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Abstract
In this paper, we overview recent advances towards the integration of process design, process control and process oper-
ability in separation and reaction/separation systems that were developed within our group at Imperial College. Based
on novel mixed integer dynamic optimization algorithms, a simultaneous strategy is presented featuring high fidelity
dynamic models, explicit consideration of structural process and control design aspects (such as number of trays, pairing
of manipulated and controlled variables) through the introduction of 0-1 variables, and explicit consideration of time-
varying disturbances and time-invariant uncertainties. The application of this strategy to two typical (a separation and
a reactive separation) systems is discussed.
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Introduction

The need to consider operability issues at an early phase
of process design is now becoming widely accepted in
both academia and industry. As a result of this, in recent
years, a number of methodologies and tools have been
reported for taking account of the interactions between
process design and process control, with well over fifty
publications since 1982 plus several international work-
shops and dedicated conference sessions (see Van Schi-
jndel and Pistikopoulos, 2000). Despite these develop-
ments, however, it is observable that a large proportion
of the work in this field:

• has concentrated on the application of metrics (e.g.,
condition number) that provide some measure of
a system’s controllability, but may not relate di-
rectly and unambiguously to real performance re-
quirements;

• relies on steady-state or simple, usually linear dy-
namic models for processes;

• does not account for the presence of both time-
varying disturbances and time-invariant (or rela-
tively slowly varying) uncertainties; and

• does not involve selection of the best process design
and the best control scheme, taking into account
both discrete and continuous decisions.

Van Schijndel and Pistikopoulos (2000) also put forward
a number of key challenges that lie ahead in the area
of Process Design for Operability. One such challenge
is the need for a rigorous and efficient solution of the
underlying optimization problem, which is at the heart
of the mathematical representation of the simultaneous
process and control design problem.
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The aim of this paper is to give a brief overview of
some recent advances, towards this endeavor, and its ap-
plication to typical separation and reactive separation
problems, carried out whithin our group at Imperial Col-
lege.

Simultaneous Design and Control Under
Uncertainty Framework

As discussed in Van Schijndel and Pistikopoulos (2000),
the problem of the integration of process design, pro-
cess control and process operability can be conceptually
posed as follows:

minimize Expected Total Annualized Cost (P)

subject to

Differential-Algebraic Process Model
Inequality Path Constraints
Control Scheme Equations
Process Design Equations
Feasibility of Operation (over time)
Process Variability Constraints

To determine Process and Control Design

A general, algorithmic framework for solving (P) was
proposed by Mohideen et al. (1996). Its steps, schemat-
ically shown in Figure 1, can be summarized as follows:

Step 1. Choose an initial set of scenarios for the un-
certain parameters.

Step 2. For the current set of scenarios, deter-
mine the optimal process and control design by solving
the (multi-period) mixed-integer dynamic optimization
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(MIDO) problem:

min
d,y,

u1
v,u2

v,...,uns
v

ns∑
i=1

wi.φ
(
ẋi(tf ),xi(tf ), zi(tf ),ut

i(tf ),

uv
i,νi(tf ),θi,d,y, tf

)
(1)

subject to

f
(
ẋi(t),xi(t), zi(t),ut

i(t),uv
i,νi(t),θi,d,y

)
= 0

c
(
xi(t), zi(t),ut

i(t),uv
i,νi(t),θi,d,y

)
= 0

g
(
ẋi(t),xi(t), zi(t),ut

i(t),uv
i,νi(t),θi,d,y

)
≤ 0

i = 1, ..., ns

where d includes the continuous process design variables
and controllers’ tuning parameters; y comprises the bi-
nary variables for the process and the control struc-
ture (corresponding to whether a manipulated variable
is paired with a particular controlled variable or not); uv

is the set of time-invariant operating variables; i is the
index set for the scenarios of the uncertain parameters θ;
ns is the number of scenarios; wi, i = 1, ..., ns, are dis-
crete probabilities for the selected scenarios (

∑ns
i=1 wi =

1); φ is a cost function; x(t) is the vector of differen-
tial states; z(t) is the vector of algebraic variables; ut(t)
denotes the set of time-varying manipulated (control)
variables; ν(t) represents the time-varying disturbances;
f = 0 and c = 0 represent the differential and algebraic
equations (DAEs), respectively, for the process and con-
trol system, for which consistent initial conditions are
given; and g ≤ 0 represents the set of constraints (end,
point and path) that must be satisfied for feasible oper-
ation.

Step 3. Test the process and control design from
Step 2 for feasibility over the whole ranges of the uncer-
tain parameters by solving the dynamic feasibility test
problem:

χ (d,y) = max
θ

min
uv

max
l∈L, t∈[0,tf ]

gl (·) (2)

subject to

f (ẋ(t),x(t), z(t),ut(t),uv,ν(t),θ,d,y) = 0

c (x(t),xa(t),ut(t),uv,ν(t),θ,d,y) = 0

If χ (d,y) ≤ 0, feasible operation can be ensured dy-
namically for all values of θ within the given ranges. In
this case, the algorithm terminates; otherwise, the so-
lution of Equation 2 identifies a critical scenario that is
added to the current set of scenarios before returning to
Step 2.

Remarks
1. If the active set formulation of Grossmann and

Floudas (1987) is used to solve (2), as proposed by

Design and Control Scheme
Optimal and Operable

Feasible

Infeasible

Initialization

Assume critical scenarios
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Determine Optimal Process and
Control Strucutre Design

Fix design and
control scheme

SolveTest for Feasibility over 
the Whole Ranges of the

Uncertain Parameters

Update
Critical

Scenarios

Figure 1: Decomposition algorithm of Mohideen
et al. (1996).

Dimitriadis and Pistikopoulos (1995) and Mohideen
et al. (1996), then the problem, like (1), corresponds
to a MIDO problem.

2. The formulation (P) is an exact closed-loop, dy-
namic analogue of the steady-state problem of op-
timal design with fixed degree of flexibility (Pis-
tikopoulos and Grossmann, 1988).

3. The solution strategy shown in Figure 1 and de-
scribed above, is a closed-loop dynamic analogue
of the flexible design algorithm of Grossmann and
coworkers (see Biegler et al., 1997, chapter 21).

4. Different control design criteria can be used for ex-
ample, decentralized PI-control, as discussed in Mo-
hideen et al., multivariable PI-control as discussed
in Kookos and Perkins (2000) or Q-parameterization
methods, as discussed in Swartz et al. (2000).

5. To date, the framework has been applied to single-
and double-effect (heat integrated) distillation sys-
tems (Mohideen et al., 1996), to rigorously modeled
double-effect systems (Bansal et al., 2000c), and an
industrial two column system (Ross et al., 1999),
but with control model simplifications, fixed discrete
decisions and simplification in the treatment of un-
certainty.

6. The integrated design and control problem requires
the solution of MIDO problem. Until recently, there
were no reliable methods for dealing with such prob-
lems. Therefore, it is still imperative to develop
rigorous theory and efficient methods to accomplish
this.

7. The proposed decomposition scheme, as shown in
Figure 1, requires the repetitive solution of two
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MIDO problems in the design and the feasibility
stage. It would be theoretically and computation-
ally advantageous to avoid this iterative procedure,
by solving in a single stage first, the feasibility prob-
lem and subsequently, the design problem, as it has
been done for steady state systems by Bansal et al.
(2000a). Currently, an endeavor is made towards
adopting such a conceptual approach for the inter-
actions of design and control under uncertainty and
any progress in that area will be reported in the
future.

In the next section an algorithm for solving mixed in-
teger dynamic optimization problems is outlined. This
algorithm is utilized in the simultaneous process and con-
trol design in the general case, where discrete decisions
about the design and control structure are considered.

Mixed-Integer Dynamic Optimization
(MIDO)

Optimal Control with the incorporation of binary vari-
ables, hence, Mixed Integer Dynamic Optimization
(MIDO), plays a key role in methodologies that address
the interactions of Design and Control (Mohideen et al.,
1996; Schweiger and Floudas, 1997; Bahri et al., 1997;
Kookos and Perkins, 2000). The simultaneous design
and control framework described in the previous section
involves the solution of MIDO problems in Steps 2 and
3. Moreover, MIDO is also encountered in several other
modeling and optimization applications of chemical and
process systems engineering. Avraam et al. (1999) used
MIDO for addressing the issue of optimization on hy-
brid systems and recently, Barton et al. (2000) discuss
the application of MIDO on the same area. Narraway
and Perkins (1994) posed the Control Structure Selection
problem in a Mixed Integer optimal control formulation.
MIDO has also been employed for the design of batch /
semi batch processes (Allgor and Barton, 1999; Barton
et al., 1998; Sharif et al., 1998), dynamic optimization
under uncertainty (Dimitriadis and Pistikopoulos, 1995;
Samsatli et al., 1998) and for the reduction of kinetic
mechanism models (Androulakis, 2000).

A number of algorithms have very recently started to
appear in the open literature for solving MIDO prob-
lems. A common approach is to decompose directly the
MIDO problem into a series of primal problems (up-
per bounds on the solution) and master problems (lower
bounds on the solution). The primal problems cor-
respond to continuous dynamic optimization problems
where the values of the binary variables are fixed. These
are commonly solved using control vector parameteriza-
tion (CVP) techniques, where only the time-varying con-
trol variables are discretized. According to those tech-
niques the differential system is initially integrated and
then the gradients are calculated either via parameter
perturbations or more accurately by integrating the sen-

sitivity (Vassiliadis et al., 1994) or adjoint (Sargent and
Sullivan, 1977) DAE system. The size of the sensitivity
equations is proportional to the optimization parameters
whereas the size of the adjoint system is approximately
proportional to the number of constraints.

The MIDO algorithms that employ CVP for the
primal problems mainly differ in how they construct
the master problems, where the latter correspond to
mixed-integer linear programs (MILPs) or non-linear
programs (MINLPs) whose solutions give new sets of bi-
nary values for subsequent primal problems. Generalized
Benders’ Decomposition-based (GBD-based) approaches
(Mohideen et al., 1997; Ross et al., 1998; Schweiger
and Floudas, 1997), Outer Approximation-based (OA-
based) approaches (Sharif et al., 1998), approaches based
on “screening models” (Allgor and Barton, 1999) and
“steady state models” (Kookos and Perkins, 2000) have
been developed. These MIDO algorithms tend to depend
on a particular type of method for integrating the DAE
system in the primal problems and require the solution
of a complex intermediate problem in order to construct
the master problem. In the case of Allgor and Barton
(1999) the method is case study-specific whereas the ap-
proach of Kookos and Perkins (2000) cannot in general
be applied to intrinsic dynamic systems such as batch
or semi-batch processes. In our approach, a variant of
the Generalized Benders decomposition (Geoffrion, 1972;
Floudas, 1995) method is employed for formulating the
master problem. This is described next.

Generalized Benders Decomposition Ap-
proach for the Solution of MIDO Prob-
lems

Consider a general MIDO formulation:

min
u,d,y

φ(ẋ(tf ), x(tf ), z(tf ), u(tf ), d, y, tf ) (3)

subject to

0 = f(ẋ(t), x(t), z(t), u(t), d, y, t)
0 = c(x(t), z(t), u(t), d, y, t)
0 = r(x(t0), ẋ(t0), z(t0), u(t0), d, y, t0)
0 ≥ g(ẋ(t), x(t), z(t), u(t), d, y, t)
0 ≥ q(ẋ(tf ), x(tf ), z(tf ), u(tf ), d, y, tf )

to ≤ t ≤ tf

Here, x ∈ <nx , z ∈ <nz are the vectors of the differen-
tial states and the algebraic variables respectively. The
vectors u ∈ <nu , d ∈ <nd represent the control and the
time-invariant design variables, whereas y ∈ {0, 1}ny is
the vector of the discrete binary variables. The functions
f , c and r represent the differential equations, the alge-
braic equations and their initial conditions respectively.
The objective function is denoted by φ and the path and
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end point constraints by g and q respectively. The bi-
nary variables y participate only in a linear form in the
objective function, the differential system and the con-
straints, since this is a necessary condition for applying
GBD to a mixed integer optimization problem.

The primal problem is constructed by fixing the bina-
ries to a specific value y = yk. Then the problem given
by Equation 3 becomes an optimal control problem that
is solved with control vector parameterization. The con-
trol variables u are discretized to time-invariant param-
eters. From now on, the new total set of optimization
variables will be denoted as v and includes the design
and the parameterized controls v = {u1, u2, .., uNu

, d}
v ∈ <nu·Nu+nd . The path constraints are converted to
end-point constraints by introducing additional differen-
tial equations (e.g., Sargent and Sullivan, 1977) and state
variables.

In GBD-based approaches the master problem is con-
structed using the dual information of the primal at the
optimum solution. The dual information is embedded
in the Lagrange multipliers µ of the constraints q and
the adjoint time-dependent variables λ(t), p(t) that are
associated with the differential system of equations, i.e.
f ,c. Despite the fact that the Lagrange multipliers are
calculated directly from the primal problem solution, the
evaluation of the adjoint variables requires an extra inte-
gration of the so-called adjoint DAE system. This differ-
ential system has the form (Bryson and Ho, 1975; Vas-
siliadis, 1993):

−
d{[∂f

∂ẋ ]T · λ(t)}
dt

= −[
∂f

∂x
]T · λ(t)− [

∂c

∂x
]T · p(t)

0 = −[
∂f

∂z
]T · λ(t)− [

∂c

∂z
]T · p(t)

(
∂f

∂ẋ
)T
tf
· λ(tf ) = −{(∂φ

∂x
)T
f + (µ)T · ( ∂q

∂x
)T
f

+ [(
∂f

∂x
)T (

∂c

∂x
)T ]f · ωf}

(4)

Equation 4 involves a backwards integration and can
be computationally expensive. After the adjoint func-
tions are calculated the master problem is constructed
and has the following form:

min
y,η

η (5)

subject to

η ≥ φ + (µk)T · q

+ (ωk
f )T ·

[
f
c

]
f

+ (ωk
0 )T

[
f
c

]
o

+ (ρk)T · r

+
∫ tf

to

[
λk(t)
pk(t)

]T

·
[

f
c

]
t

dt

k = 1,K k ∈ K

ρ, ωf and ω0 are multipliers that are evaluated from
the first order optimality conditions of the optimal con-
trol primal problem (Vassiliadis, 1993). The master
problem is a relaxation of the equivalent to the MIDO,
dual problem (Bazaraa et al., 1993) since the dual mul-
tipliers (Lagrange µ and adjoints λ, p) and the non-
complicating continuous variables (x,z,v) remain fixed.
The consecutive solutions of the master problem gener-
ate a series of supporting functions to the overall problem
under several convexity assumptions (Floudas, 1995). If
those assumptions do not hold the relax master problem
might rule out parts of the feasible region where several
local optima could lie decreasing the probability of de-
tecting the global minimum. Nevertheless, the method
ensures local optimality in the sense that when the in-
tegers are fixed the primal problem converges to a local
solution in the space of continuous variables (primal ≡
valid upper bound).

The only variables that vary in the master problem are
the binaries and the objective. The binaries participate
in a linear form in the primal and master problems. As
a result the master problem is an MILP and its solution
apart from being lower bound to the MIDO problem also
provides a new integer realization. If the lower bound
evaluated at the master and the upper bound calculated
in the primal cross then the solution is found and is equal
to the upper bound, whereas if they do not cross the new
integer set is augmented to the primal problem and the
algorithm recommences.

The extra computationally demanding adjoint integra-
tion (Equation 4) limits the applicability of the method
and renders the algorithm difficult to implement. Mo-
hideen et al. (1997); Ross et al. (1998) employed a special
numerical integration procedure for the primal dynamic
optimization problem that brings some benefits in the
adjoint calculation. However, these approaches restrict
considerably the choice of primal solution techniques.

Recent developments in our group (Bansal et al.,
2000b) show that the adjoint DAE system solution pro-
cedure can be eliminated by introducing an extra set of
continuous optimization variables yd, in the primal prob-
lem, that are fixed according to the equality constraint:
yd − yk = 0. This gives rise to the following primal op-
timal control problem:

min
v,yd

φ(ẋ(tf ), x(tf ), z(tf ), v, yd, tf ) (6)

subject to

0 = f(ẋ(t), x(t), z(t), v, yd, t)
0 = c(x(t), z(t), v, yd, t)
0 = r(x(t0), ẋ(t0), z(t0), v, yd, t0)
0 ≥ q(ẋ(tf ), x(tf ), z(tf ), v, yd, tf )

0 = yd − yk

to ≤ t ≤ tf
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The master problem is constructed in a similar mode:

min
y,η

η (7)

subject to

η ≥ φ(ẋk(tf ), xk(tf ), zk(tf ), vk, yk
d , tf )

+ (µk)T · q(ẋk(tf ), xk(tf ), zk(tf ), vk, yk
d , tf )

+ (ωk
f )T ·

[
f
c

]
f

+ (ωk
0 )T

[
f
c

]
o

+ (ρk)T · r

+
∫ tf

to

[
λk(t)
pk(t)

]T

·
[

f
c

]
t

dt

+ Ωk(yk
d − y)

k = 1,K k ∈ K

In the new primal formulation, Equation 6, the differ-
ential algebraic equations and the constraints do not in-
clude binaries any longer. Therefore at the master prob-
lem their associated terms are equal to zero due to the
exact satisfaction of the DAE system and the comple-
mentarity conditions that apply to the constraints. By
removing then those terms the master problem is simpli-
fied to the equation:

min
y,η

η (8)

subject to

η ≥ φ(ẋk(tf ), xk(tf ), zk(tf ), vk, yk
d , tf )

+ Ωk(yk
d − y)

k = 1,K k ∈ K

In the modified equivalent master problem, Equa-
tion 8, all the terms are calculated at the solution of
the primal problem and no adjoint calculations are re-
quired. Additionally, the formulation of the problem is
considerably simplified compared to the original master
problem structure of Equation 5.

However, the additional continuous optimization vari-
ables and the additional constraints may increase the
computational effort for solving the primal problem while
they may also introduce extra model complexity. There-
fore, initially the primal is solved in its original form
(Equation 3 with fixed binaries) and then a resolve ses-
sion precedes the master problem where one additional
optimization iteration is performed on the modified pri-
mal (Equation 6).

If the primal problem is infeasible the constraints are
relaxed and a feasibility optimization problem is solved.
The corresponding master problem is modified accord-
ingly (Floudas, 1995; Mohideen, 1996). Integer cuts in
the master problem formulation can also be included to
exclude previous primal integer solutions.

The steps of the algorithm are briefly summarized be-
low:

• Fix the values of the binary variables, y = yk,
and solve a standard dynamic optimization prob-
lem (Equation 3, kth primal problem). An upper
bound, UB, on the solution to the MIDO problem
is obtained from the minimum of all the primal so-
lutions obtained so far.

• Re-solve the primal problem at the optimal solution
(Equation 6) with additional constraints of the form
yd − yk = 0, where yd is a set of continuous search
variables and yk is the set of (complicating) binary
variables. Convergence is achieved in one iteration.
Obtain the Lagrange multipliers, Ωk, corresponding
to the new constraints.

• Construct the kth relaxed master problem from the
kth primal solution, φk, and the Lagrange multi-
pliers, Ωk (Equation 8). This corresponds to the
mixed-integer linear program (MILP) The solution
of the master, ηk, gives a lower bound, LB, on the
MIDO solution. If UB−LB is less than a specified
tolerance ε, or the master problem is infeasible, the
algorithm terminates and the solution to the MIDO
problem is given by UB. Otherwise, set k = k + 1,
yk+1 equal to the integer solution of the master, and
return to step 1.

The main advantage of the algorithm is that, even when
the binary variables y participate within the DAE sys-
tem (as they do for the distillation example presented
later in this paper), the master problem does not require
any direct dual information with respect to the DAE sys-
tem and so no intermediate adjoint problem is required
for its construction. The master problem, Equation 8,
also has a very simple form compared to when adjoint
variables are required (Mohideen et al., 1997; Schweiger
and Floudas, 1997). Furthermore, the MIDO approach
is independent of the type of method used for solving the
dynamic optimization primal problems.

It should be noted, however, that since the algorithm
is based GBD principles, shares the limitations of most
decomposition methods. In particular, although a locally
optimal solution is guaranteed when the integer variables
are chosen as the complicating variables, the convexity
conditions required for the algorithm to converge to the
global optimum will not be satisfied by most process en-
gineering problems. Investigation into the quality of so-
lutions obtained from such MIDO algorithms is a current
active research area.

Illustrative example
The application of the mentioned algorithm for solv-
ing Mixed Integer Dynamic Optimization problems is
demonstrated through a process example that is taken
from the MINOPT User’s Guide (Schweiger et al., 1997).
The case study examines a distillation column (Figure 2)
that has a fixed number of trays and the objective is to
determine the optimal feed location (discrete decision),
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Figure 2: Illustrative example.

No Iterations 1 2 3 4
Primal
Feed Loc. 20 26 24 25
V (kmol/min) 1.223 1.783 1.411 1.543
R (kmol/min) 0.684 1.243 0.871 1.002
ISE 0.1991 0.1827 0.183 0.1817
UB 0.1991 0.1827 0.1827 0.1817
Master
Feed Loc. 26 24 25 23
LB 0.158 0.1813 0.1815 0.185
Equivalent Number of Simulations 298

Table 1: Results on illustrative MIDO example.

vapor boil-up, reflux flow rate (continuous decisions) in
order to minimize the integral square error (ISE) be-
tween the bottoms and distillate compositions and their
set-points. Several model assumptions are made in the
model, such as: (i) constant liquid hold ups, (ii) constant
relative volatility, (iii) no pressure drops, (iv) negligible
vapor hold-ups. The system is initially at steady state
and the dynamics are caused by a stepwise variation in
the feed composition. Additionally, two constraints are
necessary to be satisfied at the end of the time hori-
zon, these being on the top and bottoms compositions
(xd ≥ 0.98, xb ≤ 0.02). The proposed algorithm was ap-
plied in this example (Bansal, 2000) and produced the
same results as Schweiger et al. (1997) that appear in
Table 1.

Two more algorithms for solving MIDO problems are
discribed in the Appendix. The first one also employs
the GBD principles and aims at reducing even further
the computational requirements of the MIDO approach
whereas the other is based on Outer approximation for
dealing with the binary variables and is expected to
converge in less iterations between primal and master
problems. However, it should be noted that those algo-

rithms are still under development from an implementa-
tion point of view, therefore, they have not been applied
to the simultaneous process and control design problem.

Process Examples

Next, two examples are presented that illustrate the
characteristics of the framework for the integration for
process and control design. The first one includes pro-
cess and control discrete decisions and for that reason it
utilizes extensively the developed MIDO approach. In
the second example discrete degrees of freedom are not
considered.

Distillation System—(Benzene Toluene)

Here, an example is presented for demonstrating the
features of the simultaneous process and control de-
sign framework and the utilization of mixed integer dy-
namic optimization within this framework. This exam-
ple has been solved by Bansal et al. (2000b). The sys-
tem under consideration, adapted from one presented by
Viswanathan and Grossmann (1999), is shown in Fig-
ure 3. A mixture of benzene and toluene is to be sep-
arated into a top product with at least 98 mol% ben-
zene and a bottom product with no more than 5 mol%
toluene. The system is subject to uncertainty in the feed
flow rate and the cooling water inlet temperature (where
the latter can be described dynamically by a slow sinu-
soid representing diurnal, ambient variations), as well
as a high-frequency sinusoidal disturbance in the feed
composition. The objective is to design the distillation
column and its required control scheme at minimum to-
tal annualized cost (comprising capital costs of the col-
umn, internals and exchangers, and operating costs of
the steam and cooling water utilities), capable of fea-
sible operation over the whole of a given time horizon,
where feasibility is defined through the satisfaction of
constraints such as product quality specifications; mini-
mum column diameter requirement due to flooding; frac-
tional entrainment limit; temperature driving forces in
the reboiler and condenser; limit on the heat flux in the
reboiler; limit on the cooling water outlet temperature;
above atmospheric pressure operation for the column;
limits on the liquid levels in the reflux drum and re-
boiler; and limits on the flow rates of steam and cooling
water. Solution of the problem thus requires the determi-
nation of (i) the optimal process design, in terms of the
number of trays and feed location (discrete decisions),
and the column diameter, condenser and reboiler surface
areas (continuous decisions); and (ii) the optimal con-
trol design, in terms of the pairings of manipulated and
controlled variables (discrete decisions), and the tuning
parameters for the given control structure (continuous
decisions).
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Figure 3: Distillation example.

Modeling Aspects. Due to the complexity and
highly constrained nature of the problem described
above, it is likely that a simplified dynamic model using
“traditional” assumptions (such as constant molal over-
flow, relative volatility, liquid and vapor hold-ups) will
be inadequate for realistically portraying the operabil-
ity characteristics of the distillation system over time.
A rigorous model is thus developed along similar lines
to that used by Bansal et al. (2000c); however here, bi-
nary variables yfk and yrk are incorporated in order to
account for the locations of the feed and reflux trays, re-
spectively, where yfk = 1 if all the feed enters tray k, and
is zero otherwise, and yrk = 1 if the reflux enters tray
k, and is zero otherwise. This leads to a mixed-integer
dynamic distillation model that is considerably more de-
tailed than those that have already been reported (Mo-
hideen et al., 1996; Schweiger and Floudas, 1997). The
principal differential-algebraic equations (DAEs) for the
trays are given below. A full list of nomenclature, values
of the parameters, details of the DAEs for the reboiler,
condenser and reflux drum, cost correlations for the ob-
jective function and inequality path constraints, can be
found in Bansal (2000).

For k = 1, ..., N , where N is an upper bound on the
number of trays required, and i = 1, ..., NC, where NC
is the number of components:

Component molar balances:

 N∑
k′=k

yrk′

 · dMi,k

dt
= Lk+1 · xi,k+1 + Vk−1 · yi,k−1

+ Fk · zi,f + Rk · xi,d − Lk · xi,k − Vk · yi,k.

Molar energy balances: N∑
k′=k

yrk′

 · dUk

dt
= Lk+1 · hl

k+1 + Vk−1 · hv
k−1

+ Fk · hf + Rk · hl
d − Lk · hl

k − Vk · hv
k.

Component molar hold-ups:

Mi,k = M l
k · xi,k + Mv

k · yi,k.

Molar energy hold-ups:

Uk = M l
k · hl

k + Mv
k · hv

k − 0.1 · Pk · V oltray.

Volume constraints:

M l
k

ρl
k

+
Mv

k

ρv
k

= V oltray.

Definition of Murphree tray efficiencies:

yi,k = yi,k−1 + Effi,k ·
(
y∗i,k − yi,k−1

)
.

Effi,k = ai,k + (1− ai,k) ·
k∑

k′=1

yrk′ .

Equilibrium vapor phase composition:

Φv
i,k · y∗i,k = Φl

i,k · xi,k.

Mole fractions normalization:

NC∑
i=1

xi,k =
NC∑
i=1

yi,k = 1.

Liquid levels:

Levelk =
M l

k

ρl
k ·Atray

.

Liquid outlet flow rates:

Lk = 110.4 · ρl
k · Lengthweir · (Levelk −Heightweir)

1.5
.

Pressure driving force for vapor inlet:

Pk−1 − Pk = 1e− 5 ·

 N∑
k′=k

yrk′


·
(
α · vel2k−1 · ρ̃v

k−1 + β · ρ̃l
k · g · Levelk

)
.

Vapor velocities:

velk−1 =
1
60

·
(

Vk−1

ρv
k−1 ·Aholes

)
.

Fractional entrainment for 80% flooding factor:

entk = 0.224e− 02 + 2.377 · exp
(
−9.394 · FLV 0.314

k

)
.
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Sherwood flow parameter:

FLVk =
L̃k

L̃k

·
(

ρ̃v
k

ρ̃l
k

)0.5

.

Flooding velocity:

velflood
k = 60 ·

(
σl

k

20

)0.2

·K1k ·
(

ρ̃l
k − ρ̃v

k

ρ̃v
k

)0.5

.

Empirical coefficient:

K1k = 0.0105+0.1496·Space0.755·exp
(
−1.463FLV 0.842

k

)
.

Minimum allowable column diameter and area:

Dmin
col,k =

(
4 ·Amin

col,k

π

)0.5

.

Amin
net,k = 0.9 ·Amin

col,k.

Amin
net,k =

Vk

ρv
k · Floodfrac · velflood

k

.

Feed and reflux flow rates to each tray:

Fk = F · yfk.

Rk = R · yrk.

Only one tray each receives feed and reflux; feed must
enter below reflux:

N∑
k=1

yfk =
N∑

k=1

yrk = 1.

yfk −
N∑

k′=k

yrk′ ≤ 0.

The complete distillation model constitutes a
system of [N (7NC + 27) + 15NC + 56] DAEs in
[N (7NC + 27) + 15NC + 64] variables (after specifi-
cation of the feed and utilities’ inlet conditions), of
which [N(NC + 1) + 3NC + 5] are differential state
variables. For the case study in this paper with N = 30
and NC = 2, there are 1316 DAEs in 1324 variables
(101 states). The remaining eight variables consist of
the three continuous design variables for optimization
(column diameter, surface areas of the reboiler and the
condenser), and the five manipulated variables (reflux,
distillate, cooling water, steam and bottoms flow rates),
whose values are determined by the tuning parameters
of the control scheme used.

Application of the Framework.

Step 1. An initial set of two scenarios, [6, 6.6], is cho-
sen with weights [0.75, 0.25]. These correspond to the
nominal and upper values, respectively, of the feed flow
rate.

Step 2. Since the distillation column does not op-
erate at very high purity, advanced control techniques
are not required, and so multi-loop proportional-integral
(PI) controllers are considered. For the purposes of this
study, the control structure is considered to be a square
system of measured and manipulated variables. The pos-
sible manipulated variables are: the reflux flow, R, the
distillate flow, D, the cooling water flow, Fw, the steam
flow, Fs and the bottoms flow, B. The set of the mea-
sured variables consists of: the distillate composition,
xd, the liquid level in the reflux drum, Leveldrum, the
pressure of the condenser, Pcond and the bottoms com-
position, xb. The pairing between those variables, how-
ever, which is not known a priori, is treated as a discrete
decision about the control design and is left to be deter-
mined through the optimization. One integer variable,
yk, is assigned to each possible control pairing and the
modeling of the control structure selection is carrying
out similarly to Narraway and Perkins (1994).

The MIDO problem (1) for this example consists of
approximately 2700 DAEs and 216 inequality path con-
straints, with 85 binary search variables (thirty for the
feed, thirty for the reflux location and twenty five for
the control structure selection) and 18 continuous search
variables (column diameter, surface areas of the reboiler
and condenser, and gains, reset times and set-points for
each of the five control loops). The problem was solved
using the algorithm outlined in the section Mixed Inte-
ger Dynamic Optimization, with gPROMS/gOPT (PSE,
1999) used for solving the dynamic optimization primal
problems and GAMS/CPLEX (Brooke et al., 1992) for
the MILP master problems.

Step 3. In this example there are no time-invariant
operating variables, and so the dynamic feasibility test,
Equation 2, reduces to a conventional dynamic optimiza-
tion problem with a single maximisation operator in the
objective. Testing the design and control system result-
ing from Step 2 gives χ = 0, indicating that there are no
more critical scenarios, so the algorithm terminates.

Table 2 shows the iterations carried out between the
Primal & the Master Problems. The economically opti-
mal process and control design that gives feasible opera-
tion for all feed flow rates in the range 6-6.6 kmol min−1

is summarized in Tables 3 and 4. Table 3 also compares
the process design with the optimal steady-state, but dy-
namically inoperable, nominal and flexible designs. The
latter was obtained through application of the analogous,
steady-state algorithm to that described in §2 (Biegler
et al., 1997). It can be seen that in order to accommodate
feed flow rates above the nominal value of 6 kmol min−1

requires more over-design when the dynamic behavior of
the system is accounted for than when only steady-state
effects are considered. This illustrates a weakness of con-
sidering design and control in a sequential manner.

Figures 4 and 5 show the dynamic simulations of the
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Iteration Number 1 2 3 4 5
Primal Problem Solution

Discrete decisions
No. of Trays 25 24 23 22 24
Feed Tray 15 14 13 13 13

Control Scheme∗ 2 1 1 1 1
Process design

Dcol (m) 2.03 1.99 1.99 2.00 2.00
Sreb (m2) 127.6 134.2 140.0 138.9 138.0
Scond (m2) 91.45 85.03 84.13 84.02 85.78

Controllers’ gains
Kt,1 (x1,d) 6.70 33.74 48.85 70.00 32.10
Kt,2 (Ld) -105.0 -41.29 -18.64 -24.55 -25.39
K3,3 (Pc)† -28.00 -31.44 -29.24 -26.57 -36.16
Kt,4 (x1,b) 9.71 -2.22 -2.38 -3.37 -0.93
Kt,5 (L0) -1042 -600.0 -560.1 -580.5 -550.0
Reset times

τt,1 160.0 87.3 100.0 143.2 77.2
τt,2 530.0 568.2 568.9 568.9 684.5
τt,3 9935 3483 3615 5032 2809
τt,4 2325 59.8 66.3 61.7 150.6
τt,5 663.6 693.7 662.1 664.2 695.2

Set-points
set1,1 0.9883 0.9849 0.9843 0.9835 0.9853
set1,2 0.5368 0.0668 0.0773 0.0746 0.0703
set1,3 1.1944 1.2800 1.3022 1.3164 1.2694
set1,4 0.0182 0.0223 0.0250 0.0293 0.0179
set1,5 0.6002 0.8995 0.8994 0.8980 0.8995
Costs

($100k yr−1)
Capital 1.941 1.883 1.858 1.823 1.894

Operating(1)‡ 6.367 6.268 6.287 6.334 6.269
Operating(2)§ 7.220 7.122 7.136 7.194 7.097

Expected 8.521 8.364 8.357 8.372 8.370
UB 8.521 8.364 8.357 8.357 8.357

Master Problem Solution
No. of Trays 24 23 22 24 22
Feed Tray 14 13 13 13 11

Control Scheme 1 1 1 1 1
LB 8.242 8.282 8.341 8.355 8.357

UB − LB ≤ 1e− 4 No No No No Yes
STOP

∗Control scheme 1: R− x1,d, D − Leveld, Fw − Pc, Fs − x1,b, B − Level0.
∗Control scheme 2: R− x1,d, D − Leveld, Fw − Pc, B − x1,b, Fs − Level0.
†For K3,3, the cooling water flow rate is scaled (0.01 Fw).
‡Nominal feed flow F = 6kmolmin−1.
§Feed flow upper bound F = 6.6kmolmin−1.

Table 2: Progress of iterations for the multi-period MIDO design and control problem.
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Figure 4: Controlled distillate composition at feed
flow rate of 6.6 kmol min−1.
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Figure 5: Controlled bottoms composition at feed
flow rate of 6.6 kmol min−1.

controlled compositions, that are given as part of the so-
lution of the MIDO problem. Notice how one of the com-
positions, in this case the distillate, is tightly controlled
relative to the other (in fact, the bottoms composition
loop is open—see Table 4). This effect of controlling both
compositions with one tight loop and one loose loop is
due to the negative interaction of the two control loops,
and is a common feature of distillation control reported
in the literature (Kister, 1990).

Variable
SS

nominal
SS

flexible Dynamic

No. of trays 23 23 26
Feed location 12 12 14
Dcol (m) 1.82 1.91 1.99
Sreb (m2) 113 116 134
Scond (m2) 83 83 88

Capital cost 169 175 195
Operating cost 591 607 641
Total ($ k yr−1) 760 782 836

Table 3: Steady-state vs. dynamically operable de-
sign.

Loop K τ (min) Set-point
R− xd 5.10 25.69 0.9867
D − Leveldrum -39.29 566.41 0.5187
Fw − Pcond -44.81 7766.61 1.2183
Fs − xb 0 250 0.0110
B − Levelreb -501.93 663.96 0.8997

Table 4: Control design from simultaneous frame-
work.

Reactive Distillation System—(Production of
ethyl-acetate)

Here the problem that is considered is the production of
ethyl acetate from the esterification of acetic acid and
ethanol, as shown in Figure 6 (Georgiadis et al., 2000,
2001). The saturated liquid mixture is fed at a rate
of 4885 mol/h in order to produce a top product with
at least 0.52% ethyl acetate composition and a bottom
product of no more than 0.26% ethyl acetate. Reaction
takes place in all 13 trays of the column. The objective
is then to design the column and the control scheme at
minimum total cost, able to maintain feasible operation
over a finite time horizon of interest (24 hours); sub-
ject to (i) high-frequency sinusoidal disturbances in the
acetic acid inlet composition; (ii) “slow-moving” distur-
bance in the cooling water inlet temperature; (iii) prod-
uct quality specifications; (iv) flooding, entrainment and
minimum column diameter requirements; (v) thermody-
namic feasibility constraints for the heat exchangers and
(vi) operating pressure limits for the column.

The basis of the detailed model has been presented
in our previous work (Schenk et al., 1999). The model
includes details that are normally neglected, such as:

• Detailed flooding and entrainment calculations for
each tray and ’subsequent’ calculation of ’critical’
points in the column and the minimum allowable
column diameter.

• Equation for the pressure drop for each tray
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Figure 6: Schematic illustration of the reactive dis-
tillation system.

• Liquid hydraulics and liquid level on each tray and
in the auxiliary units by using modified Francis weir
formulae.

• The liquid-vapour equilibrium has been represented
accurately using non-ideal models.

The model and its steady-state analogue have been im-
plemented within gPROMS (PSE, 1999).

Sequential Design. A systematic sequential design
and control approach is first carried out. The nominal
and flexible steady-state designs are initially obtained via
an optimization based approach. The nominal column
design obtained is not feasible for the whole range of un-
certain cooling water temperatures. The flexible design
is obtained by applying a steady-state multiperiod ap-
proach that corresponds to equation (1). Three degrees
of freedom (reflux ratio, steam flow rate and cooling wa-
ter flow rate) can, in principle, be adjusted to offset the
effects of the uncertainty. The following cases were con-
sidered (i) all three degrees of freedom allowed to vary
(“best-case” design) and (ii) no degrees of freedom al-
lowed to vary (“worst-case” design). The different opti-
mal designs and resulting annual costs for the nominal
and the two cases considered are shown in Table 5. Note
that D refers to column diameter and S refers to the sur-
face area of the heat exchange coil in the reboiler, Reb,
or the condenser, Cond.

Both, the “best-case” and the “worst-case” flexible
designs were dynamically tested in the presence of the
sinusoidal feed composition disturbance and the “slow-
moving” profile for the cooling water inlet temperature
which ranges between suitable lower and upper bounds.
As expected, there were a large number of constraints
violations for both designs, and so they both require a

Design Variable Nominal Case 1 Case2

D (m) 6.09 6.09 6.12
SReb(m

2) 280 286 325
SCond(m2) 417 458 498

Capital Cost ($ myr−1) 0.45 0.46 0.47
Operating Cost ($ myr−1) 3.95 3.99 4.35
Total Cost ($ myr−1) 4.40 4.45 4.82

Table 5: Comparison of different designs for the re-
active distillation example.

control scheme in order for feasibility to be maintained.
The control structure considered here has been proven to
be stable and exhibit satisfactory performance. The con-
trol loops are (R−Xd), (Fstream−Xb) and (Fwater−Pc)
where R is the reflux ratio, Fstream is the steam flowrate
and Fwater the cooling water flowrate. Finally, xd and xb

are the distillate and bottom compositions and the pres-
sure in the condenser. The dynamic equations of the
PI controllers are properly incorporated into the model.
No set of controller’s tuning parameters (gains, reset
times, set-points and biases) could be found for either
design that would enable all the system constraints to
be satisfied over the entire time horizon. In particular
the “best-case” design produced large constraint viola-
tions whereas the “worst-case” design exhibit the major
operability bottleneck in the minimum column diame-
ter requirements that are related to flooding. Then only
the minimum column diameter was modified accordingly
and a new steady-state flexible design was obtained.

The next step in the sequential design approach is to
identify the optimal tuning of the controller’s gains, reset
times, set-points and biases keeping the modified “worse
case” design fixed and optimizing the total annualized
cost of the system over a fixed time-horizon. The oper-
ating variables obtained with that procedure along with
the process design variables calculated in the previous
step, i.e. column diameter, heat exchange areas comprise
the results of the sequential design depicted in Table 6.

Simultaneous Process and Control Design. The
sequential strategy outlined above has illustrated that in-
teractions do exist between process design and process
control. However, a more systematic approach for ex-
ploiting these interactions is to also include the process
design variables as optimization variables whilst optimiz-
ing the controller settings. The framework presented in
§2 is adopted. However, all the features of the general
approach were not exploited fully, i.e. the design and
control structural decisions remained fixed. The opti-
mization variables are the design variables (column di-
ameter and heat exchanger areas) and the gains, reset
time, set points and biases of the controllers. The prob-
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Quantity Sequential Simultaneous
D (m) 6.3 6.37
SReboiler (m2) 325 315
SCondenser (m2) 498 425

PI1 Controller (top compositions control)
Gain 747 181
Reset Time 1 0.59
Set-Point 0.54 0.527

PI2 Controller (bottom compositions control)
Gain 1959 4573
Reset Time 12000 7294
Set Point 0.1 0.22

PI3 Controller (Condenser pressure control)
Gain -9500 -10400
Reset Time 0.603 1.32
Set-Point 1.023 1.023
Capital Cost ($ Million) 0.48 0.48
Operating Cost
($ Million) 4.37 4.17
Total Cost ($ Million) 4.85 4.63

Table 6: Results on the reactive distillation example.

lem is again solved as a large scale dynamic optimization
problem with 12 optimization variables and a number of
path and end-point inequality constraints describing the
feasible operation of the process.

The optimal design, controller tuning parameters and
associated costs are shown in Table 6 and compared with
the results obtained using the sequential strategy with
optimally tuned controllers. The simultaneous strategy
has the same capital costs and lower operating costs lead-
ing to a 5% total annual cost savings ($220,000 per year).
It is interesting to note that the simultaneous approach
is able to give a fully operational system with an annual
cost in between the costs of the “best-case” and “worst
case” while the sequential approach gives a system which
is more expensive than the “worst-case” optimal flexi-
ble design. This clearly demonstrates how a simultane-
ous approach can exploit the interactions between design
and control to give process designs that are cheaper and
more easily controlled than those found by even state-of
the-art sequential approaches. It is also interesting to
observe the different control settings adopted by the two
approaches. As can be seen from Table 6 the simultane-
ous approach gives tighter bottom product composition
that is closer to the constraint boundary; also tighter
top product control and almost identical pressure con-
trol. The economic impact of this control action is the
reduction in the operating costs.

Conclusions

This paper demonstrates the progress that has been
made in simultaneous process and control design under
uncertainty. A well-established decomposition frame-
work for that purpose is reviewed. This framework in
its general form requires the repetitive solution of mixed
integer dynamic optimization problems. An algorithm
for MIDO that has been recently developed by our group
for that purpose is outlined.

Two process examples are considered that demon-
strate the applicability and the benefits of the developed
methods in the context of the integration of process de-
sign, process control and process operability. The first
example considers the separation of a binary mixture
and utilizes the novel MIDO algorithm for treating con-
trol, design and discrete structural decisions. The second
example studies the process and control design of a re-
active distillation system and does not take into account
discrete decisions.

Future work will mainly focus on improving the con-
vergence properties of the current MIDO methodologies
and developing a more efficient single-stage approach for
dealing with the inevitable presence of the uncertainty
as opposed to the current decomposition (two-stage) ap-
proach. Also other control technology will be considered,
such as multivariable PI controllers (Kookos and Perkins,
2000), as opposed to decentralized PI controllers that are
almost exclusively used so far and in addition, an effort
will be made to address synthesis issues that have not
been fully considered within a mixed integer dynamic
optimization framework.
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Appendix

Adjoint Based Algorithm on Mixed Integer Dy-
namic Optimization

From the discussion on mixed integer dynamic optimiza-
tion the conclusion drawn is that an efficient adaptation
of Generalized Benders Decomposition in MIDO requires
the simplification of the master problem construction
and the reduction or possible elimination of the dual in-
formation calculations. An algorithm for achieving that
is presented in the main document and here an alterna-
tive approach is outlined aiming at reducing the com-
putational requirements of the linked subproblems. The
details of this approach can be found in Sakizlis et al.
(2001).

According to the original GBD-approach in MIDO
(Schweiger and Floudas, 1997; Mohideen et al., 1997)
after the solution of the primal optimal control problem
an additional subproblem has to be solved that involves
the backwards integration of the so-called adjoint DAE
system, Equation 4. Since this can be computationally
expensive, a method is developed for eliminating the ex-
tra calculations by adapting an adjoint-based approach
for evaluating the gradients of the constraints and the
objective function of the primal optimal control prob-
lem. This provides at the optimal solution of the pri-
mal a set of vectors of adjoint variables that are asso-
ciated with the constraints and the objective function,
denoted as [λφ(t) pφ(t)], [λq(t) pq(t)] respectively. Those
adjoint functions are given by the same linear DAE sys-
tem as the adjoint functions that are necessary for the
master problem construction. However, [λφ(t) pφ(t)],
[λq(t) pq(t)] are given by different final conditions as op-
posed to [λ(t), p(t)]. Their final conditions are:

[
∂f

∂ẋ
]Ttf

· λφ(tf ) = −[(
∂φ

∂x
)T
f + [(

∂f

∂x
)T (

∂c

∂x
)T ]f · (ωf )φ]

[
∂f

∂ẋ
]Ttf

· λq(tf ) = −[(
∂q

∂x
)T
f + [(

∂f

∂x
)T (

∂c

∂x
)T ]f · (ωf )q]

The linear properties of the adjoint differential system
and its boundary conditions, enable the evaluation of the
adjoint variables required for the master problem [λ, p]
as a function of [λφ pφ], [λq pq] from the equation:[

λ(t)
p(t)

]
=
[

λφ(t)
pφ(t)

]
+ µT ·

[
λq(t)
pq(t)

]
(9)

Equation 9 can be proved using the transition matrix
theory. Using that approach, the rigorous adjoint inte-
gration for the master problem derivation is not required
any more after the primal has terminated and the deriva-
tion of the dual information is reduced exclusively to
Equation 9.

Even if the easily obtained time-dependent functions
λ(t), p(t) are supplied to the master problem many cal-
culations are still required due to the presence of the

time integral in Equation 5 and the usually complicated
non-linear functions involved in the DAE system. In or-
der to simplify further the master problem equations f ,c
are decomposed in terms of the binary and continuous
variables:

f = f ′(ẋ, x, z, v, t) + fy(ẋ, x, z, v, t) · y
c = c′(x, z, v, t) + cy(x, z, v, t) · y
r = r′(ẋo, xo, zo, v, to) + ry(ẋo, xo, zo, v, to) · y

(10)

fy, cy, ry are a matrices of dimensions nx × ny, nz × ny,
nx×ny respectively. This separation is allowed, since the
binaries participate in the DAE in a linear form (variant-
2 of GBD). At the primal solution though:

f = 0 c = 0 r = 0 (11)

So, (f ′)k can be written as:

(f ′)k = −(fy)k · yk (12)

Similarly for c′, cy, r′, ry. Finally we have:

f = (fy)k · (y − yk)

c = (cy)k · (y − yk)

r = (ry)k · (y − yk)

(13)

Once Equation 13 is substituted in Equation 5 the mod-
ified master problem becomes:

min
y,η

η (14)

subject to

η ≥ φ + (µk)T · q + {(ωk
f )T ·

[
(fy)k

(cy)k

]
f

+ (ωk
0 )T

[
(fy)k

(cy)k

]
o

+ (ρk)T · (ry)k

+
∫ tf

to

[(λk)T (pk)T ] ·
[

(fy)k

(cy)k

]
t

dt} · (y − yk)

In this manner, the size of the master problem formula-
tion is significantly reduced. The multiplier of the binary
terms y − yk corresponds to a time dependent vector of
size equal to the dimensions of the binaries ny. This
vector does not contain any integer terms and hence, it
remains fixed throughout the master problem solution.
In order to evaluate the components of that vector it
suffices to transform the contained integrals to an ODE
system of size ny introducing differential states of zero
initial conditions. Then by solving numerically the ODE
system the construction of the master problem is com-
pleted. Alternatively, if the formulation of Equation 5
was retained, every equation that contains a binary term
would have to be integrated. So the size of that corre-
sponding ODE system would be of order of magnitude
O(nx + nz)>> ny.



Simultaneous Design and Control Optimization under Uncertainty in Reaction/Separation Systems 237

From an implementation point of view, Equation 14 is
easier to construct than Equation 5 because the matrices
fy, cy, ry are the Jacobians of the DAE with respect to
the binaries and are simply generated (numerically or
analytically) using well-established commercial codes or
algorithms.

The master optimization problem consists of the bi-
nary variables and the continuous objective. The other
variables are fixed. Since the optimization variables par-
ticipate in a linear form, the problem is an MILP and it
is solved with the current well-established methodologies
(e.g. branch and bound algorithm).

The steps of the algorithm are summarized as follows:

1. Fix the values of the binary variables, y = yk, and
solve a standard dynamic optimization problem (kth

primal problem). An upper bound, UB, on the so-
lution to the MIDO problem is obtained from the
minimum of all the primal solutions obtained so far.

2. At the solution of the primal problem, using Equa-
tion 9, obtain the adjoint functions λ(t), p(t).

3. Use the problem variables x(t), z(t), v, the adjoint
functions λ(t), p(t) and the Lagrange multipliers of
the constraints µ to construct the kth relaxed mas-
ter problem, Equation 14, from the kth primal solu-
tion. The Master problem corresponds to a Mixed
-integer linear program (MILP), that its solution
provides the lower bound, LB, on the MIDO so-
lution. If UB-LB is less than a specified tolerance
ε, or the master problem is infeasible, the algorithm
terminates and the solution to the MIDO problem
is given by UB. Otherwise, set k = k + 1 and yk+1

equal to the integer solution of the master problem
and return to step 1.

This alternative algorithm eliminates completely the
adjoint evaluation and does not require any resolve ses-
sion after the primal problem is solved. It also manages
to simplify considerably the master problem construc-
tion. Moreover, descpite the fact that it is restricted
to using only an adjoint based gradient evaluation pro-
cedure for the primal optimal control problem it is not
confined to a particular type of DAE integrator as in
Mohideen et al. (1997); Ross et al. (1998).

An Outer Approximation Based Method for
Mixed Integer Dynamic Optimization

The algorithms presented on Mixed Integer dynamic op-
timization are based on Generalized Benders decompo-
sition for obtaining the lower bound to the problem.
Therefore, the results that they will produce will be
equivalent. Despite the benefits of GBD, that among
others are the simple modeling of the discrete decisions
and the straight forward formulation of the master prob-
lem, the lower bounds that are generated are relatively

relaxed since in every master problem, only a single con-
straint is added to the iterative procedure. This can in-
crease the number of the subsequent problem solutions
deteriorating the convergence properties. A desired re-
duction in the primal-master iterations can be achieved
by adapting another decomposition approach for con-
structing the master problem based on Outer Approxi-
mation (Duran and Grossmann, 1986). An outline of the
concepts that enable the application of OA to MIDO is
presented here.

The application of OA to an MINLP problem requires
the participation of the integer variables in the equali-
ties, inequalities and objective in a linear and separable
form. The translation of this condition to MIDO makes
imperative the removal of the binary variables from the
DAE system. The reason being that even if the binaries
participate linearly in the DAE their implicit contribu-
tion to the objective and the constraints is non-linear
due to the non-linearities introduced by the dynamics.
The removal of the binaries from the dynamic system is
done in a way similar to the one presented in the main
document. Namely, an extra set of continuous search
variables yd is introduced in the primal problem, that
are fixed according to the double inequality constraint:
yd − yk ≥ 0,yd − yk ≤ 0. This gives rise to the following
primal optimal control problem:

min
v,yd

φ(ẋ(tf ), x(tf ), z(tf ), v, yd, tf ) (15)

subject to

0 = f(ẋ(t), x(t), z(t), v, yd, t)
0 = c(x(t), z(t), v, yd, t)
0 = r(x(t0), ẋ(t0), z(t0), v, yd, t0)
0 ≥ q(ẋ(tf ), x(tf ), z(tf ), v, yd, tf )

0 ≤ yd − yk

0 ≥ yd − yk

to ≤ t ≤ tf

The master problem that aims to generate a lower bound,
is constructed by linearizing the constraints and the ob-
jective around the primal optimal point only in the space
of the search variables (v, yd). The resultant master
problem is:

min
y,yd,v,η

η (16)
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subject to

η ≥ φ(ẋk(tf ), xk(tf ), zk(tf ), vk, yk
d , tf )

+
dφ

dv
· (v − vk) +

dφ

dyd
· (yd − yk

d)

0 ≥ q(ẋk(tf ), xk(tf ), zk(tf ), vk, yk
d , tf )

+
dq

dv
· (v − vk) +

dq

dyd
· (yd − yk

d)

0 ≤ yd − y

0 ≥ yd − y

In this master formulation in every kth iteration a set of
inequality constraints equal to the number of the original
constraints plus one is added. Therefore, if the number of
constraints is relatively high the lower bounds generated
by OA will be tighter than the ones produced from GBD,
hence the algorithm convergence will be achieved in less
iterations.

A summary of the steps of the OA algorithm are pre-
sented below:

1. Fix the values of the binary variables, y = yk, and
solve a standard dynamic optimization problem (kth

primal problem). An upper bound, UB, on the so-
lution to the MIDO problem is obtained from the
minimum of all the primal solutions obtained so far.

2. At the solution of the primal problem add the extra
set of continuous search variables yd and the inequal-
ity constraints: yd − yk ≥ 0,yd − yk ≤ 0. Resolve
the primal problem at the optimal solution. Conver-
gence is achieved in one iteration and the gradients:
dφ
dyd

, dφ
dyd

, dq
dv and dq

dyd
are evaluated via numerical in-

tegration of the sensitivity (Vassiliadis et al., 1994)
or the adjoint DAE system (Sargent and Sullivan,
1977).

3. Use the problem continuous optimization variables
and the corresponding gradients for formulating the
master problem, Equation 16. The Master prob-
lem corresponds to a Mixed -integer linear program
(MILP), that its solution provides the lower bound,
LB, on the MIDO solution. If UB-LB is less than
a specified tolerance ε, or the master problem is in-
feasible, the algorithm terminates and the solution
to the MIDO problem is given by UB. Otherwise,
set k = k + 1 and yk+1 equal to the integer solution
of the master problem and return to step 1.

This presented algorithm for MIDO has the potential
of providing tighter (higher) lower bounds to the over-
all problem thus accelerating the MIDO solution conver-
gence.


