(sampled data). There is a general question of whether to 

perform discretization at the beginning or at the end.  

i) Discretizing the dynamic process model from the 

beginning, with time step equal to the sampling period, can 

always be accomplished using an appropriate numerical 

method, subject to some numerical error. Thus, in discrete 

time, system (29) is approximately represented in the form: 

x(k 1) (x(k))

y(k) h(x(k))

 


                                                  (40) 

Using this discrete-time representation, it is possible to 

formulate exact observer linearization approaches in a 

completely analogous manner as with continuous-time 

systems (Califano et al., 2003; Chung & Grizzle, 1990; 

Kazantzis & Kravaris, 2001; Kazantzis, 2009; Kravaris, 

2009; Lee and K. Nam, 1991; Lee & Nam, 1991; Lin & 

Byrnes, 1995; Xiao et al., 2003; Xiao, 2006b; Xiao et al., 

2008). In particular, it is possible to construct a discrete-

time state observer with linear dynamics in curvilinear 

coordinates, and with prescribed eigenvalues (Kazantzis & 

Kravaris, 2001):  

1

d d

d

z(k 1) A z(k) b y(k)

x̂(k) T (z(k))

  


                               (41) 

where 
dT (x)  is an invertible function that satisfies the 

system of  linear functional equations:   

d d d d
T ( (x)) A T (x) b h(x)                                   (42) 

and the matrices 
dA and 

db  are design parameters. The 

resulting error dynamics follows the difference equations:  

 d d d d d
ˆ ˆT (x(k 1)) T (x(k 1)) A T (x(k)) T (x(k))         (43)  

i.e.  the rate of decay of the error in curvilinear coordinates 

is governed by the eigenvalues of the matrix dA . 

ii) Discretizing the continuous-time observer (34) is 

also a possibility, if sampling is relatively fast. Then, 

assuming that the output is approximately constant in 

between measurements (zero-order hold), system (34) can 

be discretized as follows:  

1

d d
z(k 1) A z(k) b y(k)

x̂(k) T (z(k))

  



                               (44) 

where T(x)  is the solution of the system of linear partial 

differential equations (33) and AP
dA e , 

P
A

d
0

b bde   , 

with P being the sampling period. Notice that (44) is an 

exact discretization of (34) when y(t) is piecewise constant, 

because of the linearity of the dynamics of the continuous-

time observer.  

A comparison of discretization at the beginning versus 

discretization at the end should be made at this point. In 

the former case, there is always a numerical error in the 

representation (40), whose effect on the observer design 

and its propagation during observer implementation could 

be a significant issue. Apart from this difficulty, observer 

design in discrete time is very similar to observer design in 

continuous-time and there is a mathematical similarity 

between the linear partial differential equations (33) and 

the linear functional equations (42), both in terms of the 

existence-uniqueness-invertibility conditions for their 

solution, and in terms of the calculation method (power 

series in both cases) and computational effort (see 

Kazantzis & Kravaris (2001) and Xiao et al. (2003)). 

On the other hand, discretization at the end directly 

utilizes the continuous-time design and it seems to be the 

most meaningful approach in the presence of relatively fast 

sampling. The reason is that, because of the linearity of the 

observer dynamics, exact discretization of the continuous-

time observer is possible and therefore, stability of the 

error dynamics and rate of decay of the error will be 

preserved after discretization. This is a key advantage of 

the observer linearization method.  

In either case, the discrete-time observer will not 

provide estimates of the inter-sample behavior of the 

process states.  

Sampled-data observer 

When sampling is not performed at a very fast rate, 

inter-sample behavior becomes important and needs to be 

accurately estimated by the observer. For this purpose, the 

model (29) could be used to predict the evolution of the 

output during the time period in between two consecutive 

measurements. In particular, the model can be used to 

estimate of the rate of change of the output, in order to be 

able to continuously apply a correction on the most recent 

measurement during this period.  

Since the rate of change of the output is  f

dy
L h x

dt
 , 

where  
n

f j
jj 1

h
L h x f (x) (x)

x






 denotes the Lie derivative, 

it is possible to estimate of the rate of change of the output 

from the Lie derivative, evaluated at the state estimate x̂ :  

                 f i i 1

ˆdy
ˆL h x , t [t , t )

dt
                           

where i i 1t , t  denote two consecutive sampling instants.                               

 The above can be integrated on line, where the most 

recent measurement is used as the initial condition. This 

leads to the following inter-sample output predictor: 



  
 

        
 f i i 1

i i

dψ
ˆL h x , t [t , t )

dt

ψ(t ) y(t )

 



                           (45) 

with ψ  representing the output prediction. 

When the continuous-time observer (31) is driven by 

the output predictor (45), this results in the following 

sampled-data observer: 

  

      

 

i i 1

f i i 1

i i

ˆdx
ˆ ˆ ˆf x L x ψ h x , t [t , t )

dt

dψ
ˆL h x , t [t , t )

dt

ψ(t ) y(t )





   

 



        (46) 

Figure 4 depicts the construction of the sampled-data 

observer, as the coupling of the continuous-time observer 

with the inter-sample output predictor. 

  

 

Figure 4.  Structure of the sampled-data observer 

 

It was shown in Karafyllis & Kravaris (2009) that, as 

long as the sampling period does not exceed a certain limit, 

stability of the error dynamics and robustness with respect 

to measurement error for the continuous-time observer (31) 

imply stability of the error dynamics and robustness with 

respect to measurement error for the sampled-data 

observer (46). In other words, the sampled-data 

implementation inherits the key properties of the 

continuous-time design and, in fact, these properties hold 

at all times, not just at the sampling instants.  

Observer design in the presence of delayed measurements 

Measurement delays are quite common in practice 

and, therefore, appropriate modifications will be 

introduced to the observer equations to be able to handle 

this situation. Given a nonlinear system with delayed 

output of the form  

  

dx
(t) f (x(t))

dt

y(t) h(x(t ))



 

                                                 (47)      

where   is the measurement delay, it is possible to 

construct an observer with delayed linear dynamics:    

         
1

dz
(t ) Az(t ) by(t)

dt

x̂(t) T (z(t))

   



                                (48) 

As long as the transformation map T(z) satisfies (33), 

this observer will generate an estimate of x(t ) from the 

output measurements up to time t, and the error dynamics 

for the estimate of x(t ) will follow (35).  

Furthermore, the model (29) can be utilized to predict 

the state at time t, given the estimate at time t  , in the 

same spirit as in Smith-predictor methods for dead time 

compensation. This leads to the following overall observer: 

 

0
0

1
0

ˆdz
ˆ(t) Az (t) by(t)

dt

ˆdx
ˆ ˆ ˆ( ) f (x( )) , [t , t] , x t T (z (t))

d



 

      


 (49) 

where 0ẑ (t)  represents the delayed state estimate in 

transformed coordinates and x̂(t)  the estimate of the state 

at current time, predicted from the delayed one through the 

model equations. The observer (49) is a special case of a 

chain observer for handling delayed output measurements 

(see Germani et al. (2002) and Kazantzis & Wright (2005) 

for generalization involving m-step prediction). 

In discrete-time, the handling of delays is much more 

straightforward, since the mathematical form of the state-

space description (40) remains unaffected. However, since 

chemical processes are continuous-time systems, it would 

make more sense to go by an observer of the form (49), 

appropriately discretized, and possibly coupled with an 

inter-sample predictor along the lines of the previous 

subsection.  

Functional observers 

In many applications, the entire state vector is not 

really needed to be estimated, but rather, some function(s) 

of the state vector. Then, it would make sense to try to 

reduce the order of the observer - if possible - in order to 

reduce computational effort in real-time implementation. 

This leads to the development of functional observers for 

nonlinear systems, in the same spirit as they have been 

developed for linear systems (Luenberger, 1966; 

Luenberger, 1971; Chen, 1984). In particular, considering 

the nonlinear system (29), suppose that the function  

                v q(x)                                                 (50) 

needs to be estimated instead of the entire state vector, and 

an observer is sought, of dimensionality less than n. 

The construction of a functional observer in the 

context of exact linearization proceeds with the same steps 

as before, the main difference being that now the mapping 

T(x) is not from n to n , but from n to  , n  

and the observer dynamics
dz

Az by
dt

  is  - dimensional. 

The mapping T(x) must still satisfy the partial differential 

equation (33) and in addition, q(x)  must be expressible as 

a function of T(x) and h(x) , say q(x) g(T(x),h(x)) . 

Then 



  

          

dz
Az by

dt

v̂ g(z, y)

 



                                         (51) 

will be a functional observer for system (29) and the 

function to be estimated given by (50). 

A reduction of observer order to (n 1)   is always 

feasible, but further reduction is possible only under 

special conditions on q(x) (see Kravaris (2011) for the 

pertinent conditions, as well as applications to chemical 

and biochemical reactors). 

Computational issues  

Reducing computational requirements for the real-time 

implementation of the nonlinear observer is, of course, 

significant, but the critical issue in applying nonlinear 

observers is how to reduce computational effort and 

complexity in calculating state-dependent observer gains.   

When solving the linear partial differential equations 

(33) or the linear functional equations (42) using standard 

symbolic calculation packages, computational complexity 

can be excessively large even for medium-scale problems. 

To be able to handle computational complexity, automatic 

differentiation algorithms seem to be the answer – see 

Röbenack (2004) and references therein, regarding the use 

of automatic differentiation algorithms for multivariate 

Taylor series expansions, Faà di Bruno formulas, Lie 

derivatives, etc.  

Future Research 

Even though a wide range of methods have been 
developed to deal with ill-conditioned estimation problems 
resulting from complex models, there are still many open 
problems waiting to be solved. Some suggestions for 
potential future research directions are made in the 
following paragraphs. 

(1) Development of New Regularization 

Techniques. Regularization generally adds a constraint on 
the parameters values to the estimation problem to reduce 
variability in the parameter estimates. Three commonly 
used techniques have been discussed in this section. These 
are based upon the Euclidean norm, however, it should be 
possible to extend this work to the more general Lp norm. 
Some promising results involving the 1-norm have been 
reported (Tibshirani, 1996), however, more work remains 
to be done to come up with procedures used by a general 
norm. 

(2) Incorporating Parameter Uncertainty. Most 
regularization methods are derived based upon linear 
models. When extensions to nonlinear systems are made 
then these extensions generally involve linearization in one 
form or another. For example, the local sensitivity matrix, 
which is the result of the linearization, plays the same role 
as the design matrix in the linear model. It is possible to 
extend existing techniques for parameter set selection from 
linear to nonlinear models by using this local sensitivity 
matrix. However, one problem that arises is that the local 
sensitivity matrix of a nonlinear systems is dependent upon 

the, not-yet accurately known, values of the parameters. It 
has been reported that even a small change in the 
parameter values can significantly change the results 
calculated based on the local sensitivity matrix (Chu & 
Hahn, 2007). Developing methods which can incorporate 
more information about the parameter uncertainty into the 
parameter set selection procedure is one promising area of 
research.   

(3) Making Use of Global Sensitivity Analysis. One 
approach to deal with the challenge mentioned under (2) is 
to use global sensitivity analysis as it can incorporate 
information about parameter uncertainty into the sensitivity 
analysis. However, this has the drawback that the 
experimental design criteria cannot be applied to the 
commonly used global sensitivity analysis techniques. For 
example, most global sensitivity analysis techniques return 
results that are inconsistent with the sensitivity matrix 
derived from local sensitivity analysis even if the model is 
linear (Chu & Hahn, 2010). In order to address this point, 
it would be required to either derive a new set of 
experimental design criteria (unlikely) or to modify 
existing global sensitivity analysis techniques such that the 
procedures can be viewed as an extension of the linear 
methods, which would then allow to incorporate the 
experimental design criteria into the procedure. 

(4) Integrating Parameter Set Selection and 

Experimental Design. Many different variables such as 
the input profiles, measured outputs, initial states, and 
sampling points can vary from one experiment to another. 
While it is possible to incorporate information about all of 
these experimental design variables into the sensitivity 
analysis procedure, it is usually not taken into account that 
additional experiments could be designed to further 
improve the results. Sensitivity analysis and experimental 
design are two tasks that are usually performed separately 
from each other, even though they strongly affect each 
other (Chu & Hahn, 2008). The long-term goal in this area 
would be to integrate the two procedures. 

(5) Investigation of New Solution Techniques for 

the Parameter Set Selection Optimization Problem. The 

majority of this section dealt with different approaches for 

determining a sub-optimal solution, including 

regularization methods, to the parameter set selection 

optimization problem. However, it would be ideal if this 

problem could be optimally solved while also taking 

uncertainty in the measurements and the model structure 

into account. This would require new 

formulations/decompositions of the mixed-integer 

nonlinear programming problem resulting from the 

parameter set selection problem. 

 

One important area of future research for the design 

and implementation of nonlinear Luenberger observers is 

given by the following:   

(6) Development of Software Packages for 

Designing Nonlinear Observers. Reduction of the 

computational effort when computing state-dependent 

observer gains is a critical issue for the application of 

nonlinear observers. An important future research direction 

will therefore be the development of efficient and effective 



  
 

software packages to assist engineers in design calculations 

for nonlinear observers. 

Conclusions 

This paper provided an overview of two areas dealing 

with improving accuracy of models used for process 

monitoring and control. The first part of the paper 

reviewed background information on and techniques used 

for selection of model parameters for estimation, while the 

second part dealt with nonlinear Luenberger observer 

design for state and parameter estimation. 
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