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Abstract— In this paper, we propose a switching control
scheme for uncertain AutoRegressive Moving Average eX-
ogenous (ARMAX) systems, which guarantees stability of
the switched control system and self-optimality. The adopted
switching control logic is based on the Extended Least Squares
(ELS) parameter estimation procedure for controller selection
and switching. An asymptotically vanishing dither noise is
added to the control input so as to introduce appropriate
excitation of the system dynamics for consistently estimating
the system parameters.

I. INTRODUCTION

Suppose that a system has to be regulated by choosing a
controller in some candidate controllers set. In a standard
optimal control setting, the performance achieved by apply-
ing a certain candidate controller to the system is typically
measured by a (positive) cost criterion J: the lower the value
for J, the more satisfactory the control performance (J can
be, for instance, an H2 or H∞ cost). If the system is known,
then the optimal controller can be computed by minimizing
J over the candidate controllers set.

Consider now the case when the system is not known. If
the uncertainty on the system description is large, traditional
robust control methodologies based on a worst-case approach
do not provide, in general, a controller with satisfactory
performance. Suppose that a parametric set of admissible
models is introduced to model the uncertainty on the sys-
tem description. Then, the problem of selecting the best
controller according to J can be addressed by introducing
a state variable representing the unknown parameter vector,
and determining the optimal controller according to J for
the so-obtained augmented state-space representation of the
system. The resulting controller incorporates a self-adjusting
mechanism, in that it selects a control input that realizes
an appropriate compromise between the control and the
identification objectives (dual action, see e.g. [1]). However,
such an optimal dual control problem is doable only in
a few simple cases where computing the solution to the
optimization problem is actually feasible.

A computationally feasible approach to the design of
self-adjusting controllers is the so-called switching control
approach to adaptive control originally introduced in [2]
and further developed in, e.g., [3]-[8]. A switching control
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scheme is typically composed of an inner loop where a can-
didate controller is connected in closed-loop with the system,
and an outer loop where a supervisor, based on input-output
data collected from the controlled system, decides which
controller to place in feedback with the system and when
to switch to a different one.
The candidate controller to switch to is typically selected
through an estimator-based procedure ([4], [5]). Specifically,
at any switching time, the supervisor selects the candidate
controller that is optimal for the best estimated model for
the system, according to the certainty equivalence principle.
As for the switching times, they are chosen so as to avoid
that switching is too fast with respect to the system settling
time. In particular, in the dwell time switching method, the
switching rate is slowed down by making a dwell time
elapse between consecutive switching times ([4], [5], [8],
[9]). This makes it easier guaranteeing closed-loop stability
with respect to standard adaptive control methods, where
the controller is continuously modified and overshoots of
consequent transients may sum up thus causing instability.

The idea underlying the estimator-based approach to
switching is that, as the amount of data collected from the
system increases, the estimated system better resembles the
behavior of the actual system. Hence, by imposing a spe-
cific desired behavior on the estimated system, one actually
imposes that behavior on the underlying system (self-tuning
property). If the estimated system is an accurate description
of the true system, this ultimately results in applying to the
underlying system the candidate controller that is optimal for
it (self-optimality property).

It is well known (see, e.g., [10]-[14]) that self-optimality
does not hold true for general control laws based on the
minimization of multi-step performance indexes. As a matter
of fact, the interplay between identification and control in
a certainty equivalence adaptive control scheme may result
in the convergence of the parameter estimate to a parame-
terization different from the true one in absence of suitable
excitation conditions (see, e.g., [12], [15]-[17]). When a cost
criterion other than the output variance is considered, this
identifiability problem results in a strictly suboptimal perfor-
mance. In particular, the identifiability problem is significant
in infinite-horizon Linear Quadratic Gaussian (LQG) control
and, in fact, in [14] it is proven that for a state space system
subject to Gaussian noise the set of the parameterizations
leading to optimality of LQG control is strictly contained in
the set of the potential convergence points.

In the literature, different switching control schemes have
been introduced for different classes of systems. However,
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performance results for these schemes are mainly confined
to the assessment of adaptive stabilization. For what concerns
uncertain stochastic systems in particular, self-optimizing
minimum-variance switching control schemes have been
proposed for AutoRegressive Moving Average eXogenous
(ARMAX) systems with known input-output delay in [18],
[19]. However, the minimum-variance control law calls for
the restrictive –and often unrealistic– assumption that the
system is minimum-phase. Self-optimality results have been
obtained for LQG switching control of AutoRegressive eX-
ogenous (ARX) systems by using either the cost-biased
method ([9]) or the attenuating dither-noise method ([21]),
without requiring the minimum-phase condition.

The cost-biased method has originally been introduced in
[10] and applied to LQG switching control of ARX systems
in [9]. In the cost-biased approach an extra term that favors
parameters with smaller optimal LQG cost is added to the
identification cost. This extra term is selected with a twofold
objective. On the one hand, it should be strong enough so
that the optimal cost associated with the estimated system is
asymptotically not larger than the optimal cost for the true
system. On the other hand, it should be mild enough so that
self-tuning is preserved, hence the incurred cost is equal to
the cost optimal cost for the estimated system. From this
optimality of the adaptive control scheme follows.

The attenuating dither-noise method has been proposed
in [20] in the context of standard adaptive LQG control,
and applied to switching control of ARX systems in [21].
In the attenuating dither-noise method, an asymptotically
vanishing noise (the ‘dither noise’), is added to the control
input so as to introduce sufficient excitation for achieving
consistency without upsetting the system performance in
the long run. A suitable bound on the growing rate of the
input has to be ensured for the dither noise to effectively
introduce the excitation needed for the parameter estimate
consistency. In the adaptive LQG control scheme proposed
in [22], the appropriate growing rate of the control input is
obtained through an ad-hoc method. At certain time instants
–adaptively selected on the basis of the growing rates of
the input and output data– the control law is switched over
the LQG expression, a minimum variance expression or is
set equal to zero. In this way, consistency and optimality
are both achieved. However, the restrictive minimum-phase
assumption is required. In [20] and [23], by replacing the
minimum-phase condition with the stability assumption, sim-
ilar results are obtained by an analogous procedure. On the
other hand, none of these two conditions seems to be natural
in the LQG control problem, as stated in [22]. None of these
conditions is required in [21].

This paper extends in a nontrivial way the results in [21]
to the class of ARMAX systems. We propose a switch-
ing control scheme for uncertain ARMAX systems that is
effective in guaranteeing stability and optimality according
to an infinite horizon quadratic cost criterion. The adopted
switching control methodology is estimator based, in that the
switching logic relies on the Extended Least Squares (ELS)
parameter estimation procedure ([22], [24]) for controller

selection and switching. Self-optimality is achieved by means
of the attenuating dither-noise method. An accurate analysis
of the closed-loop properties of the ELS estimation when
combined with switching control is involved in the proof of
the self-optimality result.

It is important to note that the self-optimality result proven
in the present paper does not require either the minimum-
phase or the stability assumption.

The rest of the paper is organized as follows. In Section II,
we precisely formulate the control problem addressed. In
Section III we describe the proposed ELS-based switching
control scheme and prove some closed-loop identification
properties satisfied by the ELS algorithm when combined
with switching control. The self-optimality result for the
introduced switching control scheme is shown in Section IV.
Some concluding remarks are drawn in Section V.

II. SWITCHING CONTROL PROBLEM

Consider an ARMAX system with input u and output y
described by the stochastic difference equation

A (ϑ ◦,z−1)yt+1 = B(ϑ ◦,z−1)ut +C (ϑ ◦,z−1)wt+1, (1)

where the polynomials A (ϑ ◦,z−1) = 1 − ∑ns
i=1 a◦i z−i,

B(ϑ ◦,z−1) = ∑ms
i=1 b◦i z−(i−1), and C (ϑ ◦,z−1) =

1 + ∑ps
i=1 c◦i z−i, depend on some unknown parameter

vector ϑ ◦ = [a◦1 . . . a◦ns
b◦1 . . . b◦ms

c◦1 . . . c◦ps
]T .

The signal {wt} is a stochastic disturbance satisfying the
following standard assumption:

Assumption 1: {wt} is a martingale difference sequence
with respect to a filtration {Ft}, satisfying almost surely
(a.s) the conditions:

1. supt E[|wt |β /Ft−1] < ∞, for some β > 2;

2. lim
N→∞

1
N

N−1

∑
t=0

w2
t = σ2 > 0.

We suppose that some a-priori knowledge on the system
parameter vector ϑ ◦ is available. Specifically,

Assumption 2: ϑ ◦ is an interior point of a known compact
set Θ ⊂ ℜns+ms+ps .

The admissible models set for the system is then given by

A (ϑ ,z−1)yt+1 = B(ϑ ,z−1)ut +C (ϑ ,z−1)wt+1, ϑ ∈ Θ.

Consider a set of candidate controllers described by

R(γ,z−1)ut = S (γ,z−1)yt ,

where R(γ;q−1) = 1 − ∑mc
i=1 riq−i and S (γ;q−1) =

∑nc
i=0 siq−i, depend on γ = [r1 . . . r◦mc

s0 . . . snc ]
T ∈ Γ =

ℜnc+mc+1.
In order to allow the switching scheme to obtain a certain

control performance level, we require the candidate con-
troller set to be ‘sufficiently rich’ in a sense that we shall
make precise next.

Denote by Cl(ϑ ,γ) the closed-loop system where the
model with parameter ϑ is controlled by the controller
with parameter γ . Suppose that the control performance
of Cl(ϑ ,γ) is measured by some (positive) cost criterion
J(ϑ ,γ).
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Let Σ : Θ → Γ be the map associating to the model
with parameter ϑ ∈ Θ its optimal controller according to
the cost criterion J: Σ(ϑ) = argminγ∈Γ J(ϑ ,γ). The optimal
performance achievable for the model with parameter ϑ ∈ Θ
is then given by J�(ϑ) := J(ϑ ,Σ(ϑ)). We assume that the
map Σ is continuous over Θ and that the candidate controllers
set guarantees an adequate performance level J̄ (< ∞) over
the admissible models class:

Assumption 3: Cl(ϑ ,Σ(ϑ)) is asymptotically stable and
J�(ϑ) ≤ J̄, ∀ϑ ∈ Θ.

Our objective is designing a switching control scheme
that guarantee self-optimality with respect to the J cost.
We consider in particular the case when J is the infinite
horizon quadratic cost limsupN→∞

1
N ∑N−1

t=0 [y2
t +α u2

t ], where
the control weighting coefficient α is strictly positive.

The control objective can then be written as

limsup
N→∞

1
N

N−1

∑
t=0

[y2
t +α u2

t ] = J�(ϑ ◦), (2)

i.e., the actual cost incurred by the switched controlled
system should be equal to the cost obtained by applying the
optimal controller for the system from the very beginning.

We study the case when ms ≥ 1 and max{ns, ps} ≥ 1. As
a matter of fact, if ms = 0, then the control input ut cannot
affect the system and the problem is not well-posed, whereas
if max{ns, ps} = 0, then the problem is trivially solved by
setting ut = 0, t ≥ 0.

III. ELS-BASED SWITCHING CONTROL SCHEME

In this section, we introduce an estimator-based switching
control scheme for system (1) that is self-optimizing accord-
ing to (2), under the assumptions on the system and the
candidate controllers set described in Section II.

The proposed switching control law can be expressed as

ut = ue
t + vt , (3)

where ue
t is the certainty equivalence control input

ue
t = S (Σ(ϑt),z−1)yt +[1−R(Σ(ϑt),z−1)]ut (4)

tuned to the model with parameter ϑt , and {vt} is an asymp-
totically vanishing dither noise. The switching mechanism
is incorporated in the definition of ϑt , which is in fact a
piecewise constant signal changing value only at certain
adaptively selected switching times.

Dither noise {vt}: Letting {dt}t≥0 be a sequence of inde-
pendent and identically distributed (i.i.d.) random variables
with continuous distribution, independent of {wt}t≥1 and
satisfying E[dt ] = 0, E[d2

t ] = 1, |dt | ≤ K, K > 0, the dither
noise {vt}t≥0 is given by

vt =
dt

(t +1)ζ , ζ ∈ (0,
1

4(max{ns,ms, ps}+ns)
).

{vt} satisfies the following condition ([22])

lim
t→∞

1
t

t−1

∑
i=0

v2
i = 0, (5)

which is needed for proving the optimality result in (2).
Without loss of generality, in the sequel we shall assume that
the family of σ -algebra {Ft}t≥0 introduced in Assumption 1
is rich enough such that both wt and vt are Ft -measurable.

Parameter estimate ϑt : Denote by ϑ̂t the parameter esti-
mate obtained through the standard ELS algorithm.

Algorithm 1 (ELS estimation algorithm):

ϑ̂t+1 = ϑ̂t +(1+ϕT
t Ptϕt)−1Ptϕt(yt+1 −ϕT

t ϑ̂t)

Pt+1 = Pt − (1+ϕT
t Ptϕt)−1PtϕtϕT

t Pt

ϕt := [yt . . .yt−ns+1 ut . . .ut−ms+1 ŵt . . . ŵt−ps+1 ]T

ŵt := yt −ϕT
t−1ϑ̂t

initialized with P0 = β0I > 0 and ϑ̂0 ∈ Θ.
The parameter estimate ϑt in (4) is constructed based on

a suitable a-posteriori modification of the ELS estimate that
forces ϑt to belong to the admissible parameters set Θ, while
preserving the identification properties of the ELS algorithm.

Let Dt(ϑ) = (ϑ̂t −ϑ)T P−1
t (ϑ̂t −ϑ). Then, ϑt is computed

through the following algorithm:

ϑt =

{
arg min

ϑ∈Θ
Dt(ϑ), if t = ti, i = 0,1,2, . . .

ϑt−1, otherwise,
(6)

where {ti} is the switching times sequence that is obtained
by the recursive equation ti+1 = ti +Ti initialized with t0 = 0,
Ti being the dwell time interval.

We now specify how Ti is adaptively selected.
Consider the autonomous closed-loop system where the
model with parameter ϑ is in closed-loop with the controller
with parameter γ:{

A (ϑ ,z−1)yt+1 = B(ϑ ,z−1)ut

R(γ,z−1)ut = S (γ,z−1)yt
(7)

By letting xt := [yt . . .yt−n+1 ut−1 . . .ut−m+1]T where n :=
max{ns,nc + 1} and m := max{ms,mc + 1}, system (7) can
be given the state space representation{

xt+1 = A(ϑ)xt +B(ϑ)ut

ut = L(γ)xt ,

where

A(ϑ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 . . . an−1 an

1 0 . . .
. . .

. . .
1 0

b2 . . . bm−1 bm

0 . . . 0
. . . 0

0
0 . . . . . . 0
0 . . . . . . 0

. . .
. . .
0 0

0 . . . . . . 0
1 0

. . .
. . .
1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B(ϑ) = [b1 0 · · · 0 |10 · · · 0]T ,

L(γ) = [s0 · · · sn−1 sn |r1 · · · rm−1 rm],

with ai = 0 if i > ns, si = 0 if i > nc, bi = 0 if i > ms, ri = 0
if i > mc, thus leading to

xt+1 = F(ϑ ,γ)xt ,
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where F(ϑ ,γ) = A(ϑ)+B(ϑ)L(γ).
The dwell time interval Ti is chosen so as to stabilize the

autonomous estimated system with parameter ϑt . Precisely,

Ti = inf{τ ∈ N : ‖F(ϑti ,Σ(ϑti))
τ‖ ≤ µ}, i = 0,1, . . . ,

where 0 < µ < 1 is a contraction constant.
Note that the introduced state space representation is non-

minimal but, because of the block triangular matrix structure
of A(ϑ), the added eigenvalues are all identically equal to
zero. This, jointly with Assumption 3 and the continuity
of the Σ map, implies that max{|λmax(F(ϑ ,Σ(ϑ)))| : ϑ ∈
Θ} ≤ λ , for some λ ∈ (0,1). This property and the adaptive
mechanism for choosing the dwell time interval allow one
to prove the following result.

Proposition 1: The autonomous estimated system

xt+1 = F(ϑt ,Σ(ϑt))xt

is a.s. exponentially stable, uniformly in time: ‖xt‖ ≤
cν t−t�‖xt�‖, 0 ≤ t� ≤ t, a.s., where ν ∈ (0,1) and c > 0 are
appropriate (random) constants. Also, the dwell time interval
Ti is bounded: supi≥0 Ti ≤ T , for some appropriate constant
T .
The proof of Proposition 1 is similar to that of Proposi-
tion 3.1 in [9], hence it is omitted.
Let φ T

t := [yt . . . yt−ns+1 ut . . . ut−ms+1 wt . . . wt−ps+1]. Sys-
tem (1) can then be expressed as yt+1 = φ T

t ϑ ◦ + wt+1.
By adding and subtracting to the right-hand-side of this
equation φ T

t ϑt , we obtain yt+1 = φ T
t ϑt + et + wt+1, where

et := φ T
t (ϑ ◦ −ϑt) is the ‘estimation error’.

Based on Assumption 4 below, we next derive some
properties of the ϑt estimate that will be fundamental for
proving that the estimation error et is small.

Assumption 4: C−1(ϑ ◦,eiω)+C−1(ϑ ◦,e−iω) > 1, ∀ω ∈
[0,2π].

Theorem 1: Suppose that ut is Ft -measurable. Then,
ti−1

∑
i=0

(φ T
i (ϑ ◦ −ϑti))

2 = O(logλmax(
ti−1

∑
i=0

φiφ T
i )), a.s.

Proof: Let ϑ̂ ′
t := argminDt(ϑ). Then,

(ϑ̂t − ϑ̂ ′
t )

T P−1
t (ϑ̂t − ϑ̂ ′

t ) ≤ (ϑ̂t −ϑ ◦)T P−1
t (ϑ̂t −ϑ ◦).

Since ut is Ft -measurable and the conditions in Assumptions
1 and 4 are satisfied, by [22, Theorem 4.1]

(ϑ̂t −ϑ ◦)T P−1
t (ϑ̂t −ϑ ◦) = O(logλmax(P−1

t )), a.s.

Therefore, (ϑ̂t − ϑ̂ ′
t )

T P−1
t (ϑ̂t − ϑ̂ ′

t ) = O(logλmax(P−1
t )), a.s.

Then,

(ϑ̂ ′
t −ϑ ◦)T P−1

t (ϑ̂ ′
t −ϑ ◦)

≤ 2(ϑ̂ ′
t − ϑ̂t)T P−1

t (ϑ̂ ′
t − ϑ̂t)+2(ϑ̂t −ϑ ◦)T P−1

t (ϑ̂t −ϑ ◦)
= O(logλmax(P−1

t )), a.s.

Given that P−1
t = ∑t−1

i=0 ϕiϕT
i + 1

β0
I and β0 > 0, we have

t−1

∑
i=0

(
ϕT

i (ϑ̂ ′
t −ϑ ◦)

)2 = O
(

logλmax(P−1
t )

)
, a.s. (8)

Observe now that
t−1

∑
i=0

(
φ T

i (ϑ̂ ′
t −ϑ ◦)

)2

≤ 2
t−1

∑
i=0

(
ϕT

i (ϑ̂ ′
t −ϑ ◦)

)2 +O
( t−1

∑
i=0

‖φi −ϕi‖2) (9)

Equation (4.64) in [22] written according to our notations
provides a bound on the last term of (9)

t−1

∑
i=0

‖φt −ϕt‖2 = O
(

logλmax(P−1
t )

)
, a.s. (10)

By plugging equations (8) and (10) in (9), we have

t−1

∑
i=0

(
φ T

i (ϑ̂ ′
t −ϑ ◦)

)2 = O
(

logλmax(P−1
t )

)
, a.s.

By equation (4.66) in [22]

t−1

∑
i=0

(
φ T

i (ϑ̂ ′
t −ϑ ◦)

)2 = O
(

log(λmax(
t−1

∑
i=0

φiφi
T +

1
β0

I)
)
, a.s.

Based on Assumption 1 and the fact that max{ns, ps} ≥
1, it is easily proven that N = O(λmax(∑N−1

t=0 φiφi
T )), a.s.

Hence the right-hand-side of the equation above is equal to
O(log(λmax(∑t−1

i=0 φiφi
T )), a.s. This jointly with the fact that

ϑti = ϑ̂ti and the boundedness of the dwell time interval in
Proposition 1 concludes the proof.

It is important to note that the proof of Theorem 1
does not rely on the presence of the dither noise and
holds irrespectively of the excitation conditions (closed-loop
identification property). Based on Theorem 1 and the fact that
{Ti, i = 0,1, . . .} and {‖ϑ ◦−ϑti‖, i = 0,1, . . .} are uniformly
bounded, one can prove that the estimation error generated
within the control loop is ‘small’ compared to the signals
involved in the loop (cf. Proposition 3.3 in [9]).

Proposition 2:

N−1

∑
t=0,t 
∈BN−1

e2
t ≤ o

(N−1

∑
t=0

‖φt‖2
)
, a.s. (11)

where BN−1 is a set of instant points which depends on N,
whose cardinality is bounded: |BN−1| ≤ cB,∀N.

IV. SELF-OPTIMALITY ANALYSIS

We now prove that the switched control system{
A (ϑ ◦,z−1)yt+1 = B(ϑ ◦,z−1)ut +C (ϑ ◦,z−1)wt+1

R(Σ(ϑt),z−1)ut = S (Σ(ϑt),z−1)yt + vt
(12)

has the same performance as the optimal control system{
A (ϑ ◦,z−1)y◦t+1 = B(ϑ ◦,z−1)u◦t +C (ϑ ◦,z−1)wt+1

R(Σ(ϑ ◦),z−1)u◦t = S (Σ(ϑ ◦),z−1)y◦t ,
(13)

in the sense that limsupN→∞
1
N ∑N−1

t=0

[
y2

t +αu2
t

]
=

limsupN→∞
1
N ∑N−1

t=0

[
y◦t

2 +αu◦t
2] = J�(ϑ ◦), a.s. (self-

optimality result). The desired performance level J̄ specified
in Assumption 3 is then guaranteed.

For this purpose, we first need to prove that system (12)
is L2 stable: limsupN→∞

1
N ∑N−1

t=0 [y2
t +u2

t ] < ∞, a.s.
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Recall the system representation

yt+1 = φ T
t ϑt + et +wt+1,

where et = φ T
t (ϑ ◦ −ϑt) is the estimation error.

Based on this equation, by considering the estimation error
et as if it were an exogenous input, the closed-loop switched
system (12) can be expressed as a variational system with
respect to the estimated system with parameter ϑt as follows⎧⎨
⎩

A (ϑt ,z−1)yt+1 = B(ϑt ,z−1)ut +C (ϑt ,z−1)wt+1 + et

R(Σ(ϑt),z−1)ut = S (Σ(ϑt),z−1)yt + vt .
(14)

The L2 stability of the switched control system can then be
proven based on the uniform exponential stability of the au-
tonomous closed-loop estimated system (cf. Proposition 1);
and on the fact that by switching to the controller designed
for the best ELS model, one keeps the estimation error et

‘small’ (cf. Proposition 2).
Theorem 2: The switched control system (12) is L2-stable.

Proof: Let xt := [yt . . .yt−n+1 ut−1 . . .ut−m+1]T where n :=
max{ns,nc + 1} and m := max{ms,mc + 1}. With reference
to (14) the switched control system can be given the repre-
sentation{

xt+1 = A(ϑt)xt +B(ϑt)ut +C[et +C (ϑt ,z−1)wt ]
ut = L(Σ(ϑt))xt + vt ,

where the A, B and L matrices have been defined in Section
III, whereas C = [1 0 · · · 0]T . This corresponds to

xt+1 = F(ϑt ,Σ(ϑt))xt +B(ϑt)vt +C[et +C (ϑt ,z
−1)wt+1],

where F(ϑ ,γ) = A(ϑ)+ B(ϑ)L(γ). Alternatively, with ref-
erence to (12) the switched control system can be given the
representation

xt+1 = F◦(Σ(ϑt))xt +B(ϑ ◦)vt +C[C (ϑ ◦,z−1)wt+1],

where F◦(γ) = A(ϑ ◦)+B(ϑ ◦)L(γ).
Fix a time instant N > 0.

Consider set BN−1 introduced in Proposition 2.
For the following derivations, it is convenient to use both

the representations derived above for the switched control
system: the latter for the time instants t ∈ BN−1, and the
former for t /∈ BN−1. Since ϑt belongs to the compact set
Θ and Σ(ϑ) is a continuous function of ϑ , ϑ ∈ Θ, we
then have that ‖F◦(Σ(ϑt))‖ is uniformly bounded. From this
fact, the uniform exponential stability of the autonomous
system xt+1 = F(ϑt ,Σ(ϑt))xt (Proposition 1), and the fact
that |BN−1| ≤ cB ∀N (see Proposition 2), it is easy to show
that the state vector xt can be bounded as follows:

‖xt‖ ≤ k1

{ t

∑
i=1

ν t−i|wi|+
t−1

∑
i=0

ν t−i|vi|+
t−1

∑
i=0,i/∈BN−1

ν t−i|ei|
}

,

t ≤ N, where k1 is a suitable constant. Note that here we
assume for simplicity zero initial conditions (ui−1 = yi = wi =
0 for i≤ 0). The proof could be easily generalized to account

for non zero initial conditions. Based on this equation, by
some cumbersome computations we obtain

‖xt‖2 ≤ 4k2
1

1−ν
[ t

∑
i=1

ν t−iw2
i +

t−1

∑
i=0

ν t−iv2
i +

t−1

∑
i=0,i/∈BN−1

ν t−ie2
i

]
,

t ≤ N, a.s., from which we finally have

1
N

N

∑
t=0

‖xt‖2 ≤ k2

[ 1
N

N

∑
t=1

w2
i +

1
N

N−1

∑
t=0

v2
i +

1
N

N−1

∑
t=0,t /∈BN−1

e2
t

]
, a.s.,

k2 being a suitable constant.
We next bound the terms in the right-hand-side of this
inequality.
By Assumption 1, 1

N ∑N
t=1 w2

t = O(1), a.s. By (5),
1
N ∑N−1

t=0 v2
t = o(1), a.s. Term 1

N ∑N−1
t=0,t /∈BN−1

e2
t is immediately

bounded by means of (11). Hence, the final bound for
1
N ∑N

t=0 ‖xt‖2 is obtained:

1
N

N

∑
t=0

‖xt‖2 ≤ 1
N

o(
N−1

∑
t=0

‖φt‖2)+O(1), a.s.

By the definition of φt and Assumption 1, 1
N ∑N−1

t=0 ‖φt‖2 ≤
1
N ∑N

t=0 ‖xt‖2 + O(1), a.s. We then have that 1
N ∑N

t=0 ‖φt‖2

remains bounded, hence, the system is L2-stable.
We are now in a position to derive the self-optimality

result. The proof is based on Theorem 6.2 in [22] (refor-
mulated below according to our notations), which requires
the following assumption.

Assumption 5: A (ϑ ◦,z−1), B(ϑ ◦,z−1), and C (ϑ ◦,z−1)
are coprime and ans , bms , cps are not all identically zero.

Theorem 3: Suppose that the diminishing excited control
(3) is applied to system (1) satisfying Assumptions 1 and 5.
If the input ue

t satisfies 1
t ∑t−1

i=0(u
e
i )

2 = O(1), a.s., then there
exists a constant c̄ > 0 such that

λmin(
t−1

∑
i=0

φiφ T
i ) ≥ c̄ t

1
2 ,

for t large enough, a.s.
Theorem 4: The switched control system (12) is self-

optimizing.
Proof: Due to space limitations we only give a sketch of
the proof.
The growing rate condition on ue

t = ut − vt required for
Theorem 3 to hold immediately follows from the L2 stability
result in Theorem 2 and (5). Then, by combining Theorem
3 with Theorem 1, the L2 stability result and Assumption 1,
consistency of the parameter estimate ϑt is guaranteed:
limt→∞ ϑt = ϑ ◦, a.s. Due to the continuity of Σ, this, in
turn, entails that limt→∞ Σ(ϑt) = Σ(ϑ ◦), i.e., the controller
placed in closed-loop with the system is the optimal one
for it, at least asymptotically. This generally does not imply
self-optimality. The proof of the self-optimality relies on the
representation of system (12) as a variational system with
respect to system (13):{

A (ϑ ◦,z−1)yt+1 = B(ϑ ◦,z−1)ut +C (ϑ ◦,z−1)wt+1

R(Σ(ϑ ◦),z−1)ut = S (Σ(ϑ ◦),z−1)yt +∆L◦
t xt + vt

(15)
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where xt := [yt . . .yt−n+1 ut−1 . . .ut−m+1]T and ∆L◦
t :=

L(Σ(ϑ ◦))− L(Σ(ϑt)), with n := max{ns,nc + 1} and m :=
max{ms,mc + 1} and vector L defined in Section III. Let
st := [yt

√
α ut−1 ]T and s◦t := [y◦t

√
α u◦t−1 ]T .

We now describe the key steps involved in proving that

lim
N→∞

1
N

N

∑
t=1

(‖st‖2 −‖s◦t ‖2) = 0. (16)

Indeed, equation (16) implies the self-optimality result, since
limN→∞{ 1

N ∑N−1
t=0 [y2

t +αu2
t ]− 1

N ∑N−1
t=0 [ (y◦t )2 +α(u◦t )2 ]}

= limN→∞{ 1
N ∑N

t=1(‖st‖2 −‖s◦t ‖2)− 1
N (y2

N − (y◦N)2)}, where
1
N (y2

N − (y◦N)2) can be shown to tend to zero in view of the
L2 stability of systems (12) and (13).

The time evolution of vectors st and s◦t is governed by the
following equations, which can be straightforwardly derived
from equations (15) and (13):

st+1 = M(ϑ ◦,z−1)st +
[

wt+1√
α∆L◦

t xt +
√

αvt

]
, (17)

s◦t+1 = M(ϑ ◦,z−1)s◦t +
[

wt+1

0

]
, (18)

where

M(ϑ ,z−1) :=

[
[1−A (ϑ ,z−1)]z 1√

α B(ϑ ,z−1)z√
α S (ϑ ,z−1) [1−R(ϑ ,z−1)]z

]
.

Now,
∣∣ 1

N ∑N
t=1(‖st‖2 − ‖s◦t ‖2)

∣∣ ≤ [ 1
N ∑N

t=1(‖st‖ +
‖s◦t ‖)2]

1
2 [ 1

N ∑N
t=1(‖st‖ − ‖s◦t ‖)2]

1
2 , where the first factor

on the right-hand-side is bounded because of the L2 stability
of (12) and (13). As for the second factor, we have

1
N

N

∑
t=1

(‖st‖−‖s◦t ‖)2 ≤ 1
N

N

∑
t=1

‖st − s◦t ‖2.

Hence, if we show that the right-hand-side of this inequality
tends to zero, (16) is finally proven, which concludes the
proof of the theorem.

The time evolution of vector st − s◦t is governed by

(st+1 − s◦t+1) = M(ϑ ◦,z−1)(st − s◦t )+
√

α
[

0
∆L◦

t xt + vt

]
,

obtained by subtracting (18) from (17). This system with
∆L◦

t xt + vt considered as an exogenous signal can be shown
to be uniformly exponential stable. Then, one can prove that

1
N

N

∑
t=1

‖st − s◦t ‖2 ≤ h
{ 1

N

N−1

∑
t=0

(∆L◦
t xt)2 +

1
N

N−1

∑
t=0

v2
t

}
,

where h is a suitable constant. By the property that ‖∆L◦
t ‖→

0 (due to the consistency result) and the L2 stability of
(12), it is easily seen that 1

N ∑N−1
t=0 (∆L◦

t xt)2 → 0. The term
1
N ∑N−1

t=0 v2
t asymptotically vanishes as well (see (5)). There-

fore, 1
N ∑N

t=1 ‖st − s◦t ‖2 → 0, thus completing the proof.

V. CONCLUDING REMARKS

In this paper, we have described an adaptive control
scheme for uncertain ARMAX systems that combines
switching control with the attenuating dither-noise method.
Self-optimality has been assessed with reference to an infinite
horizon quadratic control cost criterion.

It is worth noticing that the self-optimality result has been
proven without requiring that the uncertain system to be
controlled is minimum-phase. Also, it could be extended to
other control cost criteria.
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