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Abstract—Much of the mathematical modeling of genetic
networks represents gene expression and regulation as de-
terministic processes. There is now, however, considerable
experimental evidence indicating that significant stochastic
fluctuations are present in these processes. Stochasticity is an
inherent feature of biological dynamics, and as such, should be
the subject of in-depth analysis. The investigation of stochastic
properties in genetic systems involves the formulation of a
correct representation of molecular noise, followed by the
formulation of mathematically sound approximations for these
representations. It also involves devising efficient computa-
tional algorithms capable of tackling the complexity of the
dynamics involved. In this paper we review a number of these
techniques and provide compelling examples that illustrate the
richness of phenomena that can result from the interaction of
dynamics and noise in genetic networks.

I. INTRODUCTION

Internal regulation of biochemical reactions is an essen-
tial task that cells should accurately accomplish for growth
and survival. It has become increasingly apparent that the
accurate modeling of this regulation yields valuable insight
into regulatory biological systems, and holds the promise of
uncovering the principles behind their operation in health
and disease. The traditional mathematical description of the
time evolution of well-stirred biochemical reactions is a set
of coupled, ordinary differential equations. These equations
model the evolution of the molecular populations as a con-
tinuous, deterministic process, with variables representing
population concentrations. However, within the cell, the
chemically reacting system of molecules in general and the
genetic networks they implement actually possess neither of
those attributes: Molecular populations are whole numbers
and change by discrete, integer amounts. Furthermore, the
occurrence of a chemical reaction is by itself a random pro-
cess subject to thermal fluctuations, and hence is stochastic
in nature. When the molecular populations of some reactant
species are very small, or if the dynamic structure of the
system makes it susceptible to noise amplification as is often
the case in cellular systems, discreteness and stochasticity
play an important role. Whenever that happens, the ordinary
differential equations approach does not accurately describe
the true behavior of the system. This is further corroborated
by physical evidence pointing to purely stochastic phenom-
ena in a number of genetic networks [1], [2], [3]. In this
paper, we extract the essence of these phenomena through
a sequence of motivating simple examples. We then review
some old and more recent mathematical methods commonly
used for modeling of stochastic cellular dynamics. We
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end our exposition with some examples that illustrate the
principles of noise attenuation through feedback and noise
exploitation in cellular networks, all analyzed using the
methods presented.

II. DETERMINISTIC VERSUS STOCHASTIC MODELING

As in chemical kinetics, biochemical reactions in biologi-
cal networks can be described using the laws of mass-action,
yielding a set of differential equations that give the succes-
sion of concentration of species adopted by the network

over time. Consider for example the reaction A+ B
k→C.

The deterministic formulation of chemical kinetics would
yield the following description d[C]

dt = k[A] · [B] where [·]
denotes the concentration. In contrast, the discrete stochastic
formulation of the above reaction is concerned with the
probability that at a given time, t, the number of molecules
of species A and B take certain values. Thus, populations
of various reactants are treated as random variables, and
reactions take place randomly according to certain proba-
bilities determined by several factors. For example, given a
certain population of A and B, say na and nb, at time t, the
probability that one of the above reactions takes place within
the interval [t, t+ dt) is given by k·na·nb

V dt, where V is the
volume of the space containing the reactants. The stochastic
approach to chemical kinetics is discussed in more detail
later in this paper. In the meantime, the reader should keep
in mind that in the mesoscopic stochastic formulation of
chemical kinetics, molecular species are characterized by
their probability density function (pdf). This pdf quantifies
the amount of fluctuations around a certain mean value that
molecular populations can assume. In the limit of an infi-
nite number of molecules, fluctuations become negligible,
and the mesoscopic description generates the macroscopic
description. In intermediate regimes, however, fluctuations
need to be accounted for as they can generate distinct
phenomena that make a deterministic description erroneous.
This is illustrated in the following examples.

A. Deterministic equilibrium versus the mean of the distri-
bution

Although the macroscopic deterministic description is
often assumed to be an acceptable approximation of the
behavior of the mean value of a process, it sometimes fail
to capture this mean value. Such an effect has been recently
described in a simple example, and the phenomenon it
implements termed “stochastic focusing” [4]. More specifi-
cally, the example describes sensitivity amplification that
results from the use of noisy signals and that goes be-
yond what noise-free signals can achieve. The molecular
interactions described in the example include a protein I,
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produced constitutively at rate k = 104 and degraded or
converted to P molecules at rates kaS (ka = 9.9×103) and
kp = 104, respectively. P molecules are in turn degraded
with normalized rate constant 1. S is a signalling molecule
degraded at a rate kd = 103 and produced at a constant rate
ks = 10kd , and therefore assumes Poisson statistics. These
interactions are given by

k�
kaS

I
kp→ P

1→ ks�
kd
S (1)

With this choice of parameters, the scheme in (1) can be

approximated by
kq
�
1
P, where q= 1

1+S/K , with K = kp/ka.

Signalling to this system through S can for example be
implemented by halving its concentration through a one-
half decrease in the synthesis rate ks. If S were a noiseless
signal, this two-fold decrease can never result in more than
a two-fold increase in the average number of product P due
to the intrinsic limitation of the hyperbolic inhibition q (see
Figure 1). However, when signal noise is accounted for, a
two-fold decrease in the average signal concentration results
in about a 3-fold increase in P, therefore indicating that the
deterministic description grossly under-estimated the mean
of the distribution. This effect is a natural consequence
of the fact that the average of a nonlinear function (q in
this case) is generally not the same as the function of the
average.
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Fig. 1. Stochastic (red) and deterministic (blue) simulation of the system
in (1).

B. Noise Induced Switching in Multistable Systems

The effect of fluctuations in multistable systems can
be substantial as noise can influence the convergence to
equilibria or even cause switching from one equilibrium to
another. One of the best studied examples of multistability
in genetic systems is the bacteriophage system [5]. A
simplified model for the bacteriophage was proposed in
[6]. In their model, the gene cI expresses the repressor
CI which dimerizes and binds to DNA as a transcription
factor at either of two binding sites, OR1 or OR2. Binding
of this transcription factor to OR1 enhances transcription
of CI (positive feedback), while binding to OR2 represses
transcription of CI (negative feedback). The molecular
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Fig. 2. Stochastic time trajectory of CI. Noise causes switching between
the two equilibrium points of the system.

reactions in this system proceed as follows

2CI
K1� CI2 ; CI2+D

K2� DCI2

CI2+D
K3� DCI∗2 ; DCI2+CI2

K4�DCI2CI2

DCI2+P
kt→ DCI2+P+nCI ; CI

kd→
where the DCI2 and DCI∗2 complexes denote the binding
to OR1 and OR2 respectively, and DCI2CI2 denotes binding
to both sites. Ki are forward equilibrium constants, kt is
protein synthesis rate, and kd is degradation rate. P is
the concentration of the RNA polymerase assumed here to
be constant, and n is the number of proteins per mRNA
transcript, taken here to be 2. Production of CI from the
naked DNA is also assumed to occur, but at a very slow
rate r. Ordinary differential equations that describe these
chemical reactions implement a bistable system. In the
deterministic setting, the system’s trajectories converge to
one or the other of the equilibria and stay there for all future
times for any given set of initial conditions. However, as we
incorporate the effect of molecular noise in this description,
we notice that switching between the two stable equilibria
is possible if the noise amplitude is sufficient to drive the
trajectories occasionally out of the basin of attraction of
one equilibrium into the basin of attraction of the other
equilibrium as shown in Figure 2.

III. STOCHASTIC MODELS OF GENE EXPRESSION AND

REGULATION

Here, we introduce the stochastic formulation of chemical
kinetics using the Chemical Master Equation (CME)

A. Stochastic Formulation of Chemical Kinetics and the
Master Equation

The CME describes the time evolution of the pdf, as
opposed to deterministic rate equation descriptions of the
concentration of molecules [7]. In the CME, reaction rates
are transformed into probability transition rates. The CME
can be derived based on the Markov property of chemical
reactions. Using this Markov property, one can write the
Chapman-Kolmogorov equation, an identity that must be
obeyed by the transition probability of any Markov process.
Using stationarity and taking the limit for infinitesimally
vanishing time intervals, one obtains the CME, as the
differential form of the Chapman-Kolmogorov equation [7].
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Here, we only give the expression for the CME and refer
the reader to [7] or [8] for a more detailed account.
In a chemically reacting system involving N molecular

species S1, ....SN reacting through M reaction channels
R1....RM, we define the state vector X(t) = [X1(t)....XN(t)]T ,
where Xi(t), i = 1,2..,N is a random number that defines
the number of molecules of species Si in the system at
time t. We assume that the system is well stirred and in
thermal equilibrium. Under these circumstances, each reac-
tion channel Rk is characterized by a propensity function wk

and an N-dimensional state change vector sk = [s1k....sNk]T .
The vector sk represents the stoichiometric change of the
molecular species by an Rk reaction, while wk(x)dt is the
probability that one Rk reaction will occur in state X(t) = x
during the next infinitesimal time interval dt. We letW (·) =
[w1(·), ...,wM(·)]T be the vector of propensity functions and
S = {sk}k=1..M be the stoichiometry matrix. The CME for
this system is then given by

P(x, t|x0, t0)
t

=
M

k=1
[wk(x− sk)P(x− sk,t|x0,t0)

− wk(x)P(x,t|x0,t0)] (2)

where P(x, t|x0, t0) should be interpreted as the probability
that at time t, X(t) = x given that X(t0) = x0 (x and x0 are
integers). For clarity, we give a simple example. Consider
a protein existing in two states A or B. This protein can
transform from A to B with a transition rate k1 and from B

to A at a rate k2, i.e. A
k1�
k2
B. For this system,

S=
[−1 1
1 −1

]
,W =

[
k1na
k2nb

]

where na and nb are the numbers of A and B respectively.
The Master Equation for this system can be written as

dP(na,nb; t|na(t0),nb(t0); t0)
dt

=

k1(na+1)P(na+1,nb−1; t|na(t0),nb(t0); t0) (3)

+k2(nb+1)P(na−1,nb+1; t|na(t0),nb(t0); t0)
−(k1na+ k2nb)P(na,nb; t|na(t0),nb(t0); t0)

In general, the CME is not analytically or numerically
solvable in any but the simplest cases. Therefore, one has
to resort to Monte Carlo type simulations that produce
a random walk through the possible states of the system
under study. We briefly describe the Gillespie Stochastic
Simulation Algorithm (SSA) as the most commonly used
representative of these stochastic simulation methods [9].

B. Numerical Methods

1) Exact Monte Carlo Simulations: The SSA involves
the computation of the probability and time of occurrence
of elementary reactions. More specifically, starting at time t,
the time to the next occurring reaction is the exponentially
distributed random variable with mean 1

w0(x)
. Furthermore,

the next reaction Rk to occur is the one whose index k is the

integer random variable with probability wk(x)
w0(x)

, where w0(x)
is given by w0(x) = M

k=1wj(x). To generate these random
variables, one can draw two random number r 1 and r2 from
the uniform distribution in the unit interval, and then take

= 1
w0(x)

ln 1r1 and k to be the smallest integer satisfying
k
j′=1wj′ (x) > r2w0(x). Based on and Rk one can then

advance the simulation time by , and update the state of
the system and repeat until final time or state. The trajectory
obtained in this fashion is a stochastic realization based
on the description of the Master Equation. The Gillespie
stochastic algorithm tracks exactly all the reactions that
occur in the system and the species they affect. This often
represents a large computational load which makes these
simulations rather prohibitive if the system has species with
large numbers of molecules or reactions that evolve at fast
time scales. There are many attempts to make the SSA
more computationally efficient such as improved compu-
tational and data storage capabilities [10], the incorporation
of quasi-steady-state approximations [12], and “leaping”
procedures for stiff systems whereby the algorithm leaps
over a number of reactions using preselected values [13].

C. Approximation Methods

1) Linear Noise Approximations: A less computationally
demanding, yet approximate, approach is the simplification
of the master equation in a Linear Noise Approximation
(LNA). Roughly speaking, the LNA involves the expansion
of the master equation in Taylor series near macroscopic
system trajectories or stationary points. Terms of first order
in the expansion are then identified with the macroscopic
rate equations, while terms of second order describe the
approximate noise acting on the system. More specifically,
approximate explicit expressions for the covariance matrix
C of the fluctuations in the components of the system is
obtained as the solution of an Algebraic Lyapunov equation
AC+CAT +D= 0, where A is a Jacobian matrix of the de-
terministic evolution equations evaluated at the steady state,
while D is a diffusion matrix that embodies the contribution
of every chemical reaction to the overall fluctuations. We
present next the multivariable LNA of the CME [14].
Using the master equation in (2), we compute expres-

sions for the first two moments of the process X . For
the first moment of any Xi, we multiply (2) by Xi and
take summation over all variables X1, ...XN . For the second
order moment, say E[XiXj], we multiply by (2) XiXj and
again take summations. This results in the following set of
equations

dE[Xi]
dt

=
M

k=1
sikE[wk(X)] (4)

dE[XiXj]
dt

=
M

k=1
(sikE[Xjwk(X)]+E[Xiwk(X)]s jk

+ siks jkE[wk(X)]) (5)

where (i, j= 1, ...N). The symbol E denotes expectation on
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the pd f P(x; t). Let (X) be defined as⎡
⎢⎢⎢⎢⎣

E[X1w1(X)] E[X2w1(X)] . . E[XNw1(X)]
E[X1w2(X)] E[X2w2(X)] . . E[XNw2(X)]

. . . . .

. . . . .
E[X1wM(X)] E[X2wM(X)] . . E(XNwM(X))

⎤
⎥⎥⎥⎥⎦

and let E[W (X)] denote the vector of expected values
E[wi(X)] and

D(X) = S{diagE[W(X)]}ST

where {diagE[W(X)]} is a matrix having E[wi(X)], i =
1, ..,N on the diagonal and zero elsewhere. In this matrix
notation, the relations in (4) translate to

dE[X ]
dt

= SE[W(X)] (6)

d X

dt
= S (X)+ (X)TST +D(X) (7)

where X is the second moment matrix, i.e. C = X −
E[X ]E[X ]T .
a) The Linear Propensity Case: Suppose that the propen-

sities functions appearing in the CME are linear functions
of the state variables, i.e. wk(X) = kXj (for some j) when
k ∈ {1, ...,h}. In this case S = S[ W

X
] X and SE[W (X)] =

Sh[ W
X

]E[X ], where [ W
X

] is the jacobian of W . Therefore,
equations (6) and (7) become

dE[X ]
dt

= S[
W

X
]E[X ]

d X

dt
= S[

W

X
] X + X(S[

W

X
])T +D(X) (8)

It is easy to show that in this case, the mean E[X ] follows
exactly the evolution of the deterministic rate equations,
which we denoted by . That is d

dt = S W .
To get an equation for C, we add and subtract

S[ W
X

]E[X ]E[X ]T and E[X ]TE[X ](S[ W
X

])T from (8) to get

d X

dt
= S[

W

X
]C+C(S[

W

X
])T +S[

W

X
]E[X ]E[X ]T

+ E[X ]TE[X ](S[
W

X
])T +D(X) (9)

Here, notice that S[ W
X

]E[X ]E[X ]T = dE[X]
dt E[X ]T

Hence, equation (9) becomes

d
dt

= S[
W

X
]C+C(S[

W

X
])T +

dE[X ]
dt

E[X ]T

+ E[X ]
dE[X ]
dt

T

+D(X) (10)

Therefore, the stationary covariance of X , computed from
(10) is given by the solution of the Lyapunov equation

S[
W
X

]C+C(S[
W

X
])T +D(X) = 0

evaluated at E[X ]� s, where s is the steady-state solution
of the deterministic rate equations. The matrix D can
always be written as BBT where B= S

√
diag(W ( s)) with√

diag(W ( s) being a diagonal matrix with
√
diag(wk( s))

on the diagonal. Hence, the effect of intrinsic stochasticity
can be thought of as Gaussian noise added through the
matrix B to a system having state matrix Sh[ W

X
].

b) The Nonlinear Propensity Case: The procedure above
does not generalize to nonlinear propensity functions since
the matrix will involve higher order moments. However,
an approximation is possible. Assume that the pdf P(X ; t)
is tightly distributed about the X = (t) with (t) being
the deterministic solution. Specifically d

dt = SW ( ). Let
X(t) = (t)+ (t), where is a stochastic term denoting
the deviation from the deterministic term (t). Expanding in
Taylor series around (t) and replacing in the rate equation

dE[X ]
dt

=
d
dt

+
dE[ ]
dt

= SW ( )+S
W(z)
z

|z= E[ ]+o(| |2)
The assumption on the pdf implies that terms of order
o(| |2) can be neglected, therefore recovering the equation
d
dt = SW ( ) for the mean of X . In addition, we get

dE[ ]
dt

= S
W (z)
z

|z= E[ ]

At the same time,

E[Xiwj(X)] = iw j( )+E[ i]wj( )

+ i
w j(z)
z

|z= E[ ] +
wj(z)
z

|z= E[ i ]+o(| |2)
Therefore,

(X) � ( )+W( )E[ ]T +
W (z)
z

|z= E[ ] T

+ S
W(z)
z

|z=
where is the covariance matrix of . Furthermore,

D(X) = D( + )� S{diagE[W( )+
W (z)
z

|z= ]}ST

= S{diagW( )}ST +S{diag wi(z)
z

|z= E[ ]}ST

We summarize the resulting equations

dE[ ]
dt

= A E[ ]

d

dt
= S ( )+ ( )T ST +SW( )E[ ]T

+ E[ ]W( )T ST +AE[ ] T

+ E[ ]TAT +A + AT

+ S{diagW( )}ST +S{diag wi(z)
z

|z= E[ ]}ST

where A = S W(z)
z |z= . If the matrix A is Hurwitz, E[ ]

tends to zero as t → . Let s be deterministic the steady
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state solution. Since at steady state SW ( s) = 0, ( s) =
SW( s) T

s = 0. The steady-state covariance for is then
given by the solution of the algebraic Lyapunov equation

As + ATs +Ds = 0 (11)

where As = S W(z)
z |z= s and Ds = S[diagW( s)]ST . One

can perform an appropriate change of variables whereby
the number of molecules for all the species in a system
will be scaled up or down. For example, one can define

(t) =N (t). N is commonly called the system size. Since
= N , the steady-state of (hence the mean of X)

grows linearly with N while its associated noise strength
grows as the square root of N. This in agreement with
the intuition that as the number of molecules in a system
increases, the noise strength affecting it, normalized by the
mean, decreases.
2) The Finite State Projection (FSP) Approach: The

Finite State Projection (FSP) method is concerned with
getting approximate solutions to the CME directly. We
briefly outline the key idea of this approach.
Given N possible molecular species of interest, the set

of all possible states is N
N . One can apriori fix a sequence

x1,x2, . . . of elements in N
N and define X := [x1,x2, . . . ]T .

The particular sequence x1,x2, . . . may be chosen to visit
every element of the entire space N

N . In this case, the choice
of X corresponds to a particular enumeration of the space
N
N . Once X is selected, the CME can be written as a single

linear expression:

Ṗ(X; t) = A ·P(X; t), (12)

where P(X; t) := [P(x1,t), p(x2,t), . . . ]T , is the complete
probability density state vector at time t, and A is the state
reaction matrix. The columns and rows of A are uniquely
defined by the system’s stoichiometry and the choice of X.
Beginning at any state, xi, there can be a maximum of M
possible reactions; each reaction leads to a different state:
x j = xi+ s, where s is the state change vector.
The state reaction matrix contains information regarding

every reaction, each weighted by the corresponding propen-
sity function. A has the properties that it is independent of
t; all of its diagonal elements are non-positive; all its off-
diagonal elements are non-negative; and all its columns sum
to exactly zero. The solution to the linear ODE beginning
at t = 0 and ending at t = t f in Eqn 12 is the expression:

P(X; t f ) = (0,t f ) ·P(X;0). (13)

In the case where there are only a finite number of reach-
able states, the operator, (0,t f ), is simply the exponential
of At f , and one can easily compute the solution. In the
more realistic situation when A is infinite dimensional or
extremely large, the exact analytic solution is unclear or
vastly difficult to compute. In these cases, one can devise
a systematic means of approximating the full system using
finite dimensional sub-systems. This systematic truncation
approach is the essence of the FSP method [11].

The FSP method utilizes approximations based on pro-
jecting the infinite dimensional state space onto a finite
dimensional one, while providing a bound for the error.
One such projections is given by the following theorem:
Theorem 1 ([11]): Consider any Markov process in

which the probability density state vector evolves according
to the ODE (12), where A has no negative off-diagonal
entries. Let AJ be a principle sub-matrix of A specified
by the indexing set J, and let P(XJ ; t) be a vector of the
corresponding elements of P(X;0). If for > 0, and t f ≥ 0

1T exp(AJt f )P(XJ;0) ≥ 1− , (14)

then

exp(AJt f )P(XJ ;0) ≤ P(XJ; t f ) ≤ exp(AJt f )P(XJ ;0)+ 1.
This result is the basis for an algorithm that truncates the
infinite state, computes the error between the probability
density given by the full system and the truncated one,
and then either stops or considers a new finite truncation,
depending on whether the error is within prescribed toler-
ances. Preliminary experience with this method shows that,
for several realistic problems of interest, it is superior to the
SSA both in accuracy and speed.

IV. EXAMPLES

A. Noise Attenuation Through Feedback

lt has been suggested that the robust operation of genetic
networks in the presence of noise is in part the outcome
of feedback regulatory loops [15]. Here, we present a
simplified example illustrating the essence of noise rejection
by feedback. A thorough treatment in the setting of the heat
shock response of bacteria was given in [16]. The example
we present corresponds to a protein x1 produced from
a constant pool of substrate. x1 promotes the production
of another protein x2, which is then degraded with first
order kinetics at a rate 2. We consider two scenarios for
the degradation of protein x1. In the first scenario, x1 is
degraded at a constitutive rate 0. In the second scenario,
the end product of the cascade, protein x2 regulates the
degradation of x1 in a closed loop fashion. The degradation
of x1 is therefore a function of x2, f (x2) multiplied by the
concentration of x1. We choose a linear function f of x2,
i.e. f (x2) = rx2. We now use the LNA to compares the
properties of these two schemes. The steady-state jacobian
for constitutive degradation system, denoted here by Acs, is
given by

Acs =
[− 0 0
k − 2

]
.=

[− cs 0
cs − cs

]

while the stationary jacobian of regulated degradation sys-
tem, denoted by As, is given by

As =
[− rxs2 − rxs1

k − 2

]
.=

[− s − s

s − s

]

We ensure internal consistency between the two models
by requiring that steady-state values in the two models be
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the same. We ensure this by setting 0 = rxs2 for constitu-
tive degradation. Hence, s = cs, s = cs, and s = cs.
The two systems possess diagonal diffusion matrices D that
are identical in this case, with d11 and d22 denoting the non-
zero terms. Solving the Lyapunov equation, we extract the
difference between constitutive degradation varianceCcs

x2 for
x2 and that of regulated degradation Cs

x2

Ccsx2 −Csx2 =
cs s( cs2d22+ cs2d11)

2 cs cs( cs + cs)( cs cs+ s cs)
> 0

This is always a positive and is a monotonically increasing
function of the feedback gain s, hence the advantage of
feedback in noise attenuation. This result is mirrored closely
by exact stochastic simulations using SSA.

B. Noise Exploitation and Coherence Resonance

To adapt the alternation of day and night, most living
organisms have developed the capability of generating os-
cillating expressions of proteins in their cells with a period
close to 24 hours, known as the circadian rhythm. The Vilar-
Kueh-Barkai-Leibler (VKBL in short) description of the
circadian oscillator incorporates an abstraction of a minimal
set of essential, experimentally determined mechanisms
in the system [17]. More specifically, the VKBL model
involves two genes, an activator A and a repressor R, which
are transcribed into mRNA and subsequently translated into
proteins. The activator A binds to the A and R promoters
and increases their expression rate. Therefore, A implements
a positive loop acting on its own transcription. At the
same time, R sequesters A to form a complex C, therefore
inhibiting it from binding to the gene promoter and acting
as a negative feedback loop. These interactions are depicted
in Figure 3 For the parameter values given in [17], a
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Fig. 3. (a) The molecular components of the VKBL model of the circadian
oscillator (b) Noise induced oscillations.

differential equations model for the dynamics of Figure
3 exhibits autonomous oscillations with an approximate

period of 24 hours. These oscillations, however, disappear
from the deterministic model as the degradation rate of
the repressor R is decreased to the quarter of its value,
as the system undergoes a supercritical Hopf Bifurcation
in the neighborhood of this value. The unique deterministic
equilibrium of the system becomes stable (see Figure 3 (b)).
However, as the effects of molecular noise are accounted
for, it is observed that oscillations in the stochastic system
pertain (see Figure 3(b)). In fact, the regularity of these
noise-induced oscillations, in an otherwise stable determin-
istic system, can be manipulated by tuning the level of
noise in the network. This can be done, for example, by
changing the number of molecules or speed of molecular
reactions [18]. This phenomenon is a manifestation of
coherence resonance, and illustrates the crucial interplay
between noise and dynamics.
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