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Abstract
Frequent inlet flow changes, especially in the same direction, typically cause problems for

averaging level controllers. To obtain optimal flow filtering while being robust towards future
inlet flow upsets closed loop robust MPC has been used. It differs from other averaging
controllers in that it does not return the tank level to a fixed set-point, but rather lets it depend
on the current inlet flow. The performance and robustness of this robustly optimal behavior
is analyzed and compared to that of the (non-robust) optimal averaging level controller. Both
the analysis and the simulation results show that the robust controller obtains comparable flow
filtering as the optimal controller even when inlet flow changes are sparse while handling frequent
upsets considerably better.
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Introduction

Buffer tanks are widely used within the process indus-
try to prevent upstream flows from upsetting downstream
processes. By smoothly controlling the outlet flow the
capacity of the tank is used to surge inlet flow variations.

Early approaches to averaging level control are the PL-
controller by (Luyben and Buckley, 1977), and the non-
linear wide range controller proposed in (Shunta and Fe-
hervari, 1976). In (Cheung and Luyben, 1979) a systematic
way of tuning PI controllers to achieve good flow filtering is
presented. Later approaches using PI controllers are (Shin
et al., 2008) and (Kelly, 1998). A two-degree of freedom
averaging level controller which permits designing the step
and load disturbance response separately is suggested by
(Wu et al., 2001).

In (McDonald et al., 1986) the continuous time optimal
averaging level controller, minimizing the maximum rate
of change of the outlet flow, is derived and analyzed. Its
discrete time counterpart is presented in (Campo and
Morari, 1989). Following an inlet flow step change the
optimal control policy is to slowly ramp up the outlet flow
so that it equals the inlet flow just as the tank reaches its
upper or lower boundary.

With the tank level at, for example, its upper limit
another positive step change to the inlet flow has to be
directly transferred to the outlet, resulting in bad flow
filtering. To prepare for the next flow upset the tank level
is therefore returned to its set-point (usually 50%). This,
however, gives a long settling time. If inlet flow changes
are sparse with respect to time, so that the tank level has
been returned to, or is at least close to, 50%, when the
next flow upset occurs this strategy achieves very good
flow filtering. If, however, two sequential upsets in the
same direction occur within a short time interval, the flow
filtering of the controller deteriorates. This is due to the
fact that, when the second step occurs, the tank level is

1 To whom all correspondence should be addressed.

already close to its boundary leaving less tank capacity to
surge the upset. One way to remedy this is of course by
returning the level to 50% faster. That will however result
in worse flow filtering of all inlet flow upsets.

Looking at inlet flow data for one of Perstorp AB’s
surge tanks, see Figure 1, it is apparent that frequent step
changes do occur more or less all the time but especially
for t ∈ [30, 50] and t ∈ [145, 170].
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Figure 1. Inlet flow data from Perstorp AB last week of
March 2011.

In (Rosander et al., 2011) another approach than
returning the level to 50% was taken. Robust model
predictive control (MPC) was used to obtain optimal flow
filtering while being robust towards future changes of the
inlet flow. The resulting controller does not return the tank
level to 50% following an inlet flow change but rather
adapts the tank level to the new level of the inlet flow.
A similar behavior as is observed with proportional only
control.

In this paper the differences in terms of robustness
and filtering performance between the optimal and the
robust controller are analyzed. The robust MPC controller
is, however, difficult to analyze analytically and instead
the insight gained from the robust MPC exercise is used
to robustify the optimal averaging level controller. This
controller obtains flow filtering, in principal, the same way
as the robust MPC controller.



System Description

We assume a cylindrical buffer tank with level x(t)
and inlet and outlet flows qin(t) and qout(t) respectively.
Furthermore we assume that we can manipulate the outlet
flow, u(t) = qout(t). Using mass balance we obtain the
model

ẋ(t) = kv (qin(t)− u(t)) (1a)
xmin ≤ x(t) ≤ xmax (1b)
qmin ≤ qin(t), u(t) ≤ qmax (1c)

where it is assumed that all quantities are measured in
percent, i.e., qmin = xmin = 0% and qmax = xmax =
100%, if no extra safety limitations are put on the tank
level. The parameter kv describes how one percent of flow
imbalance per time unit relates to change in tank level.

The assumption of equal range, (1c), is made to avoid
risking emptying or overflowing the tank, due to lack of
outlet flow capacity. With the outlet being the manipu-
lated flow we could hence allow it to have greater range
than the inlet flow, but for the scope of this paper that
would only serve to make the notation overly complicated.

For the same reason we assume that the inlet flow is
directly measurable. In any case the linear dynamics of the
system allow for a straightforward estimation of the inlet
flow using the Kalman filter as shown in (Khanbaghi et al.,
2001).

Optimal Averaging Control

The performance of an averaging level controller is
typically quantified by its capability to minimize

J = ||u̇||∞ = max
t
|u̇(t)| or J = ||u̇||22 =

∫ ∞
0

u̇(t)2 dt

following an inlet flow step while guaranteeing the level
constraints. We will in this paper focus on the former one
(max |u̇|) but the latter will also be used to quantify the
filtering performance when considered necessary.

For the sake of completeness the optimal controller
derived in (McDonald et al., 1986) will be briefly reca-
pitulated. It minimizes the max-criterion but permits u(t)
to not be differentiable in every point. This corresponds
to using the criterion

J = min
u

sup
t,t′>0, t6=t′

∣∣∣∣u(t)− u(t′)t− t′

∣∣∣∣ (2)

Assuming that the system given by (1) is in steady state
with the tank level x0 and that the inlet flow qin performs
a step at time t = 0 from q0 to q1 the optimal control law
is given by

u(t) =

{
q0 +

q1 − q0
T

t, t ∈ [0, T )

q1, t ∈ [T,∞)
(3)

Note that the steady state assumption implies that u(0) =
qin(0) = q0 and that after T time units the system will
again be in steady state since u(T ) = qin(T ) = q1. With
u(t) given by (3) the performance criterion evaluates to

J =
|q1 − q0|

T
(4)

Substituting (3) into (1a) and solving the differential
equation for t ∈ [0, T ] gives

x(t) = x0 + kv

(
(q1 − q0)t−

q1 − q0
2T

t2
)

(5)

The time T can then be expressed in terms of the new
steady state tank level, xT , according to

xT =x0 + kv

(
(q1 − q0)T −

q1 − q0
2T

T 2

)
⇔

xT − x0 =
Tkv
2

(q1 − q0)⇔T =
2(xT − x0)
kv(q1 − q0)

(6)

By specifying the new steady state tank level, xT , we thus
implicitly specify the slope of the control law and con-
sequently also the flow filtering performance. To achieve
optimal flow filtering, T should be as large as possible
which corresponds to picking xT as

xT =

{
xmax, q1 > q0
xmin, q1 < q0

(7)

The open loop solution (3) can also be cast as a
combined feed-forward and feedback controller. We will
present a different formulation than the one derived in
(McDonald et al., 1986). By isolating t from (3) and
inserting that expression into (5) we obtain

x(t) = x0 + kv

(
(u(t)− q0)T −

T (u(t)− q0)2

2(q1 − q0)

)
(8)

Isolating u and using (6) we obtain the closed loop formu-
lation

u(x(t)) = q1 ±

√
(q1 − q0)2 −

(q1 − q0)2
xT − x0

(x(t)− x0) (9)

where −√. . . is used when q1 > q0 and +
√
. . . if q1 < q0.

Note that, in addition to being a feedback solution, (9)
does not depend on the parameter kv which makes it less
sensitive to modeling errors than the open loop solution
(3). That the feedback controller indeed achieves x(t) →
xT is shown in Appendix A.

In common for both the open and closed loop formu-
lation is, however, that following an inlet flow step the
tank level will be on the boundary (due to (7)) and might
thus struggle to surge the next flow upset. To counter this
(McDonald et al., 1986) proposes augmenting (9) with a
detuned PI controller which slowly brings back the level
to its set-point xs

u(x(t)) =q1 ±

√
(q1 − q0)2 −

(q1 − q0)2
xT − x0

(x(t)− x0)

+Kc

(
xs − x(t) +

1

TI

∫
(xs − x(τ)) dτ

) (10)

This will, however, slightly worsen the performance of
the controller. How to select Kc and TI to obtain a
good compromise between the conflicting objectives of
sufficiently fast set-point tracking and good flow filtering
is not straightforward although McDonald et al. (1986)
give some guidelines. A very neat solution to this is to
formulate the filtering problem in an MPC framework as
in (Campo and Morari, 1989). By using a terminal state
constraint along with a sufficiently long prediction horizon
it is in fact possible to bring back the tank level to its set-
point without affecting the criterion. Both approaches do
however give a rather long settling time.

In the sequel we will refer to both the open and closed
loop formulation as the optimal controller.
Robust Averaging Level Control

This section briefly describes the robust closed loop
MPC approach to flow filtering taken in (Rosander et al.,
2011). To use the framework of robust MPC the model (1a)
first needs to be discretized. Under the assumption that
the inlet and outlet flows are constant during a sampling
time period of length Ts the discrete system is

x(k + 1) = x(k) + Tskv (qin(k)− u(k)) (11)



Optimal flow filtering while accounting for frequent inlet
flow upsets is obtained by minimizing ||u(k)− u(k − 1)| |∞
under the assumption that future inlet flows qin(k) are
bounded but can change in every sample. To mitigate the
feasibility problem associated with robust MPC the policy
proposed by (Löfberg, 2003) is used

u(k) =
∑
i≤k

lk,iqin(i) + v(k) = Lkqin + v(k) (12)

where Lk = (lk,0, lk,1, . . . , lk,k, 0, . . . , 0) and qin =
(qin(0), qin(1), . . . , qin(N))T . As shown in (Goulart et al.,
2006) the set of admissible states using (12) (with i ≤ k−1)
is equivalent to the one using u(k) = lkx(k). The reason
for using the policy (12) instead of state feedback is that
it gives a convex optimization problem

min
L0:N,v(0:N)

max
qin(1:N)

||(Lk−Lk−1)qin+v(k)−v(k−1)||∞

subject to
x(k + 1) = x(k) + Tskv (qin(k)− u(k))
x(0), qin(0), L−1, v(−1) known
x(k) ∈ [xmin, xmax] ∀qin(k) ∈ [qmin, qmax]

qin(k), u(k) ∈ [qmin, qmax]

(13)

where the initial condition should be interpreted as
L−1 = 0 and v(−1) equal to u(0) from the last sampling
instance. That qin(k) is known when u(k) is decided is mo-
tivated by the fact that the MPC controller runs at a lower
sampling frequency than the inlet flow measurements.

Note that the affine mapping of past disturbances, (12),
is not the actual control law but serves to obtain feasibility.
The control used is still receding horizon MPC.

The behavior of the robust MPC controller, illustrated
in Figure 2, is different from earlier approaches to averag-
ing level control as it does not return the tank level to 50%
following an inlet flow upset. Instead the new steady state
tank level depends on the actual level of the inlet flow.
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Figure 2. Simulation of closed loop robust MPC with a
sampling period of one minute, a prediction horizon
of 60 minutes and kv = 1

10 .

Up to a prediction horizon of approximately 40 the
optimization can be solved within a couple of seconds
and could thus, in principal, be used for a real time
implementation. The controller does, however, not always
use a straight line (c.f. (3)) to even out flow imbalances,
see for example the steps at t = 3.33 and at t = 6.67. If
this behavior is indeed the optimal way of controlling while
being robust towards frequent inlet flow changes or a side
effect of the used policy (12) is not yet fully understood.
Evident is however, that the MPC controller cannot be

analytically analyzed. Instead we propose a robustification
of the optimal controller, which yields a controller that
in all essence behaves as the robust MPC while being
both simpler to implement and allowing for an analytical
analysis.
Robustified Optimal Controller

One way to robustify the optimal controller towards
frequent inlet flow changes, as suggested by (McDonald
et al., 1986), is to let xT depend on the size of the flow
imbalance but still bring back the tank level to xs = 50%.
To the authors’ understanding that must definitely add
robustness to the controller. We know however from the
exercise of applying robust closed loop MPC that to obtain
robustly optimal filtering performance, also the steady
state tank level should be adapted. A better strategy
would thus be to change both xT and xs. A simple way of
achieving this is to use an affine map according to

xT = xs = KSP qin(t) + bSP (14)
The parameters KSP and bSP can be calculated using
the fact that minimum and maximum inlet flow should
correspond to minimum and maximum tank level, see
Figure 2,

KSP =
xmax − xmin
qmax − qmin

bSP =
qmaxxmin − qminxmax

qmax − qmin

(15)

We will present the consequences using (14) have assuming
that the system is in steady state when the inlet flow
step occurs. This way the differences compared to the
optimal controller become more evident. The steady state
assumption yields that

x0 = KSP q0 + bSP
xT = xs = KSP q1 + bSP

(16)

It then follows that T is given by

T =
2(xT − x0)
kv(q1 − q0)

=

=
2 (KSP q1 + bSP − (KSP q0 + bSP ))

kv(q1 − q0)
=

2KSP

kv

(17)

which is constant regardless of the size of the flow im-
balance (c.f. (6) which depends on the size of the flow
imbalance). One effect of the robustification is thus that
all upsets are filtered equally fast. Using (17) we obtain
that for a flow imbalance, while in steady state, the open
loop policy is given by

u(t) =

q0 +
kv(q1−q0)

2KSP
t, t ∈

[
0, 2KSP

kv

)
q1, t ∈

[
2KSP

kv
, ∞

) (18)

Another effect of (14) is that the PI controller, at least
in theory, can be removed since the non-linear feed-
forward/feedback controller achieves x(t) → xT . The
behavior of (9) in the presence of noisy level and inlet flow
measurements has however not been fully investigated and
for a real life implementation it could thus be wise to keep
the PI controller. In this paper we will only use the non-
linear controller which for a step in steady state is given
by

u(x(t)) = q1 ±

√
(q1 − q0)2 −

(q1 − q0)
KSP

(x(t)− x0) (19)

Either one of (19) and (18) will be referred to as the robust
controller in the sequel.

To illustrate the different behavior obtained by using
(10) and (19) the system, using kv = 1h−1, is simulated for



an inlet flow step change from 50% to 60%, see Figure 3.
The PI controller in (10) is tuned to have a double pole in
− 1
λ with λ = 10 hours. The robust controller quickly filters

the upset and is ready to surge the next one. The optimal
controller on the other hand uses more tank capacity and
consequently also filters the upset better.
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Figure 3. Step responses to an inlet flow change from 50%
to 60% for the optimal controller, (10), (solid) and
the robust controller, (19), (dashed).

Inlet Flow Change when not in Steady State

Both the optimal and robust controller can easily
handle inlet flow steps also when the system is not in
steady state (ẋ(t) 6= 0). What really matters is the flow
imbalance qin(t) − u(t) which if the system is in steady
state is q1 − q0. For an upset at t = t′ when not in steady
state two changes to the previously presented derivation
are needed

q0 , u(t′)

x0 , x(t′)
(20)

Illustration of Robustness

To illustrate how the two controllers handle frequent
inlet flow changes we simulate the system for an inlet flow
sequence starting at 50% and making new steps of size
10% every five hours. A similar sequence actually occurs
for the feed in Figure 1 at t ∈ [30, 45]. The PI in (10)
was tuned with λ = 10 hours. Figure 4 shows the resulting
tank level, the outlet flow and the derivative of the outlet
flow. Initially the optimal controller performs better but its
performance deteriorates and the step from 70% to 80%
has to be very rapidly transferred to the outlet flow to
avoid level violation. 2 The robust controller on the other
hand filters all the upsets equally well. The combination
of the used tuning and inlet flow sequence exploits the
weakness of using a fixed set-point and a somewhat tighter
tuning would perform better. It is however the case that
for every PI tuning there exists an inlet flow sequence that
will yield a similar result as the one shown in Figure 4.

Evaluation of Flow Filtering Performance

The benefit of not returning to a fixed set-point when
filtering frequent flow steps in the same direction was
elaborated in the previous section. In this section we will
analyze the filtering performance of the controllers when
flow upsets are sparse.

For this comparison we will use the open loop descrip-
tions of the optimal and robust controller. Furthermore we
make some simplifying assumptions:
2 Other averaging controllers, such as a detuned PI controller
typically display better robustness towards frequent upsets, but at
the cost of worse flow filtering of infrequent upsets.
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Figure 4. The optimal controller (solid) and the robust
controller (dashed) for inlet flow steps of size 10%
every five hours and kv = 1.

(i) The effect the PI controller has on the criterion is
neglected but it is still assumed that the tank level
is brought back to the set-point. 3

(ii) We only consider one single inlet flow step change
and not, for example, a time-series description. The
system is assumed to be in steady state when the
step occurs.

(iii) In the derivations xmin, xmax, etc will be used but
when numerical values are presented 0% and 100%
are used if not stated otherwise.

Note that assumption (ii) is more restrictive for the opti-
mal controller than the robust one since it has considerably
longer settling time.

The assumption of steady state yields that the optimal
controller initially has the tank level at xs. In the analysis
we will assume that the set-point is right in between the
tank level boundaries

xs =
xmax + xmin

2
(21)

It then follows that T for the optimal controller is given
by

T =
xmax − xmin
kv|q1 − q0|

(22)

Furthermore the construction ofKSP and bSP implies that
xmax = KSP qmax + bSP
xmin = KSP qmin + bSP

(23)

which together with (17) or (22) gives the criteria

JROB =
kv

2KSP
|q1 − q0|

JOPT =
kv

KSP (qmax − qmin)
(q1 − q0)2

(24)

The subscripts ROB and OPT are used to refer to the
robust and the optimal controller respectively.

Known q0 and q1
Let us start the comparison by considering some fixed

values of q0 and q1. In Table 1 the performance for three
combinations are shown. The control scheme which uses
the larger part of the tank to surge the upset also obtains
the best flow filtering. In the last case both controllers use
3 For the MPC formulation of (Campo and Morari, 1989) this can
be fulfilled.



Table 1. Performance of the optimal and robust
controller for some fixed inlet flow steps using

kv = 1.

q0 q1 JROB JOPT

20% 40% 10 4
20% 90% 35 49
30% 80% 25 25

the same tank volume (50%) and thus also obtain equal
performance.

Expected Performance for Random q0 and q1
We will in this section analyze the statistically expected

performance of the two controllers. To follow standard
mathematical notation we will let Q0 and Q1 be random
variables and q0 and q1 be actual realizations of these ran-
dom variables. The average performance of the controllers
is then given by

E [J(Q0, Q1)] =

∞∫
−∞

∞∫
−∞

J(q0, q1)ϕ(q0, q1)dq0dq1 (25)

where J(q0, q1) is either JROB or JOPT and ϕ(q0, q1) is
the joint probability density function of Q0 and Q1. To
clarify: We do not assume a stochastic process describing
qin(t) but will still consider step changes to the inlet flow
but with the addition that when the step occurs it is
distributed according to the distribution ϕ(q0, q1).

Let us investigate the case where Q0 and Q1 are
independently distributed

ϕ(q0, q1) = ϕQ0
(q0)ϕQ1

(q1) (26)
and all values between qmin and qmax are equally probable.
This corresponds to that Q0 and Q1 are independently
uniformly distributed

ϕQ0(q0) = ϕQ1(q1) =
1

qmax − qmin
(27)

Starting with the optimal controller we obtain

E [JOPT ] =
kv

KSP (qmax − qmin)
×

qmax∫
qmin

qmax∫
qmin

(q1 − q0)2
1

qmax − qmin
1

qmax − qmin
dq0dq1 =

=
kv(qmax − qmin)

6KSP
(28)

and analogously for the robust controller

E [JROB ] =
kv

2KSP
×

qmax∫
qmin

qmax∫
qmin

|q1 − q0|
1

qmax − qmin
1

qmax − qmin
dq0dq1 =

/ qmax∫
qmin

|q1 − q0|dq0 =

q1∫
qmin

(q1 − q0)dq0 +
qmax∫
q1

(q0 − q1)dq0

/

=
kv(qmax − qmin)

6KSP
(29)

Surprisingly the two controllers achieve the same perfor-
mance. We know from Table 1 that the robustified con-
troller performs better for larger upsets while the optimal
one is better for smaller ones. Obviously if we average over

all possible values the controllers’ performances become
equal.

The assumption of independently uniformly distributed
Q0 and Q1 does admittedly not describe real data par-
ticularly well. Typically there exists some conditioning,
e.g., (26) does not hold, and values & 60% are often more
likely since factories typically are run close to their maxi-
mum capacity. It is, however, difficult to provide a general
description of such distribution but for a specific problem
ϕ could of course be estimated from historical data and
(25) used to obtain an indication of which controller that
is preferable.
Optimal Model Predictive Control

The discrete time formulation of the optimal level
control derived in (Campo and Morari, 1989) will be used
in the results section and is therefore briefly presented with
the notation used in this paper. Following a step from q0
to q1 the optimal control law is{

u(k + 1) = u(k) + u?, |u0| ≤ |u?|
u(k + 1) = u(k) + u0, |u0| > |u?| (30)

where
u? =

2(q1 − q0)
k? + 1

− 2(xT − x0)
kvTsk?(k? + 1)

(31)

k? =

⌈
2(xT − x0)
kvTs(q1 − q0)

⌉
(32)

and
u0 =

2(q1 − q0)
N + 1

+
2(x(k)− xs)
kvTsN(N + 1)

(33)

where N is the prediction horizon used in the MPC
formulation (c.f. (13)) and d e means rounding to the
nearest larger integer. By selecting N such that

N ≥ Ncrit =
1

2|u?|
(
2|q1 − q0|+

√
α
)

(34)

where

α = (|u?| − 2|q1 − q0|)2 +
8

kvTs
|(x0 − xs)u?| (35)

it is possible to bring back the tank level to 50% without
affecting the criterion. To handle a step when not in steady
state the changes presented in (20) apply. Note that the
above formulation does not explicitly consider limitations
on u(k). If this is incorporated there does not exist an
explicit solution to the optimization problem.
Simulation Results

Using kv = 1 the system was simulated for the feed
shown in Figure 1. To limit the computational burden
(especially for the robust MPC controller) the data was
however down-sampled to one hour intervals. The robust
controller was compared to the continuous and the dis-
crete time optimal controller as well as the robust MPC
controller.

An extensive search was made to find the λ for the PI in
(10) which minimized the criterion for the considered inlet
flow sequence. Similarly the optimal prediction horizon,
N , was found for the optimal predictive controller. These
values were λ? = 4.5 and N? = 3.8 hours. The optimal
MPC controller was also simulated using an adaptive
prediction horizon. For every flow imbalance (34) was
evaluated andN = Ncrit was used. That way the controller
brings back the tank level as fast as possible without
affecting the criterion. The robust MPC used a prediction
horizon of 20 hours and was implemented using YALMIP,
(Löfberg, 2004).

The quantitative performance of the controllers are
summarized in Table 2 where we see that almost all



controllers perform equally well. The use of N = Ncrit
gives however too long a settling time and has to transfer
the steps at t ≈ 46 and t ≈ 160 very abruptly to
avoid violating the level constraints. Note that the tuning
using λ? and N? is optimal for the considered inlet
flow sequence and for another feed realization the control
performance will typically deteriorate. This deterioration
can be quite significant, for example, using λ ≥ 5.5 for the
feed in Figure 1 even leads to violation of the tank level
constraints. The qualitative behavior of the controllers is

Table 2. Tuning and performance criteria for
the different controllers.

Controller Tuning max |u̇|
∫
u̇2dt

Optimal λ = λ? = 4.5 hours 21.1 2333
Robust KSP = 1, bSP = 0 21.5 3018

Optimal MPC1 N = Ncrit 2014 49061
Optimal MPC2 N = N? = 3.8 hours 21.0 3007
Robust MPC N = 20 hours 22.2 2600

illustrated in Figure 5 where the outlet and resulting tank
level for the optimal, robust and optimal MPC2 controller
for t ∈ [110, 135] is shown. The inlet flow for the present
time is shown (dotted) together with the outlet flows. At
t ≈ 117 we see one effect of the tuning λ?: When surging
the upset at t = 114 the controller all but empties the
tank. If the upset had been even the slightest larger the
level constraint had been violated.
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Figure 5. Outlet and tank level for the optimal MPC2

(solid), robust (dashed) and optimal (dash-dotted)
controllers.

Conclusions

Using insight gained from robust MPC, changes to the
optimal level controller to improve the filtering of frequent
inlet flow upsets, were proposed. The performance of the
robustified controller was shown to be comparable to that
of the optimal one even when inlet flow changes are sparse.
The robust controller does, however, not suffer from the
deterioration of performance associated with the optimal
controller for frequent inlet flow upsets.

Admittedly, the derived non-linear robust controller
may still be perceived as unnecessarily complex for a real
industrial implementation. Better alternatives, which we
are currently investigating, are probably an affine feedback
law relating level and valve opening or possibly a standard
PI but whose set-point is allowed to vary according to (14).
Another extension is to use knowledge of the distribution
of the inlet flow to develop application specific alternatives
to the affine mapping (15).
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Appendix A. Convergence of (9)

We will prove that x(t) → xT for the flow imbalance
q1 − q0, q1 > q0 which occurs at t = t′. The case q0 < q1
follows analogously. By the construction (20) we have that

x(t′) = x0

u(t′) = q0 < q1
(A.1)

Furthermore we assume that x(t′) = x0 < xT (which we
will show is fulfilled). When the step has occurred (1a)
gives that

ẋ(t) ∝ q1 −
(
q1 −

√
(q1 − q0)2 − (q1−q0)2

xT−x0
(x(t)− x0)

)
=√√√√(q1 − q0)2− (q1−q0)2

xT−x0︸ ︷︷ ︸
<0

(x(t)− x0) >
/

if x(t) < xT

/
>

√
(q1 − q0)2 − (q1−q0)2

xT−x0
(xT − x0) = 0

(A.2)
We thus have that x(t′) < xT , ẋ(t) > 0 if x(t) < xT and
that ẋ(t) = 0 if x(t) = xT . We thus have that x(t) → xT
monotonically. Provided that the controller is introduced
when the system is in steady state it follows from the
monotonicity that the assumption x0 < xT holds.


