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Abstract
The need for improvement in process operations, logistics and supply chain management has created a great demand for
the development of optimization models for planning and scheduling. In this paper we first review the major classes of
planning and scheduling models that arise in process operations, and establish the underlying mathematical structure
of these problems. As will be shown, the nature of these models is greatly affected by the time representation (discrete
or continuous), and is often dominated by discrete decisions. We then briefly review the major recent developments
in mixed-integer linear and nonlinear programming, disjunctive programming and constraint programming, as well as
general decomposition techniques for solving these problems. We present a general formulation for integrating planning
and scheduling to illustrate the models and methods discussed in this paper.
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Introduction

The development of optimization models for planning
and scheduling of chemical processes has received signifi-
cant attention over the last 5-7 years. One major reason
has been the realization by industry that large poten-
tial savings can be achieved by improving the logistics of
manufacturing in chemical processes. Examples of sav-
ings include lower inventories, lower transition costs, and
reduction in production shortfalls. The interest in plan-
ning and scheduling has further increased with indus-
try’s goal of improving the management and dynamics
of their supply chains. Finally, major advances in large-
scale computation and mathematical programming have
promoted the interest in applying these techniques to
planning and scheduling problems.

The goal of this paper is to provide an overview of
the optimization based models for planning and schedul-
ing, review the solution strategies and mathematical pro-
gramming methods that are available for solving these
problems, and propose a conceptual model for integrat-
ing planning and scheduling. Finally, we present three
examples to illustrate the application of some of the tech-
niques discussed in this paper.

Review on Planning and Scheduling

Both planning and scheduling deal with the allocation
of available resources over time to perform a collection
of tasks. In the context of process systems, planning
and scheduling refer to the strategies of allocating equip-
ment and utility or manpower resources over time to ex-
ecute processing tasks required to manufacture one or
several products. The difference between planning and
scheduling is not always clear cut. However, in general
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the difference is that planning deals with longer time
horizons (e.g. weeks, few months) and is largely con-
cerned with high level decisions such as investment in
new facilities and production levels. Scheduling on the
other hand deals with shorter time horizons (e.g. days,
few weeks) with the emphasis often being on the lower
level decisions such as sequencing of operations. Also,
in planning maximization of profit usually plays a ma-
jor role, while in scheduling the emphasis tends to be
on feasibility for fulfilling a given number of orders, or
on completing the required tasks in the shortest time.
Hence, economics tends to play a greater role in plan-
ning than in scheduling. It should be noted, however,
that the distinction between planning and scheduling is
becoming increasingly blurred by the capability of opti-
mizing simultaneous planning and scheduling decisions,
particularly in the context of supply chain optimization
problems.

Planning

A detailed review of planning and scheduling is out of the
scope of this paper. In this section we therefore focus on
pointing the reader to some useful papers covering both
specific planning problems and reviews on some prob-
lem classes, as well as a general discussion on the nature
of planning problems. While no review alone covers all
types of planning problems, some reviews can be found
in the operations research literature for specific types of
planning problems. Erengüç et al. (1999) review work
on the integrated production and distribution planning
of supply chains. They discuss the different stages of
the supply chain, give some general formulations and
critically evaluate the relevant literature from the oper-
ations research community. Other reviews discuss plan-
ning models for freight transportation (Crainic and La-
porte, 1997), optimization methods for electric utility
resource planning (Hobbs, 1995), and strategic facility
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location methods that consider either stochastic or dy-
namic problem characteristic (Owen and Daskin, 1998).
In the chemical engineering literature, a review on liter-
ature for single- and multi-site planning and scheduling
can be found in (Shah, 1998), while reviews on plan-
ning and scheduling literature for batch/semicontinuous
plants can be found in Reklaitis (1991, 1992) and Rippin
(1993).

Planning problems can mainly be categorized as
strategic, tactical or operational, depending on the deci-
sions involved and the time horizon under consideration.
Strategic planning covers the longest time horizons in
the range of one to several years and decisions cover
the whole width of the organization, while focussing
on major investments. Examples of strategic planning
problems include facility location problems (e.g. Maz-
zola and Neebe, 1999), hydrocarbon well platform in-
vestment planning (e.g. Iyer et al., 1998; Van den Heever
and Grossmann, 2000), and longterm planning of process
networks (e.g. Sahinidis et al., 1989) where it is essential
to consider the far future in making big investment de-
cisions. Tactical planning typically covers the midterm
horizon of between a few months to a year and deci-
sions cover issues such as production, inventory and dis-
tribution. Midterm production planning or supply chain
planning is a good example of tactical planning (e.g. Bok
et al., 2000; McDonald and Karimi, 1997; Perea et al.,
2000; Dimitriadis et al., 1997). Operational planning
usually covers a horizon of one week to three months and
involves decisions regarding the actual operations and re-
source allocation. Applications include the operational
planning of utility systems (e.g. Iyer and Grossmann,
1998b) and the planning of refinery operations (e.g. Moro
et al., 1998). On this level, planning decisions are often
closely related to scheduling decisions and it becomes
more important to integrate these. In the past plan-
ning and scheduling issues have mostly been addressed
separately or sequentially for reasons of complexity, and
only recently have simultaneous planning and schedul-
ing approaches emerged. Birewar and Grossmann (1990)
proposed a model for the simultaneous planning and
scheduling of multipurpose batch plants, while Shah and
Pantelides (1991) presented a model for simultaneous
campaign formation and planning. Papageorgiou and
Pantelides (1996a,b) address the issue in a two part ar-
ticle proposing a mathematical formulation and decom-
position approach for integrated campaign planning and
scheduling of multipurpose batch/semicontinuous plants.
We address the integration of planning and scheduling in
Section 4 through a generalized disjunctive model.

In terms of uncertainties, planning models have ei-
ther a deterministic or stochastic nature. Determinis-
tic models assume predictions for prices, demands and
availabilities to be known with certainty. These models
are often sufficient for short-term planning and schedul-
ing, but when longer time horizons are considered incor-

porating uncertainty directly becomes more important.
However, deterministic models are still useful even when
uncertainty needs to be incorporated, since they can be
used to analyze different scenarios for the uncertain pa-
rameters without the additional complexity associated
with stochastic models. In addition, deterministic mod-
els form the basis for stochastic models that include un-
certainty through scenarios. Stochastic models include
uncertainty either by explicit probability distributions
or by scenarios, and often require specialized solution
methods due to their complexity. A vast number of ar-
ticles have been published in the area of process plan-
ning under uncertainty and a complete list of all rele-
vant ones cannot be provided within the scope of this
paper. We therefore refer readers to some recent publi-
cations: Liu and Sahinidis (1996) proposed a two-stage
stochastic programming approach for process planning
under uncertainty. These authors first consider discrete
random parameters and develop a Benders-based decom-
position algorithm for the solution. They then continue
to show the applicability of their approach to contin-
uous random variables. Ierapetritou et al. (1996) dis-
cuss modeling issues in design and planning under un-
certainty and propose a decomposition algorithm for a
combined multiperiod/stochastic programming problem.
Clay and Grossmann (1997) consider planning problems
with uncertainty in both demands and cost coefficients,
and represent these uncertainties by finite discrete proba-
bility distribution functions. They also propose an itera-
tive aggregation/disaggregation algorithm that is highly
parallel for the solution of this two-stage stochastic pro-
gramming problem. Ahmed and Sahinidis (1998) pro-
pose a linear method of incorporating robustness of the
second stage decisions into two-stage models for process
planning under uncertainty and present a heuristic solu-
tion approach, but emphasize the need to exact solution
methods for this model. Rather than using a stochas-
tic optimization framework, Applequist et al. (2000)
proposed a risk measure for supply chain optimization.
Some significant progress has also been made in incorpo-
rating uncertainty into combined planning and schedul-
ing models. Petkov and Maranas (1997) extend the com-
bined planning and scheduling model first proposed by
Birewar and Grossmann (1990) to include demand un-
certainties, and express the stochastic elements in equiv-
alent deterministic forms to yield solution times com-
parable to pure deterministic models. A scenario-based
approach to incorporate uncertainty at the planning level
for an online scheduler of a multiproduct batch plant was
proposed by Sand et al. (2000). Their model has two hi-
erarchical levels, where uncertainty at the planning level
is incorporated explicitly in the upper level. While the
above mentioned approaches show significant progress in
incorporating uncertainty into large-scale planning and
scheduling models, the characterization of uncertainties
and development of efficient solution algorithms remain
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Figure 1: Classification and road map scheduling
problems.

complex and challenging problems.

Scheduling

Comprehensive reviews on scheduling can be found in
Rippin (1993) who addresses the general status of batch
processing systems engineering with emphasis in design,
planning and scheduling. Reklaitis (1991, 1992) presents
a comprehensive review of scheduling and planning of
batch process operations. His main focus is to describe
the basic components of the scheduling problem and re-
view the existing solution methods. Pekny and Zent-
ner (1994) summarize the basic scheduling technology
with association to the advances in computer technol-
ogy. Grossmann et al. (1996) provide an overview of
mixed integer optimization techniques for the design and
scheduling of batch processes, with emphasis on general
purpose methods for mixed integer linear (MILP) and
mixed integer nonlinear (MINLP) problems. Pinto and
Grossmann (1998) present a classification of scheduling
problems, and characterize the major types of integer
and mixed-integer constraints that arise for the assign-
ment and sequencing decisions. Shah (1998) presents
an overview of single and multisite scheduling methods,
while Pekny and Reklaitis (1998) provide a review in
terms of the computational complexity that is involved
in scheduling problems.

A major difficulty that has been faced in the area of
scheduling is that there is a great diversity of problems
that have tended to prevent the development of uni-
fied solutions. To appreciate this issue, consider Fig-
ure 1 from Pinto and Grossmann (1998) that presents
a road map for classifying scheduling problems. Equip-
ment similarity and unit connectivity define the topol-
ogy of the plant. In serial plants, products follow the
same production path, therefore it is possible to recog-
nize a specific direction in the plant floor. Networks of
arbitrary topology tend to occur when products have
low recipe similarity and/or when equipment is inter-
connected. Most methods do not handle mass balances
explicitly; instead, production is represented by batches
(or lots). Products follow a series of tasks, which are col-
lections of elementary chemical and physical processing
operations. Note the close relationship between the plant
topology and the sequence of tasks for products: if all
products follow the same sequence of tasks it is usually
possible to define processing stages in the plant, defined
as processing equipment that can perform the same op-
erations. Moreover, lot sizes can be variables, such as in
the case of the lot-sizing problem, or fixed parameters.

A major issue in modeling scheduling problems con-
cerns the time domain representation. The most general
is a continuous time domain representation that makes
use of either time slots of variable length, or time events.
If a discrete time representation is adopted, slots have
equal and fixed duration. In this case there is the need
to use a sufficiently large number of slots in order to have
a suitable approximation of the original problem. An
advantage, however, with discrete time domain is that
it is much easier to handle resource constraints or track
inventory levels. In continuous time formulations it is
usually possible to postulate a much smaller number of
time slots or time events reducing the problem size, al-
though often at the expense of introducing nonlinearities
in the model.

Another major issue in plant scheduling deals with the
presence of intermediate storage. There are four differ-
ent transfer policies: Zero-Wait (ZW), No-Intermediate-
Storage (NIS), Finite-Intermediate-Storage (FIS) and
Unlimited-Intermediate-Storage (UIS) (Ku et al., 1987).
It is important to note that FIS corresponds to the most
general case. Nevertheless, the main advantage of the
remaining three cases is that there is no need to model
inventory levels. In the scheduling of a process plant,
processing tasks require utilities and manpower. Utili-
ties may include, for example, steam, electricity, cooling
water, etc. In some scheduling applications, apart from
equipment, finite resources that are limited are required
for these process tasks. Resource constrained scheduling
problems are inherently difficult, due to the fact that
besides the efficient allocation of units to meet prod-
uct demands, it is also necessary to consider the feasible
grouping of simultaneously executed tasks so as to utilize
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Figure 2: State-task network for numerical example.

resources within their availability limits.
Short term scheduling is relevant to plants that must

satisfy individual customer orders with varying demand
patterns. In this case, product requirements are given as
a set of orders, where each order has associated with it a
certain product, the amount and a due date. In contrast,
cyclic scheduling is relevant for plants operating with a
stable market in which the product demands are given as
constant rates. This allows a more simplified plant oper-
ation in which the same production sequence is executed
repeatedly with a fixed frequency. When switching be-
tween products, or even after one or more batches of the
same product, units may require cleaning and setup for
safety and/or product quality. Changeover requirements
depend on the nature of the units and the products in
the plant. Sequence dependent changeovers represent
the most general and difficult situation, in which every
pair of consecutive operations may give rise to different
time and/or cost requirements. The need for unit setup
may be expressed in terms of the frequency of utiliza-
tion. For instance, a changeover may be needed after
every batch or after a certain number of batches, regard-
less of the nature of the products. In the case of time
dependent cleaning, there is a maximum time interval
during which a unit may be utilized.

From all the scheduling models that have been pro-
posed in the chemical engineering literature, the most
general model is the one by Kondili et al. (1993), which
addresses short term scheduling of batch operations. Ma-
jor capabilities of this multiperiod MILP model include
the following: (a) assignments of equipment to process-
ing tasks need not be fixed, (b) variable size batches can
be handled with the possibility of mixing and splitting,
(c) different intermediate storage and transfer policies
can be accommodated, as well as limitations of resources.
In the work by Kondili et al. (1993) a major assumption
is that the time domain can be discretized in intervals
of equal size, which in practice often means having to
perform some rounding to the original data. In addi-
tion, changeover times are usually neglected since they
cannot be easily handled by this model. The key aspect
in the MILP model by Kondili et al. (1993), is the state-
task network (STN) representation. This network has
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Figure 3: Optimal schedule for network in Figure 2.

two types of nodes: (a) state nodes that correspond to
feeds, intermediates and final products; (b) task nodes
that represent processing steps. Figure 2 presents an
example of a state task network. It should be noted
that the equipment is considered separately. In general
it is assumed that each unit can perform several of the
tasks in the STN network. The resulting MILP model
determines the timing of the operations, assignments of
equipment to operations, and flow of material through
the network. The objective is to maximize a given profit
function. Figure 3 shows the results of the optimal sched-
ule of the example in Figure 2. It should be noted that
the reformulation by Shah et al. (1993) led to a signif-
icant improvement in the LP relaxation of the MILP,
with which fairly large problems can be solved. Fur-
thermore, Pantelides (1994) proposed the Resource Task
Network (RTN) representation, which leads to a more
compact model than the STN, although it is actually
equivalent. It is interesting to note that in the context
of Figure 1, both the STN and RTN models can han-
dle networks with arbitrary topology, can handle flow
equations for the mass balances, are based on discrete
time representation, can handle all types of transfers
and resource constraints, and deal with short term vari-
able demands. Continuous time versions of this model
have been proposed for instance by Zhang and Sargent
(1996), Mockus and Reklaitis (1996), and Ierapetritou
and Floudas (1998).

Mathematical Programming

Planning and scheduling problems generally give rise to
discrete/continuous optimization problems and we there-
fore find a discussion on the major mathematical pro-
gramming techniques appropriate in the current context.
When these optimization problems are represented in al-
gebraic form, they correspond to mixed-integer optimiza-
tion problems that have the following form:

minZ = f(x, y) (MIP)
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subject to

h(x, y) = 0
g(x, y) ≤ 0

x ∈ X, y ∈ {0, 1}m

where f(x, y) is the objective function (e.g. cost),
h(x, y) = 0 are the equations that describe the per-
formance of the system (material balances, production
rates), and g(x, y) ≤ 0 are inequalities that define the
specifications or constraints for feasible plans and sched-
ules. The variables x are continuous and generally cor-
respond to state variables, while y are the discrete vari-
ables, which generally are restricted to take 0-1 values
to define for instance the assignments of equipment and
sequencing of tasks. Problem (MIP) corresponds to a
mixed-integer nonlinear program (MINLP) when any of
the functions involved are nonlinear. If all functions are
linear it corresponds to a mixed-integer linear program
(MILP). If there are no 0-1 variables, the problem (MIP)
reduces to a nonlinear program (NLP) or linear program
(LP) depending on whether or not the functions are lin-
ear.

The formulation and solution of major types of math-
ematical programming problems can be effectively per-
formed with modeling systems such as GAMS (Brooke
et al., 1992), and AMPL (Fourer et al., 1992). While
these require that the model be expressed explicitly in
algebraic form, they have the advantage that they au-
tomatically interface with codes for solving the various
types of problems. They also perform automatic differ-
entiation and allow the use of indexed equations, with
which large scale models can be readily generated. It
should also be noted that these modeling systems are
now widely available on desktop PCs. We review the
major classes of mathematical programming models in
the following paragraphs.

Linear and Mixed-Integer Programming

These are without a doubt the types of models that are
most frequently encountered for planning and schedul-
ing. The reason is that these models involve in most
cases discrete time representations coupled with fairly
simple performance models. While in the past most
models were LPs, most of them are nowadays MILPs due
to the discrete decisions that are involved in investment,
expansion and operation for planning, and assignment
and sequencing decisions for scheduling.

Mixed-integer linear programming problems have the
general form:

minZ = aT x + bT y (MILP)

subject to

Ax + By ≤ d

x ≥ 0, y ∈ {0, 1}m

For the case when no discrete variables y are involved,
the problem reduces to a linear programming (LP) prob-
lem. This is a special class of convex optimization prob-
lems for which the optimal solution lies at a vertex of
the polytope defined by the inequalities . The solution
of LP problems relies largely on the simplex algorithm
(Chvatal, 1983; Saigal, 1995), although lately interior-
point methods (Marsten et al., 1990) have received in-
creased attention for solving very large problems because
of their polynomial complexity. MILP methods rely
largely on simplex LP-based branch and bound meth-
ods (Nemhauser and Wolsey, 1988) that consists of a
tree enumeration in which LP subproblems are solved
at each node, and eliminated based on bounding prop-
erties. These methods are being improved through cut-
ting plane techniques (Balas et al., 1993), which pro-
duce tighter lower bounds for the optimum. LP and
MILP codes are widely available. The best known in-
clude CPLEX (ILOG Inc., 2000), OSL (IBM, 1992)
and XPRESS (Dash Associates, 1999), all which have
achieved impressive improvements in their problem solv-
ing capabilities. It is worth noting that since MILP
problems are NP-complete it is always possible to run
into time limitations when solving problems with a large
number of 0-1 variables, especially if the integrality gap
(difference between optimal integer objective and opti-
mal LP relaxation) is large.

Nonlinear Programming

NLP models have the advantage over LP models of be-
ing able to explicitly handle nonlinearities and are largely
used for real-time optimization. These models only in-
volve continuous variables and are fairly restrictive for
planning and scheduling, although they are important
subproblems in MINLPs. NLP problems correspond to
continuous optimization problems that can be expressed
as follows:

minZ = f(x) (NLP)

subject to

h(x) = 0
g(x) ≤ 0

x ∈ X

Provided the functions are continuous and differentiable,
and certain constraint qualifications are met, a local opti-
mum solution to problem (NLP) is given by the Karush-
Kuhn-Tucker conditions (Minoux, 1983). The solution
of NLP problems (Fletcher, 1987; Bazaraa et al., 1994),
relies either on the successive quadratic programming al-
gorithm (SQP) (Han, 1976; Powell, 1978; Schittkowski,
1981), or on the reduced gradient method (Murtagh and
Saunders, 1978, 1982). Major codes include MINOS
and CONOPT (Drud, 1992) for the reduced gradient
method, and OPT (Vasantharajan et al., 1990) for the
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SQP algorithm. These NLP methods are guaranteed to
find the global optimum if the problem is convex (i.e.
convex objective function and constraints). When the
NLP is nonconvex a global optimum cannot be guaran-
teed. One option is to try to convexify the problem,
usually through exponential transformations, although
the number of cases where this is possible is rather small.
Alternatively, one could use rigorous global optimization
methods, which over the last few years have made sig-
nificant advances. These methods assume that special
structures are present in the problem, such as bilinear,
linear fractional and concave separable functions. Al-
though this may appear to be quite restrictive, Smith
and Pantelides (1996) have shown that algebraic models
are always reducible to these structures, provided they
do not involve trigonometric functions. For a general re-
view on global optimization see Horst and Tuy (1993),
Horst and Pardalos (1995) and Floudas (2000). Re-
cent developments in chemical engineering can be found
in Grossmann (1996). Computer codes for global opti-
mization still remain in the academic domain, and the
best known are BARON by Sahinidis and Sahinids and
Ryoo (1995), and α-BB by Floudas et al. (1996). It
should also be noted that non-rigorous techniques which
have also become popular, such as simulated annealing
(Kirkpatrick et al., 1983) and genetic algorithms (Gold-
berg, 1989), do not make any assumptions on the func-
tions, but cannot guarantee rigorous solutions in a finite
amount of time. Furthermore, these methods do not
formulate the problem as a mathematical program since
they involve procedural search techniques that in turn
require some type of discretization, and the violation of
constraints is handled through ad-hoc penalty functions.

Mixed-integer Nonlinear Programming

MINLP models typically arise in planning and also in
scheduling when using continuous time representations,
particularly for cyclic policies and for nonlinear perfor-
mance models. The most common form of MINLP prob-
lems is a special case of problem (MIP), in which the 0-1
variables are linear while the continuous variables are
nonlinear:

minZ = cT y + f(x) (MINLP)

subject to

h(x) = 0
By + g(x) ≤ 0

x ∈ X, y ∈ 0, 1m

Major methods for MINLP problems include Branch and
Bound (BB) (Gupta and Ravindran, 1985; Borchers and
Mitchell, 1994; Stubbs and Mehrotra, 1996), which is a
direct extension of the linear case, except that NLP sub-
problems are solved at each node. Generalized Benders

Decomposition (GBD) (Benders, 1962; Geoffrion, 1972),
and Outer-Approximation (OA) (Duran and Grossmann,
1986; Yuan et al., 1988; Fletcher and Leyffer, 1994; Ding-
Mai and Sargent, 1992), are iterative methods that solve
a sequence of alternate NLP subproblems with all the 0-1
variables fixed, and MILP master problems that predict
lower bounds and new values for the 0-1 variables. The
difference between the GBD and OA methods lies in the
definition of the MILP master problem; the OA method
uses accumulated linearizations of the functions, while
GBD uses accumulated Lagrangean functions paramet-
ric in the 0-1 variables. The LP/NLP based branch and
bound by Quesada and Grossmann (1992) essentially in-
tegrates both subproblems within one tree search, while
the Extended Cutting Plane Method (ECP) (Wester-
lund and Pettersson, 1995) does not solve the NLP sub-
problems, and relies exclusively on successive lineariza-
tions. All these methods assume convexity to guaran-
tee convergence to the global optimum. Nonrigorous
methods for handling nonconvexities include the equal-
ity relaxation algorithm by Kocis and Grossmann (1987)
and the augmented penalty version of it (Viswanathan
and Grossmann, 1990). A review on these methods
and how they relate to each other can be found in
Grossmann and Kravanja (1997). The only commer-
cial code for MINLP is DICOPT (OA-GAMS), although
there are a number of academic versions (MINOPT by
Floudas and co-workers, α-ECP by Westerlund and co-
workers). (Tawarmalani and Sahinidis, 2000) have re-
cently expanded their BARON global optimization code
to MINLP problems through a number of extensions of
the above methods.

Logic-based Optimization

In recent years a new trend that has emerged is to for-
mulate and solve discrete/continuous optimization prob-
lems with logic-based optimization models and methods.
These methods, which facilitate problem formulation
and often reduce the combinatorial search, are starting
to have a significant impact in planning and scheduling
problems. The two major methods are Generalized Dis-
junctive Programming (GDP) (Raman and Grossmann,
1994) and Constraint Programming (Van Hentenryck,
1989).

Generalized Disjunctive Programming. The ba-
sic idea in GDP models is to use Boolean and continuous
variables, and formulate the problem with an objective
function, subject to three types of constraints: (a) global
inequalities that are independent of discrete decisions;
(b) disjunctions that are conditional constraints involv-
ing an OR operator; (c) pure logic constraints that in-
volve only the Boolean variables. More specifically, the
problem is given as follows:

minZ =
∑
k∈K

ck + f(x) (GDP)
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subject to

g(x) ≤ 0

∨
j∈Ik

 yjk

hjk(x) ≤ 0
ck = γjk

 k ∈ K

Ω(y) = True

x ∈ X, yjk ∈ {True, False}

where x are continuous variables and y are the Boolean
variables. The objective function involves the term f(x)
for the continuous variables (e.g. operating cost) and
the charges ck that depend on the discrete choices. The
equalities/inequalities g(x) ≤ 0 must hold regardless of
the discrete conditions, and hjk(x) ≤ 0 are conditional
constraints that must be satisfied when the correspond-
ing Boolean variable yjk is True for the jth term of the
kth disjunction. The set Ik represents the number of
choices for each disjunction defined in the set K. Also,
the fixed charge ck is assigned the value γjk for that
same variable. Finally, the constraints Ω(y) involve logic
propositions in sterms of Boolean variables.

Problem (GDP) represents an extension of disjunc-
tive programming (Balas, 1985), which in the past has
been used as a framework for deriving cutting planes for
the algebraic problem (MIP). It is interesting to note
that any GDP problem can be reformulated as an MIP
problem, and vice-versa. It is more natural, however, to
start with a GDP model, and reformulate it as an MIP
problem. This is accomplished by reformulating the dis-
junctions using the convex hull transformation (Türkay
and Grossmann, 1996) or with “big-M” constraints. The
propositional logic statements are reformulated as lin-
ear inequalities (Raman and Grossmann, 1991, 1994).
For the linear case of problem GDP, and when no logic
constraints are involved, Beaumont (1991) proposed a
branch and bound method that does not rely on 0-1 vari-
ables and branches directly on the equations of the dis-
junctions. This method was shown to outperform the so-
lution of the alternative algebraic MILP models. Raman
and Grossmann (1994) developed a branch and bound
method for solving problem GDP in hybrid form, i.e.
with disjunctions and mixed-integer constraints. For this
they introduced the concept of “w-MIP representabil-
ity” to denote those disjunctive constraints that can be
transformed into mixed-integer form without loss in the
quality of the relaxation. Hooker and Osorio (1997) de-
veloped a different branch and bound method which in a
way is a generalization of Beaumont’s method in that it
does not introduce 0-1 variables, and addresses problems
directly in the form of the GDP problem.

For the nonlinear case of problem (GDP), Lee and
Grossmann (1999) have developed reformulations and al-
gorithms that rely on obtaining the algebraic description
of the convex hull of the nonlinear convex inequalities.
The reformulations lead to tight MINLP problems, while
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Job j | |
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Figure 4: Edge finding technique for jobshop schedul-
ing.

the algorithms generally involve branch and bound meth-
ods where branching is performed on disjunctions. For
the case of process networks, Türkay and Grossmann
(1996) proposed a logic-based Outer-Approximation al-
gorithm. This algorithm consists of solving NLP sub-
problems in reduced space, in which constraints that do
not apply in the disjunctions are disregarded, with which
both the efficiency and robustness can be improved. In
this method the MILP master problems correspond to
the convex hull of the linearization of the nonlinear
inequalities. Also, several NLP subproblems must be
solved to initialize the master problem in order to cover
all the terms in the disjunctions. Penalties can also be
added to handle the effect of nonconvexities as in the
method by Viswanathan and Grossmann (1990). The
above methods have been implemented in the computer
prototype LOGMIP, a GAMS-based computer code de-
veloped by Vecchietti and Grossmann (1997).

Constraint Programming. This area, which has
emerged recently as a logic-based optimization tool, has
proved to be particularly successful for certain types of
scheduling problems. The basic idea in Constraint Pro-
gramming (CP) (Van Hentenryck, 1989; Puget, 1994)
is to use compact languages for expressing optimization
problems in terms of variables that are continuous, in-
teger, and/or Boolean, and constraints that can be ex-
pressed in algebraic form (e.g. h(x) = 0), as disjunctions
(e.g. [A1x ≤ b1] ∨ [A2x ≤ b2]), or as conditional logic
statements (e.g. If g(x) ≤ 0 then r(x) = 0). In addition
the language can support special implicit functions such
as the all different (x1, x2, . . . , xn) constraint for assign-
ing different values to the integer variables x1, x2, . . . , xn.
The language consists of C++ procedures, although the
recent trend has been to provide higher level languages
such as OPL. Other commercial CP software packages in-
clude ILOG Solver (ILOG Inc., 1999c), CHIP (Dincbas
et al., 1988), ECLiPSe (Wallace et al., 1997), and Pro-
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log IV. Rather than relying on traditional mathematical
programming methods, CP relies on a tree search using
implicit enumeration. The tree is normally enumerated
with a depth first search in which the lower bound is
given by partial solutions, and the upper bound by the
best feasible solution. At each of the nodes in the tree
search, constraint propagation is performed through do-
main reduction of the variables. This involves for in-
stance the reduction of bounds in the case of contin-
uous variables, and/or domains in the case of discrete
variables. The former uses procedures for tightening
bounds for linear and monotonic functions, while the lat-
ter is performed either by inference techniques, or by spe-
cial procedures. A good example is the “edge-finding”
method for jobshop scheduling. Figure 4 presents a sim-
ple example of such a method to resolve a disjunction
about the relative processing of jobs i and j.

A General Disjunctive Model for the In-
tegration of Planning and Scheduling

In the past, planning and scheduling models have largely
been solved separately due to the complexity associated
with including and solving both levels of decision mak-
ing in one model. Only very recently have simultane-
ous planning and scheduling models emerged (e.g. Papa-
georgiou and Pantelides, 1996a; Birewar and Grossmann,
1990). While the advances have shown progress towards
integration of planning and scheduling, these problems
remain in general intractable. This is due to the size
of the resulting problem, and the mismatch of the time
scales in planning and scheduling. This indicates that
there is a need to derive efficient models and algorithms
for integrated planning and scheduling. In this section
we present a model that reflects the hierarchy of deci-
sions that can be potentially exploited for an efficient
solution.

From the review in the previous section, it can be
concluded that LP and MILP methods, which are ex-
tensively used in planning and scheduling, have become
quite powerful. In addition, NLP methods are able to
tackle increasingly larger problems and are being ad-
vanced by rigorous global optimization algorithms. To-
gether, these developments facilitate faster solution of
MINLPs. A new exciting direction is logic based opti-
mization methods, such as Generalized Disjunctive Pro-
gramming and Constraint Programming, which promise
to facilitate problem formulation and improve the solu-
tion efficiency and robustness. In order to illustrate the
use of logic based methods, we present in this section a
general GDP model that also has the important feature
of integrating planning and scheduling for process net-
works in a single model. As will be seen the model gives
rise to a generalized disjunctive program that involves
embedded disjunctions that reflect the hierarchical na-
ture of decisions involved in the integration problem.

We use a discrete time representation for the planning
and the scheduling time domains. Also, we assume that
the scheduling model corresponds to the State Task Net-
work (STN) (Kondili et al., 1993). Consider optimizing a
given STN superstructure over a time horizon, H. Such
a superstructure consists of a set of units, J , capable of
performing a set of tasks, I. Feeds, intermediates and
products are represented by the set of states, S. In or-
der to integrate both planning and scheduling into the
optimization model, H is divided into a number of plan-
ning periods, t = 1, . . . , T , and a number of scheduling
periods, k = 1, . . . ,K. The length of a planning period
is typically in the order of weeks or a few months, while
the length of a scheduling period is typically in the order
of hours. We define the set Int(t, k) to denote which of
the scheduling periods, k, belong to planning period t.
The complete set, parameter and variable definitions are
as follows:
Sets:

S set of states (feeds, intermediates, products)

I set of tasks

J set of units

T set of time periods in the planning horizon

K set of time periods in the scheduling horizon

Int(t, k) set of scheduling time periods k belonging to
planning time period t

Indices:

s state in set S

i task in set I

j unit in set J

t time period in set T

k time period in set K

Parameters:

αjt variable expansion cost for unit j in period t

βjt fixed expansion cost for unit j in period t

γjt fixed operating cost for unit j in period t

cp
st cost associated with state s in planning time

period t

cs
sk cost associated with state s in scheduling time

period k

cr
ijk cost associated with resource usage for task i

on unit j in time period k

ηij fixed resource cost for task i on unit j

δij variable resource cost for task i on unit j

td
ij delay time associated with task i on unit j

Variables:
Binary decision variables:

yj selection of investment in unit j

wjt operation of unit j in period t

zjt capacity expansion of unit j in period t

vijk task i is performed on unit j in period k

Continuous decision variables:

Qjt capacity of unit j in period t

QEjt capacity expansion of unit j in period t

xt state variables in period t
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minZ =
∑

t

∑
j

(COjt + CEjt) +
∑

s

cp
stx

p
st +

∑
k∈Int(t,k)

∑
i

∑
j

cr
ijkRijk +

∑
k∈Int(t,k)

∑
s

cs
skxs

sk

 (1)

subject to

gt(xt, xt−1) ≤ a ∀t (2)
fsk(xs

sk, xs
s,k−1, x

s
s,k−td) ≤ b ∀s, k (3)

yj

wjt

hjt(Qjt, xt, xt−1) ≤ d (5)

COjt = γjt (6) zjt

Qjt = Qj,t−1 + QEjt (9)
CEjt = αjtQEjt + βjt (10)

 ∨
 −zjt

Qjt = Qj,t−1 (11)
CEjt = 0 (12)


 vijk

0 < Bijk ≤ Qjt (13)
Rijk = ηij + δijBijk (14)

 ∨
 −vijk

Bijk = 0 (15)
Rijk = 0 (16)

∀k ∈ Int(t, k)


∨

 −wjt

Djtxt = 0 (7)
COjt = 0 (8)





∀t



∨

 −yj

Djtxt = 0 (4)
∀t

∀j

yj⇒
T
∨

t=1
wjt ∀j, t (17), wjt⇒yj ∀j, t (18)

wjt⇒
t
∨

t=1
zjt ∀j, t (19), zjt⇒wjt ∀j, t (20)

wjt⇒
I
∨

i,k∈Int(t,k)
vijk ∀j, t (21), vijk⇒wjt ∀i, j, k ∈ Int(t, k) (22)

Ω1(y)=True (23), Ω2(v)=True (24)

CE,CO, Q, QE, x,R, B ≥ 0 (25), y, w, z, v ∈{True, False} (26)

Figure 5: GDP model.

xp
st subset of state variables for state s in planning

time period t

COjt operating cost of unit j in period t

CEjt expansion cost of unit j in period t

xs
sk subset of state variables for state s in

scheduling time period k

Rijk resource usage for task i on unit j in time
period k

Bijk batch size for task i on unit j in period k

Based on the above definitions, the GDP model is as
shown in Figure 5.

The objective (1) is to minimize costs over the whole
time horizon, and includes operating costs, expansion
costs, and costs associated with states over the planning
period, as well as resource costs and costs associated with
states over the scheduling period. Sales are included by
assigning negative values to the appropriate cost coeffi-
cients. Global constraints valid for a particular planning
period, such as mass balances over mixers, are repre-
sented by (2), while global constraints valid for a par-
ticular scheduling period, such as inventory constraints,
are represented by (3). Note that both (2) and (3) may
generally involve “pass-on” variables from the previous

period, giving rise to linking constraints. In addition,
the global scheduling constraints (3) may generally also
involve a scheduling time delay, td, due to processing
times, clean-up times, and changeover times.

Constraints (5–16) are grouped into a set of nested dis-
junctive constraints for each unit j. The outer disjunc-
tion represents the decision to include unit j in the design
or not, which is a strategic planning decision. If unit j is
included in the design, (yj = True), then the set of con-
straints on the left hand side of the disjunction is applied,
otherwise (yj = False), a subset of state variables asso-
ciated with unit j are set to zero for all periods through
the matrix Djt in (4). The middle disjunction represents
the decision to operate unit j in planning period t or not
and is only applied if yj = True. If the unit j operates
in period t, (wjt = True), which can be interpreted as
either an operational or tactical planning decision, then
constraints (5) and (6), as well as the two remaining
disjunctions representing expansion and scheduling de-
cisions, are applied. (5) represents constraints that are
valid for a given unit j in a particular planning period t,
such as unit input-output relationships, while the oper-
ating cost of unit j in planning period t is calculated in
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(6). If unit j does not operate in period t, (wjt = False),
a subset of state variables and the operating cost associ-
ated with unit j are set to zero for period t through (7)
and (8), respectively.

The two inner disjunctions are only applied if wjt =
True, and of these the first represents the decision to
expand unit j in planning period t or not. If unit j
is expanded in period t, (zjt = True), which is also a
planning decision, constraints (9) and (10) are applied.
(9) states that the capacity at the current period equals
the capacity at the previous period plus the capacity
expansion, while the expansion cost is calculated in (10).
If the decision is not to expand unit j in period t (zjt =
False), the capacity remains the same as in the previous
period, and the expansion cost is set to zero (see (11) and
(12)).

Unit specific scheduling decisions are represented by
the second inner disjunction. As pointed out in the
previous section there exists no real generalization of
scheduling models. We therefore focus on the ideas from
STN scheduling first proposed by Kondili et al. (1993),
since this formulation can be applied to arbitrary net-
work structures. Note that this inner disjunction is only
applied for scheduling periods k within the planning pe-
riod t, as denoted by the set Int(t, k). This disjunction
states that if task i is started on unit j in scheduling pe-
riod k, (vijk = True), then the batch size is limited by
the unit capacity in (13) and the resource usage is calcu-
lated in (14). If task i is not started on unit j in period
k, (vijk = False), the starting batch size and resource
usage are set to zero in (15) and (16) respectively.

Constraints (17) through (24) are logic propositions
representing logical relationships between the discrete
variables. (17) states that the inclusion of unit j in the
design implies that it must be operated in at least one
period t, while (18) states the converse, i.e. that oper-
ation of unit j in any period t implies the inclusion of
unit j in the design. Similarly, constraint (19) states
that operation of unit j in period t implies that it must
have been expanded at least once in a previous period,
while (20) states the converse that expansion of unit j
in period t implies that it will also be operated in that
period. Constraint (21) states that the operation of unit
j in planning period t implies that at least one task i
must be started on unit j in a scheduling period k be-
longing to planning period t. If a task i starts on unit j
in a scheduling period k belonging to t, then unit j must
be operated in period t as denoted by (22). Constraint
set (23) represents logic propositions relating the dis-
crete design variables, y, for the topology of the network
(which combinations are permitted). The relationships
among the discrete scheduling variables (v), for example
the condition that starting one task on unit j in period k
implies that no other task can be started on unit j until
task i is finished, are represented by the constraint set
(24). Finally, the domains of the variables are given in

(25) and (26).
The above represents a conceptual model that inte-

grates planning and scheduling decisions within one sin-
gle formulation. One advantage of this GDP model is
that special structures are revealed, for example the clear
hierarchy of decisions from design, operation, and expan-
sion of units to assignment of units and sequencing of
tasks. This facilitates the development of tailored algo-
rithms using techniques such as decomposition, as will
be discussed in the next section. Furthermore, a GDP
model allows the application of specialized logic-based
methods that have the effect of reducing non-convexities,
and yielding tighter relaxations and ultimately faster
solutions. It is also important to note that by fixing
some Boolean variables and eliminating subsets of dis-
junctions, the proposed model can easily be shown to
reduce to specific forms of planning or scheduling prob-
lems.

Solution Strategies

While moderately sized planning and scheduling mod-
els as presented in sections 2 and 4 can be solved with
the mathematical programming methods as discussed in
section 3, larger problem instances, which are these days
often required for accurate representation of the problem
characteristics, require some type of decomposition, ag-
gregation and/or the use of heuristics for their solution.
In this section we review some of these approaches that
are applicable to large-scale mixed integer linear or non-
linear problems in addition to the methods mentioned in
Section 3.

Decomposition

When choosing a decomposition method it is important
to consider how to exploit the structure of the model
most efficiently and also to choose a degree of decom-
position that allows solution in reasonable time while
still finding an optimal or near-optimal solution. Several
decomposition schemes have been proposed in the liter-
ature. Benders decomposition (Benders, 1962) and dual
decomposition or Lagrangean relaxation (see e.g. Fisher,
1981) exploit the primal and dual structures of the model
respectively. Cross decomposition (see e.g. Van Roy,
1983) exploits both the primal and dual structures and
is applicable to models where both the primal and dual
subproblems are easy to solve. Bilevel decomposition
(e.g. Iyer and Grossmann, 1998a) exploits the structure
of models that include different hierarchical levels, such
as the hierarchy from design, to planning, to scheduling.
Ruszczynski (1997) gives a comprehensive review on de-
composition methods for stochastic problems, including
cutting plane methods, augmented Lagrangean decom-
position, splitting methods and nested decomposition.
Below, we discuss only Lagrangean relaxation and bilevel
decomposition in further detail, since an in depth discus-
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sion of all decomposition methods is beyond the scope
of this paper. The discussion on bilevel decomposition
is motivated by its relevance to an example presented
in the next section as well as to combined planning and
scheduling models. The discussion on Lagrangean relax-
ation is motivated by its wide applicability to large-scale
optimization models and its ease of implementation in
practice.

Bilevel decomposition. One approach to exploit
the hierarchical structure of combined design, planning
and/or scheduling models is to decompose the model into
an upper level problem at the higher hierarchical level,
and a lower level problem at a lower hierarchical level.
Iyer and Grossmann (1998a) proposed such a bilevel de-
composition algorithm for an MILP design and planning
problem, where the upper level involves mainly design
decisions while the lower level involves mainly planning
decisions. Van den Heever and Grossmann (1999) ex-
panded this approach to MINLPs through the use of
GDP. Consider an original model (P) where superscript d
denotes design variables and superscript p denotes plan-
ning variables.

min f(xd, yd, xp, yp) (P)

subject to

h(xd, yd, xp, yp) ≤ 0
x ∈ <, y ∈ {0, 1}

To derive the upper level design problem (DP), all the
discrete planning variables are relaxed. This results in a
much smaller number of nodes in the branch and bound
search facilitating a faster solution. Also, some of the
constraints and/or variables may be aggregated at this
level, indicated by Λ.

min f(xd, yd, xp, yp) (DP)

subject to

Λh(xd, yd, xp, yp) ≤ 0
0 ≤ yp ≤ 1

x ∈ <, yp ∈ <, yd ∈ {0, 1}

After (DP) is solved, the discrete design variables are
fixed (indicated by the bar on yd) and the lower level
planning problem (PP) is solved for the fixed design.

min f(xd, ȳd, xp, yp) (PP)

subject to

h(xd, ȳd, xp, yp) ≤ 0
x ∈ <, yp ∈ {0, 1}

Subproblems (DP) and (PP) are solved iteratively
and design and integer cuts are added at each iteration
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Figure 6: Block diagonal structure.

to ensure an optimal solution. Note that even though
both (DP) and (PP) are in a reduced space, both con-
sider the design and planning model as a whole. A
further benefit of this approach is that it significantly
reduces the computational effort compared to solving
the combined problem as a whole, while still guaran-
teeing the optimal solution to the original combined
model in the convex case. Papageorgiou and Pantelides
(1996b) proposed a similar decomposition approach for
combined campaign planning and scheduling of multi-
purpose batch/semicontinuous plants. In their work, the
upper level problem concerns mainly campaign planning
decisions while the scheduling decisions are aggregated,
and the lower level problem is solved with some of the
campaign planning variables fixed. Again both levels
consider the problem as a whole. In the experience of the
authors, the bilevel decomposition approach works par-
ticularly well for large-scale industrial applications over
a long time horizon, especially when combined with the
aggregation of time periods as discussed in Example 1.

Lagrangean relaxation. This is an approach that is of-
ten applied to models with a block diagonal structure. In
such models, distinct blocks of variables and constraints
can be identified that are linked with a few “linking” con-
straints and variables (see Figure 6). Some applications
include scenario decomposition for planning under un-
certainty (Carøe and Schultz, 1999), unit commitment
in power plants (Nowak and Römisch, 1998), midterm
production planning (Gupta and Maranas, 1999), oil-
field investment planning (Van den Heever et al., 2000)
and combined transportation and scheduling (Equi et al.,
1997), to name but a few.

Consider a model (L) that has been partitioned into
blocks of constraints p = 1, . . . , P where the blocks are
linked by a constraint set h:

min
∑

p

fp(xp) (L)
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subject to

gp(xp) ≤ 0 ∀p
h(x1, . . . , xp) ≤ b

x ∈ X

The basic idea behind Lagrangean relaxation as ap-
plied to the decomposition of block diagonal structures,
is to dualize the linking constraint set, h, by removing
it and replacing it with a penalty in the objective func-
tion involving the associated Lagrangean multipliers, λ,
as seen in model (LR):

min
x

∑
p

fp(xp) + λ(h(x1, . . . , xp)− b) (LR)

subject to

gp(xp) ≤ 0 ∀p
x ∈ X

Model (LR) is now decomposable into P subproblems
and, for any choice of λ, also yields a lower bound to
the optimal solution of (L) if the constraints are convex.
The case where variables link the blocks can be dealt
with by introducing duplicates for each linking variable,
setting the duplicates equal, and dualizing this equality
constraint. This is referred to as Lagrangean decompo-
sition (Guignard and Kim, 1987). Obtaining the tight-
est lower bound to (L) requires the solution of the La-
grangean dual problem (LD):

max
λ

min
x

∑
p

fp(xp) + λ(h(x1, . . . , xp)− b) (LD)

subject to

gp(xp) ≤ 0 ∀p
x ∈ X

If all the constraints are convex and all the variables
are continuous, the optimum of (LD) will equal the op-
timum of (L). However, a duality gap might exist in the
presence of integer variables or other non-convexities,
which means that the optimal solution to the dual prob-
lem will be strictly less than the true optimum of (L).
Guignard (1995) and Bazaraa et al. (1994) give compre-
hensive graphical interpretations of the duality gap in
the case of integer variables and non-convex constraints
respectively. Solving (LD) can be difficult to implement
and time consuming, although Fisher (1981) reports on
some algorithms for this purpose. A code for solving the
dual was developed by Kiwiel (1993), but this code is not
widely available to the best of our knowledge. Solving
the dual to optimality is therefore often circumvented
by using an iterative heuristic approach where (LR) is
solved to generate lower bounds to (L) and a heuris-
tic method is used to generate feasible solutions to (L)

which are also upper bounds. λ is updated at each iter-
ation with some updating rule, for example a subgradi-
ent method (see e.g. Fisher, 1981). This decomposition
method reduces the computational effort by solving sev-
eral subproblems instead of the original problem, and
the associated algorithms lend themselves to paralleliza-
tion to reduce the computational effort even more. For a
thorough background on the application of Lagrangean
relaxation, we refer the reader to Guignard (1995) and
Fisher (1981, 1985).

Aggregation

For some models, decomposition alone is not enough to
obtain a good solution in reasonable time, and some form
of aggregation is required to further reduce the model
size. Rogers et al. (1991) give a good review on the use of
aggregation/disaggregation in optimization. These au-
thors define the major components of this framework,
namely aggregation analysis, disaggregation analysis and
error analysis. The first component involves determin-
ing which elements of the model to combine into a single
element and how to define the single element, while the
second component conversely involves deriving a more
refined model from the aggregate one. Error analysis
determines the error introduced by aggregation and dis-
aggregation. These three components can be addressed
sequentially or iteratively to reduce the computational
effort of solving the original problem, with the iterative
approach aiming at decreasing the error at each itera-
tion.

It should be noted that the solution to the aggregate
formulation is not necessarily feasible for the disaggre-
gate case. However, for certain models it may be pos-
sible to formulate the aggregation in such a way as to
yield a strict bound to the original problem, and to guar-
antee feasibility for the disaggregate level, as shown by
Iyer et al. (1998) for the aggregation of oil wells for oil
production planning One approach to reduce the num-
ber of constraints is to linearly combine some of them
into a surrogate constraint where the aggregation coef-
ficients are modified iteratively (see e.g. Ermoliev et al.,
1997). Wilkinson et al. (1996) use a constraint aggrega-
tion approach to solve a large-scale production and dis-
tribution planning problem for multiple production sites.
In their work an upper level aggregate model is solved
to set production targets and also yield a strict upper
bound to the original problem, after which the detailed
scheduling can be optimized for each site individually
with fixed targets thus decreasing the computational ef-
fort significantly. Wilkinson (1996) proposed aggregate
formulations for large-scale process scheduling problems
using ideas of approximation of difference equations, as
well as decomposition approaches for solving these mod-
els. In the case of multiperiod models, an approach that
works well is to aggregate the time periods. This is es-
pecially true when the model involves two hierarchical
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time levels, such as combined design and planning or
combined planning and scheduling. Van den Heever and
Grossmann (2000) combined the bilevel decomposition
approach mentioned above with the aggregation of time
periods by aggregating time in the upper level problem
with subsequent disaggregation in the lower level plan-
ning problem. An additional subproblem is solved af-
ter each iteration to determine the best new aggregation
scheme (which periods should be grouped together) and
information from the aggregation subproblem is used at
each iteration to eliminate variables in the lower level
problem. It was found that the error introduced by the
aggregation of the time periods was very small, mainly
due to the optimal aggregation subproblem. Other ag-
gregation schemes include the aggregation of products
into families of similar products for the scheduling of
multiproduct plants (Kondili et al., 1993). Where uncer-
tainty is incorporated through a scenario-based model,
scenario aggregation can speed up the solution time sig-
nificantly. The scenario aggregation approach was ap-
plied to a mixed-integer linear multiproduct production
planning problem by Jorsten and Leisten (1994) who
exploited the coupling between continuous and integer
planning variables to allow application of the scenario-
aggregation algorithm originally proposed by Rockafeller
and Wets (1991) for continuous models.

Apart from decomposition and aggregation tech-
niques, some other heuristic approaches address the so-
lution of large-scale planning and scheduling problems.
One such heuristic is a capacity shifting heuristic pre-
sented by Ahmed and Sahinidis (2000) for a class of pro-
cess planning problems. These authors show that the er-
ror of their heuristic algorithm vanishes asymptotically
as the problem size increases. This is a very nice re-
sult, considering that the solution time increases expo-
nentially with the number of time periods for an exact
solution algorithm.

Examples

In this section we present three examples that illustrate
some of the main points covered in this paper. Exam-
ple 1 deals with a planning problem that gives rise to a
large-scale multiperiod MINLP model, and that requires
the use of a decomposition/aggregation strategy. Ex-
ample 2 describes an MILP scheduling model for steel
manufacturing that is also tackled through a special de-
composition approach. Finally, example 3 describes a
hybrid CP/MILP model for a parallel scheduling prob-
lem, which demonstrates the advantage of a combined
approach as opposed to pure CP or MIP.

Example 1. Hydrocarbon Field Infrastructure
Planning

The operation and investment planning involved in the
design of hydrocarbon field infrastructures is a challeng-
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Figure 7: Configuration of fields, well platforms and
production platforms.

ing problem that involves several complexities such as a
long time horizon, nonlinear reservoir behavior, and com-
plex fiscal rules leading to a multiperiod MINLP model
with several discrete and continuous variables. In this
example (for details see Van den Heever and Grossmann,
2000) we consider the design, planning and scheduling of
an offshore oilfield infrastructure over a planning horizon
of 6 years divided into 24 quarterly periods where deci-
sions need to be made. The infrastructure under consid-
eration consists of one Production Platform (PP), 2 Well
Platforms (WP), 25 wells and connecting pipelines (see
Figure 7). Each oilfield (F) consists of a number of reser-
voirs (R), while each reservoir in turn contains a number
of potential locations for wells (W) to be drilled. Design
decisions involve the capacities of the PPs and WPs, as
well as decisions regarding which WPs to install over
the whole operating horizon. Planning decisions involve
the production profiles in each period, as well as deci-
sions regarding when to install PPs and WPs included
in the design, while scheduling decisions involve the se-
lection and timing of drilling of the wells. This leads to
an MINLP model with 9744 constraints, 5953 continuous
variables, and 700 0-1 variables.

An attempt to solve this model with a commer-
cial package such as GAMS (Brooke et al., 1992)
(using DICOPT (Viswanathan and Grossmann, 1990)
with CPLEX 6.6 (ILOG Inc., 2000) for the MILPs
and CONOPT2 (Drud, 1992) for the NLPs on an
HP9000/C110 workstation), results in a solution time
of 19386 CPU seconds. To overcome this long solution
time, Van den Heever and Grossmann (2000) developed
an iterative aggregation/disaggregation algorithm which
solved the model in 1423 CPU seconds. This algorithm
combines the concepts of bilevel decomposition, time ag-
gregation and logic-based methods. The original design
and planning problem is decomposed into an upper level
design problem and a lower level planning problem. Both
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Figure 8: Production profile over 6 year horizon.

Item Period Invested

PP Jan. 1999

WP1 Jan. 1999

Reservoir Well

2 4 Jan. 1999

3 1 Jan. 1999

5 3 Jan. 1999

4 2 Apr. 1999

7 1 Jul. 1999

6 2 Oct. 1999

1 2 Jan. 2000

9 2 Jan. 2000

10 1 Jan. 2000

Table 1: The optimal investment plan.

subproblems are formulated as disjunctive models. The
upper level design problem is solved in aggregate time,
after which a design is fixed, time periods are disaggre-
gated and the lower level planning problems is solved.
This result is then used to determine a new time aggrega-
tion through a dynamic programming subproblem, inte-
ger cuts are added to the design problem, aggregation pa-
rameters are updated, and the iteration is repeated until
the termination criteria are reached. Thus the applica-
tion of combined decomposition and aggregation leads to
an order of magnitude reduction in solution time, while
the same optimal net present value of $68 million is found
as with DICOPT. For this specific model, the large de-
crease in computational effort is mainly due to the ag-
gregation/decomposition, while the disjunctive program-
ming formulation contributed mainly towards reducing
non-convexities due to zero flows and to the clarity of
representation. However, for different planning models
the disjunctive programming approach may reduce the
computational effort significantly in addition to the ben-
efits mentioned here, as shown by Van den Heever and
Grossmann (1999) for the case of process network design
and planning and the retrofit of batch plants.

Figure 8 shows the total oil production over the 6 year

Furnace #2

Casting

Furnace #1

Decarburization Treatment

Figure 9: Processing steps in steel manufacturing.

horizon, while Table 1 shows the optimal investment plan
obtained. Note that only 9 of the 25 wells were chosen
in the end. This solution resulted in savings in the order
of millions of dollars compared to the heuristic method
used in the oilfield industry that specify almost all the
wells being drilled.

In Van den Heever et al. (2000), the concept of hy-
drocarbon field infrastructure planning was expanded to
include complex fiscal rules such as royalties, tariffs and
taxes. This resulted in a model for which no solution
could be found by GAMS in more than 5 days. To ad-
dress this problem, a heuristic solution procedure based
on Lagrangean decomposition was proposed that pro-
duces several good solutions in a day. This method can
potentially be parallelized and combined with the ag-
gregation of time periods to speed up the solution even
more.

Example 2. An MILP Approach to Steel Manu-
facturing

In this section, an MILP approach to produce a pro-
duction schedule for a steel-making process is discussed.
As seen in Figure 9 the steel-making process consists
of two furnaces, where the melt steel is combined with
scrap and thereafter taken to decarburization and ladle
treatment units. Finally the melt steel is solidified in a
continuous caster under strictly constrained conditions.
There are several complicating factors in the problem
such as sequence dependent setup times, maintenance
of equipment and production time limitations. Further-
more, temperature and purity issues are critical to the
production that also includes low-carbon steel grades.
Other problems arising from the metal chemistry as well
as plant geometrics are not directly considered in the
model. The production steps are illustrated in Figure 9,
where the possible paths of the products are shown.

A continuous time representation for modeling a large-
scale scheduling problem is applied. The proposed de-
composition strategy consists of first positioning the or-
ders into blocks, each of which is optimized as a job-
shop scheduling problem. Next the blocks are opti-
mally scheduled as a flowshop problem and finally an
LP and/or MILP method is used to properly account
for setup times and to optimize the allocation of some
parallel equipment. This type of approach allows some
of the more complicated constraints to be either isolated
in a subproblem or inserted as parameters between two
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Preprocessing

MILP−level

Postprocessing

Group the products into 
blocks of 1−10 and define

casting order

Solve the scheduling 
problem for each block 

separately (MILP)

Find the best
locations for the blocks

(MIL P)

Solve the whole
problem with fixed
preference (LP) to
tighten the solution

Figure 10: Solution strategy for steel scheduling.

solution steps. While this decomposition strategy is not
guaranteed to yield the global optimal schedule it allows
the solution of very large-scale problems. The strategy
is illustrated in Figure 10.

The decomposition strategy is motivated by the fact
that heats with similar product properties can be
grouped into sequences in a preprocessing step. These
sequences are then treated as independent blocks by first
optimizing their internal production order and there-
after finding the optimal sequence between the blocks.
In a postprocessing step, the heats are again treated as
individual products with fixed ordering and the gaps,
caused by the grouping, are closed by solving an LP-
problem. The solution can furthermore be improved by
solving a final MILP. This example forms an interesting
approach where a problem is both decomposed and re-
joined through optimization and thus one large MILP is
replaced by a number of smaller and solvable subprob-
lems. Also, the modularity of the procedure makes it
possible to solve only parts of the problem when changes
occur. Table 2 shows the results that were obtained from
solving a one week problem containing 81 products. The
optimization was performed on a Linux-platform using
XPRESS-MP in GAMS.

The 81 product problem is not solvable with stan-
dard MILP methods, as seen from the failure in solv-
ing even the 10-product jobshop-example in reasonable
time (the makespan is the best one obtained at 10,000
CPU seconds). The proposed strategy solves the com-
plete problem in less than 20 CPU minutes. Even though
the decomposition strategy is not expected to result into
a global optimal solution, the maximum deviation of the
makespan with respect to a theoretical optimum is only
2% and the makespan is reduced from one week to 5 days
and 12 hours.

Job 1

Job i

Job n

Machine 1

Machine j

Machine m

MILP CP

Figure 11: Scheduling of parallel machines.

Example 3. A Hybrid MILP/CP Approach for
Parallel Scheduling

In this example, a strategy of decomposing a scheduling
problem into a CP and MILP part is discussed. The ba-
sic idea is to combine the two methods such that their
complementary strengths can be exploited. The problem
is a single stage scheduling problem with parallel units
reported by Jain and Grossmann (2000). In the decom-
position strategy a relaxed MILP is solved at the mas-
ter level and a feasibility subproblem is solved with CP.
The relaxed MILP excludes the complicating constraints
which in this case are the sequencing inequalities. Those
are reformulated as a feasibility CP subproblem. The
strategy consists of two main steps: the relaxed MILP
is first solved to its global optimal solution to obtain
a feasible assignment and thereafter a feasibility check
is performed by solving a CP sequencing problem with
fixed assignment (see Figure 11).

If the sequencing problem is infeasible, cuts are added
to the next relaxed MILP to exclude the previous infea-
sible assignment. The procedure continues solving alter-
nate CP and MILP problems until a feasible sequence is
found. The communication between the solution steps is
done through fixing assignment variables and generating
integer cuts.

This strategy requires that the problem be decom-
posed into two subproblems of which the MILP (the as-
signment problem) provides a tight LP-relaxation and
contains the objective function variables, and the CP
(the sequencing problem) has no objective function vari-
ables and includes the constraints with poor relaxations.
This ensures an efficient assignment of machines and that
the first feasible sequence found is optimal. As can be
seen in the following mathematical formulation, equiv-
alence relations are also needed to join the variables in
the two subproblems due to some structural differences.
Here we will only present the main elements of the hy-
brid formulation. For more details, we refer to Jain and
Grossmann (2000).

min
∑
i∈I

∑
m∈M

Cimxim (27)
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Problem Products Groups CPU-s Makespan Integer Gap
Proposed decomposition 81 19 1035.3 132h 6 min 2%
Conventional jobshop 10 1 >10,000 19h 7min 52%

Table 2: Comparison of results between proposed approached and conventional jobshop model.

Problem 1 2 3 4
Machines/Jobs 3/7 3/12 5/15 5/20
MILP 0.58 164.92 528.86 >40,000
CP 0.04 3.35 590.9 11666.4
HYBRID 0.49 5.27 0.56 35.64

Table 3: Computational results in parallel scheduling
problem.

subject to

tsi ≥ ri ∀i ∈ I (28)

tsi ≤ di −
∑

m∈M

pimxim ∀i ∈ I (29)∑
m∈M

xim = 1 ∀i ∈ I (30)∑
i∈I

ximpim ≤ max
i
{di} −min

i
{ri} ∀m ∈ M (31)

if (xim = 1) then (zi = m) ∀i ∈ I,m ∈ M (32)
i.start ≥ ri ∀i ∈ I (33)

i.start ≤ di − pzi
∀i ∈ I (34)

i.duration ≤ pzi
∀i ∈ I (35)

i requires tzi
∀i ∈ I (36)

tsi ≥ 0 (37)
xim ∈ {0, 1} ∀i ∈ I,m ∈ M (38)

zi ∈ M ∀i ∈ I (39)
i.start ∈ Z ∀i ∈ I (40)

i.duration ∈ Z ∀i ∈ I (41)∑
i∈I

aj
imxim ≤

∑
i∈I

aj
im − 1 ∀m ∈ M (42)

The assignment MILP problem is defined by (27–31).
The objective function (27) minimizes the processing
costs for all jobs. The binary variable, xim, equals one
if job i is assigned to machine m, else it is zero. Con-
straint (28) and (29) ensure that processing of a job i
starts after the release date and is completed before the
duedate. Each job needs exactly one machine as is stated
in (30) and the last MILP constraint (31) tightens the
LP-relaxation. After solving the MILP problem the fixed
assigments are transferred to the CP model using (30).

The sequencing CP problem, given in (33–36), is then
solved separately for each machine. In the formulation,
i is an activity (job), the start time of which is specified
in (33) and (34) and duration in (35). It should be noted

that it is possible to use a variable as an index in CP and
pzi refers to the processing time of job i in the assigned
equipment. In constraint (36) the special construct re-
quires enforces that job i needs a unary recourse from
the set of resources t. If a machine cannot be scheduled,
a cut of the form (42) is added to the next assignment
MILP problem.

In Table 3, the problems are solved using complete
MILP and CP formulations, as well as the hybrid model,
with modified data given in Harjunkoski et al. (2000)
where the original release dates, due dates and dura-
tions (Jain and Grossmann, 2000) have been arbitrar-
ily changed and roughly multiplied by a factor of 10 to
test the robustness of the method. The problems were
solved on a Sun workstation with OPL Studio (ILOG
Inc., 1999a) using CPLEX 6.5 and ILOG Solver (ILOG
Inc., 1999c) and Scheduler (ILOG Inc., 1999b). In the
following table the CPU times are listed for the four test
problems.

In the hybrid formulation, most of the CPU time is
consumed by the MILP. Even though CP overperforms
the hybrid approach in the smallest problems the results
clearly show that both CP and MILP suffer from com-
binatorial explosion, but the combination of these two
methods performs very well even for the largest prob-
lem. It should be pointed out that the hybrid strategy
does not compromise the global optimality.

Conclusions

This paper has presented an overview of planning and
scheduling. It has been shown that these problems lead
to discrete optimization models for which the associated
mathematical programming problems correspond to in-
teger programming problems, which can exhibit expo-
nential behavior in their computation. Logic-based opti-
mization techniques offer the potential of not only simpli-
fying the formulations, but also decreasing the computa-
tional requirements. We have illustrated the use of logic
based optimization as a modeling tool through a novel
Generalized Disjunctive Program, that integrates plan-
ning and scheduling for process networks, and where the
scheduling is represented with the STN model. We have
also given a brief overview of decomposition strategies
since these are essential in tackling large scale industrial
problems. Finally, we have presented three examples,
planning of oilfields, scheduling of steel manufacturing
and scheduling of parallel machines, to illustrate the ap-
plication of new techniques that are making possible the
solution of problems that were essentially unsolvable a
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few years ago.
While the integration of planning and scheduling re-

mains a major challenge due to the potentially large size
of the resulting optimization problem, another major
challenge that has not been covered in this paper is the
integration of planning and scheduling with control. This
is essentially virgin territory in which very little work has
been reported. The reader is referred for instance to the
work by Bose and Pekny (2000), Perea et al. (2000), and
Vargas-Villamil and Rivera (2000) who have addressed
the incorporation of model predictive control in schedul-
ing, and the dynamics and control of supply chains. At
present, however, these works have addressed only spe-
cific applications due to the lack of a general framework,
which possibly might be achieved through the use of hy-
brid systems (Kowalewski, 2001; Morari, 2001).
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