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Abstract—In many fault detection and system identification
problems, it is essential to be able to discriminate between a
number of competing models of a system based on observed
system outputs. For example, in a fault detection scenario we
may wish to determine whether a system is best modeled
by a known nominal model, or a known failure model. The
probability of detecting the true system model can be enhanced
by design of the control inputs applied to the system. In this
paper we present a method by which a finite sequence of
control inputs is designed automatically in order to minimize
an upper bound on the probability of model selection error
between any two linear, discrete-time systems. We are able
to solve this problem efficiently by showing that it is an
instance of a Quadratic Program. In addition, linear equality
and inequality constraints can be applied to the control inputs
and expected system state. These constraints can be used to
ensure that a certain task is fulfilled, make sure the system
stays within a valid linearization region, or to guarantee safe
operation. Experimental results for the case of an aircraft
actuator failure scenario show that the method significantly
reduces the upper bound on the probability of model selection
error when compared to a manually generated sequence and a
fuel-optimal sequence.

I. INTRODUCTION

In multiple-model (MM) fault detection it is necessary
to select the most likely model from a finite set, given
observations [1][2]. For example Hanlon et al. investigated
the detection of an aircraft flight control actuator failure [3].
In this case detecting a fault becomes a problem of deciding
whether the dynamic model describing the nominal behavior
of the aircraft, or the dynamic model describing the actuator
failure is most likely.

Previous authors have developed methods for deciding
between models given a set of observations [3][4]. For this
paper we assume a Bayesian decision rule, which selects
the most likely model given the observations and a prior
distribution over the models. The ability of a detection
method to discriminate between different competing dynamic
system models is highly dependent on the control inputs
applied to the system. For example, in the control actuator
failure case, if no control inputs are applied to the actuator,
the responses of both the faulty and the nominal system
model will be identical. A new method for designing system
inputs that discriminate between the possible models in an
optimal sense is presented in this paper.

Esposito et al. created a persistent excitation solution to
the problem of model discrimination for two linear filters [5].
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However, as Prasanth et al. [6] noted for the case of model
parameter estimation, a persistent excitation approach [7][8]
may not be feasible for a physical system such as a satellite,
because control inputs typically need to be designed subject
to state and control constraints. They noted that a finite
horizon optimization approach is more appropriate, and pose
the problem as a Model Predictive Control (MPC) problem.

We extend the work of [5] and [6] by describing a method
by which finite, optimized sequences of control inputs can
be designed, subject to control and state constraints, in order
to discriminate between two discrete-time dynamic linear
models. While our method is limited to the case of two
models, discrimination between two models is useful for
binary hypotheses such as whether the system is in either
a nominal or a failure mode, and is also a step towards
the design of control inputs for discrimination between more
than two models.

Prior work in the field of experiment design [9][10] has
suggested a number of different criteria for the design of
experiments for model discrimination. In this paper, consis-
tent with a Bayesian approach to model selection, the aim
is to minimize the probability of model selection error by
the Bayes-optimal decision rule, known as the Bayes Risk
[11]. Assuming a 0-1 loss function for the model selection
task, the decision-theoretic optimal design is the one that
minimizes the probability of model selection error [12].

We use an upper bound on the probability of model
selection error, the Battacharyya bound, to create a tractable
optimization criterion for model discrimination. Then we
pose the problem of designing a finite sequence of control
inputs to minimize this bound, subject to constraints, as a
finite horizon trajectory design problem. Lastly, we show
that in the case of linear constraints this is an example
of a concave Quadratic Program. Prior work in the field
of optimization allows concave Quadratic Programs to be
solved efficiently [13][14][15][16].

The result of this work is a new algorithm that gener-
ates a finite sequence of control inputs that minimize an
upper bound on the probability of model selection error.
These sequences are designed subject to state and control
constraints. The algorithm can be used to ensure that a given
task, defined in terms of constraints on the expected state,
is fulfilled while optimally detecting failures. We present
results for the example of determining whether an aircraft’s
elevator actuator has failed. Compared to a typical sequence
designed by a human, and a sequence optimized to minimize
fuel consumption, the method dramatically reduces the upper
bound on the probability of model selection error.
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A. Aircraft Fault Detection Scenario

In this paper, the detection of elevator actuator failure
for an aircraft is used as a motivating example. The dis-
crete time approximation to the longitudinal dynamics of
the aircraft, linearized about the trim state, is shown in
Fig. 1. In the model selection task, we must determine which
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Fig. 1. Discrete-time aircraft model linearized about the trim state. Here
xt is the state of the system at time step t while yt is the observed output
of the system at time t, which is taken to be the pitch rate θ̇. The input
is denoted ut, and is taken to be the elevator angle. The terms wt and vt

are the process noise and observation noise. The noise at any time step is
assumed to be independent of the noise at any other time step, and wt and
vt are independent of each other with normal distributions N (0, Q) and
N (0, R) respectively. The initial state of the system is also assumed to be
normally distributed.

system described by the system matrices {A,B,C,D} best
models the data. Here the situation under consideration has
two candidate models. Under Hypothesis 0, the system is
described by {A0,B0,C0,D0} while under Hypothesis 1, the
system is described by {A1,B1,C1,D1}.

For the aircraft in Fig. 1, we may wish to determine
whether the elevator actuator is faulty. In the faulty case,
the B matrix is zero, indicating that the input (commanded
elevator angle) has no effect on the system. Intuitively, one
might carry out an experiment where, at the trim state, a
large elevator angle would be commanded. In the case of a
working actuator the effect on the system would be signifi-
cant, while in the case of a faulty actuator the commanded
input would have no effect. The resulting observations would
therefore reveal which of the two hypotheses is correct. This
paper presents an online, optimized technique for designing
experiments of this type.

II. HYPOTHESIS SELECTION AND BAYES RISK

Here we assume models are selected by Bayesian hypoth-
esis selection. Restricting our attention to selection between
two models, Bayesian hypothesis selection can be expressed
as follows:
Select H0 if p(H0|y,u) > p(H1|y,u), else select H1.
Using Bayes’ rule, this selection is given by:
Select H0 if p(y|H0,u)p(H0) > p(y|H1,u)p(H1), else

select H1.
The terms p(H0) and p(H1) correspond to prior proba-

bilities of the two hypotheses. These can be calculated in a
number of different ways: there may be explicit knowledge
about how a priori likely the different hypotheses are, or the
prior can represent the belief state created by an estimator.

R0 R1
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Fig. 2. Selection between two models given an observation y and a prior.
In general Bayesian selection between two hypotheses yields a threshold
that splits the possible observations into two sets. If the observation y falls
into set �0 then the classifier selects H0, whereas if the observation falls
into set �1 then the classifier selects H1. Even with Bayes optimal selection
there is a finite probability of error given by the Bayes Risk, denoted by the
shaded region.

The Bayesian selection rule minimizes the likelihood of
selecting an incorrect hypothesis given the available infor-
mation. As shown in Fig. 2, the Bayesian optimal classifier
has a finite probability of selecting the incorrect hypothesis,
known as the Bayes Risk. The Bayes risk is given by:

P (error) = P (y ∈ �1,H0|u) + P (y ∈ �0,H1|u)
= P (y ∈ �1|H0,u)P (H0) + P (y ∈ �0|H1,u)P (H1)

=
∫
�1

p(y|H0,u)P (H0)dy +
∫
�0

p(y|H1,u)P (H1)dy (1)

Since the Bayes Risk is the probability of error when using
the optimal classifier, we would like to optimize our control
inputs to the system to minimize this measure.

III. THE ALGORITHM

A. Minimizing the Bayes Risk

The idea behind the design of control inputs for model
selection is that while the probability of error cannot be
reduced beyond the Bayes Risk by selection of the clas-
sification threshold, the Bayes Risk itself is affected by the
control inputs to the system. Hence by selecting the inputs
to the system, we can reduce the Bayes Risk and therefore
significantly reduce the probability of error of the Bayesian
classifier. The effect of input choice on the Bayes Risk is
illustrated in Fig. 3.

B. Input Design as Trajectory Optimization

A key observation is that the design of control inputs to
minimize the Bayes risk is in fact a problem of optimal
trajectory design for dynamic systems. In typical optimal
trajectory design problems, an optimized sequence of control
inputs is designed so that a system passes through a sequence
of predicted states that minimize some cost function (for
example the time taken to reach a goal state). In the model
discrimination problem, we would like to design an optimal
sequence of control inputs so that the system passes through
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Fig. 3. Graph showing p(y|H0, u) and p(y|H1, u) for two different
choices of u. In the upper figure, the predicted distributions overlap
significantly, leading to a large Bayes risk. In the lower figure, a different
selection of u has separated the two distributions, meaning that when the
observation y is made, the correct hypothesis can be selected with high
confidence. The Bayes risk is very low, meaning that the probability of
error is very low.

a trajectory of state distributions that minimize the probabil-
ity of model selection error (Bayes Risk).

Optimal trajectory design for linear, discrete-time systems
can be posed as a quadratic program in the case of a
cost function that is quadratic in the decision variables. A
quadratic program involves the minimization of a quadratic
function subject to linear constraints. For the trajectory
design problem, the linear nature of the state update equation
shown in Fig. 1 means that linear state constraints correspond
to linear constraints on the decision variables. Efficient
algorithms exist for the solution of quadratic programs. The
main contribution of this project is to show that the model
discrimination problem can be posed as an optimal trajectory
design problem and solved using a quadratic program. This
is described in the following sections.
1) Cost Function for Optimal Input Design: In the model

discrimination problem, the objective is to minimize the
probability of error of Bayesian model selection, known as
the Bayes Risk. However the Bayes Risk given in (1) is not
in closed form and can only be calculated using numerical
integration. It is, however, possible to bound the Bayes Risk
in closed form, and doing so allows the use of Quadratic
Programming which is reliable and efficient.

The Battacharyya Bound [11] provides an upper bound on
the Bayes Risk and is given by the integral:

P (error) ≤
√

P (H0)P (H1)
∫ √

p(y|H0)p(y|H1)dy (2)

If the distributions are Gaussian such that p(y|H0) has mean
µ0 and variance Σ0, and p(y|H1) has mean µ1 and variance
Σ1, the above value can be calculated without the need for
integration:

P (error) ≤
√

P (H0)P (H1) exp{−k},

where:

k =
1
4
(µ1 − µ0)T [Σ0 + Σ1]

−1 (µ1 − µ0)

+
1
2
ln

∣∣Σ0+Σ1
2

∣∣√|Σ0||Σ1|
. (3)

Since the logarithm is a monotonically increasing function,
the value of x that optimizes f(x) is also the value that
optimizes ln[f(x)]. We therefore take the logarithm of the
Battacharyya bound for Gaussian distributions to yield the
following cost function:

J =
1
2
ln[P (H0)P (H1)] +

1
2
ln

∣∣Σ0+Σ1
2

∣∣√|Σ0||Σ1|
− 1

4
(µ1 − µ0)T [Σ0 + Σ1]

−1 (µ1 − µ0) (4)

Minimizing this cost function will therefore minimize an
upper bound on the probability of error when using Bayesian
selection to decide between two models based on a vector
of observations y.
2) Error Probability for a Finite Horizon: Rather than

selecting inputs at one moment in time, we would like
to plan a finite sequence of inputs in order to minimize
the upper bound on the probability of error. This form of
planning is known as finite horizon planning. In this case,
if the horizon is of length k, we are concerned with a
sequence of observations yt+1...yt+k and a sequence of
inputs ut...ut+k−1. The derivation in III-B.1 extends readily
to a finite horizon. Defining:

y =
[

yT
t+1 yT

t+2 . . . yT
t+k

]T

u =
[

uT
t uT

t+1 . . . uT
t+k−1

]T (5)

The new objective is to minimize an upper bound on the
probability of error of a Bayes optimal classifier that makes
its decision based on all of the observations yt+1...yt+k, by
designing the sequence of control inputs ut...ut+k−1.

Due to uncertainty in the initial state and noise, the future
observations yt+1...yt+k are random variables, which we
denote Yt+1...Yt+k. Under the assumptions in Section I-A,
Yt+i is normally distributed given a sequence of inputs u
and given a model (H0 or H1). We now define µt+i,h and
Σt+i,h for time steps i = 1, ..., k and hypotheses h = 0, 1
such that:

pYt+i
(y|H0,u) = N (µt+i,0,Σt+i,0)

pYt+i
(y|H1,u) = N (µt+i,1,Σt+i,1) (6)

Then the vector of all observations Y = [Y T
t+1...Y

T
t+k]T

is a vector of normally distributed random variables given a
sequence of inputs and a hypothesis. We define µh and Σh

for h = 0, 1 to be the mean and covariance of the vector of
all observations such that:

pY (y|H0,u) = N (µ0,Σ0)
pY (y|H1,u) = N (µ1,Σ1) (7)

From the above definitions the distribution of Yh is given by:

µh =
[
µT

t+1,h...µT
t+k,h

]T (8)
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[Σh]i,j = E
[(

[Y ]i − [µh]i
)(

[Y ]j − [µh]j
)∣∣Hh

]
(9)

Here [·]i denotes the value at index i into the vector, and
similarly [·]i,j denotes the value at index (i, j) into the
matrix.

Having defined µ0, µ1, Σ0 and Σ1, the Battacharyya
bound given in (3) provides an upper bound for the probabil-
ity of error when using the entire sequence of observations
from time t+1 to time t+k. Hence the cost function in (4)
applies to the finite horizon formulation given in this section.
The problem of designing a sequence of inputs to minimize
this cost function is addressed in the following sections.
3) Predicting the Distribution of Future Observations:

Given a certain hypothesis, the system equations shown in
Fig. 1 are fully known. Hence the distributions p(y|H0,u)
and p(y|H1,u) can be calculated. This section gives the
result for p(y|H0,u); an identical method applies for
p(y|H1,u).

For some sequence of inputs ut...ut+k−1 the system will
pass through a sequence of states xt...xt+k. In order to
minimize (2), we must determine how the distribution of
xt...xt+k, and hence p(y|H0,u), depends on this sequence
of inputs. Given a sequence of inputs, the initial state xt

and a system model, the system equations can be applied
recursively to derive the following equation relating the
observation at time step t + i to the initial state, the inputs,
and the noise:

yt+i,0 = C0

i−1∑
l=0

Ai−l−1
0 (B0ut+l + wt+l)

+ C0A
i
0xt + D0ut+i−1 + vt+i−1 (10)

Given a distribution for the initial state of the system
N (x̂0, P ), the mean µ0 and covariance Σ0 as defined in
(8) and (9) can be calculated. The results are given here for
a system where yt ∈ �n.

Define:
i = n(p − 1) + q, (11)

where:

1 ≤ q ≤ n 1 ≤ p ≤ k p, q ∈ Z. (12)

Then following from (5) and (10):

[µ0]i = [µt+p,0]q

=

[
C0A

p
0x̂0 + C0

p−1∑
l=0

Ap−l−1
0 B0ut+l + D0ut+p−1

]
q

(13)

Defining j = n(r − 1) + s in the same manner as (11),
the expression for the covariance is:

[Σ0]i,j =
[
R′(p, r) + C0A

p
0P0A

Tr
0 CT

0

]
q,s

+

[
m−1∑
l=0

C0A
(p−l−1)
0 QA

T (r−l−1)
0 CT

0

]
q,s

(14)

where m = min{i, j} and:

R′(p, r) =

{
R p = r

0 p �= r.
(15)

Under the assumptions mentioned in Section I-A, these
equations give an expression for the belief state p(y|H0,u)
in terms of a sufficient statistic for Y , namely the mean
and variance of the distribution. These equations have two
important properties:

1) The equation for the mean of the predicted distribution
of Y is linear in the control inputs u.

2) The covariance of the predicted distribution of Y is
not a function of the control inputs u.

These two properties are important because they mean that
the cost function is a quadratic function of the control inputs
as will be shown in Section III-C.

C. Cost as a Quadratic Function of Control Variables

Examining (4) it can be seen that the only term that
depends on the inputs u is the term involving µ1 and µ0,
since neither the prior nor the covariance depend on the
input. The other terms need therefore not be considered when
optimizing J with respect to the inputs. The term to be
minimized is shown here:

J ′ = −(µ1 − µ0)T [Σ0 + Σ1]
−1 (µ1 − µ0) (16)

Now that we have explicit expressions for Σ0 and Σ1 from
(14) that do not depend on the control inputs u, and since
the means µ1 and µ0 are linear in the control inputs, this
equation can be written in terms of a quadratic with regard
to the input variables:

J ′ = uT Hu + fT u + g (17)

The quantities H , fT and g can be calculated explicitly. The
Battacharyya bound on the Bayes Risk therefore yields a cost
function that is quadratic in the control inputs.

Since the covariance matrices Σ0 and Σ1 are positive
definite, the cost function given by (16) is a concave function
of (µ1−µ0). From (13), both µ1 and µ0 are linear functions
of u, and hence the cost in (17) is a concave function of
the control inputs u. This concavity makes the cost function
particularly tractable for optimization and guarantees that a
global optimum can be found in bounded time [13].
Although the two terms in (4) that do not involve µ0 and µ1

can be neglected when optimizing (4), these terms do affect
the value of the optimum that optimization can achieve. A
trivial example is the case where the prior for one of the
hypotheses is zero. In this case the upper bound on the Bayes
Risk is zero regardless of the observations.

D. Linear Constraints

As noted by Prasanth et al., a powerful aspect of the finite
horizon optimization formulation is that both equality and
inequality constraints can be placed on the trajectory design
[6]. In the model discrimination problem there are a number
of constraints on the design that can be expressed as linear
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functions of the control inputs; for example, constraining
the expected state of the system at any point in the horizon
for a particular hypothesis. This follows from the following
equation (shown for Hypothesis 0):

xt+i,0 =
i−1∑
l=0

Ai−l−1
0 (B0ut+l + wt+l) + Ai

0xt

E[xt+i|H0] =
i−1∑
l=0

Ai−l−1
0 (B0ut+l) + Ai

0x̂0 (18)

Constraints on the expected mean of the system state can be
used to:

1) Ensure that a certain task, defined in terms of the
expected system state, is fulfilled

2) Ensure that the mean of system stays within a ‘safe’
operating region or within a valid linearization region

3) Ensure that the system ends the experiment in the same
region as it started

In addition linear constraints can be placed on the control
inputs directly, for example umin < ut+i < umax modeling
actuator limits, or those of the type

∑
i |ut+i| < fuel that

limit total control effort over the horizon. Such constraints
allow the user to trade off the cost of the control effort
against the corresponding reduction in the probability of
model selection error.

E. Summary

We have shown that the problem of designing a sequence
of control inputs in order to minimize an upper bound on
the probability of error of Bayesian model selection can be
posed as a finite-horizon trajectory design problem, and have
shown that this problem has a cost function that is quadratic
in the decision variables. In addition, we are able to place a
number of linear constraints on the control variables in order
to model control or state constraints. Hence the active model
discrimination problem can be posed as a Quadratic Program
and can be solved efficiently using existing methods.

IV. SIMULATION

This section describes results from a number of trajectory
design tasks for the aircraft elevator failure scenario. In
this scenario the ability to detect a fault is critical, and
depends heavily on the control inputs issued. In addition,
actuator saturation, linearization about a trim state and safety
considerations mean that the ability to constrain the designed
inputs and expected state is critical.

Although the designed trajectories would ideally be com-
pared in terms of the true Bayes Risk, the cost of com-
puting this value through numerical integration means that
here the designed trajectories are compared in terms of the
upper bound on the probability of model selection error, the
Battacharyya bound.

A. Constrained Inputs

The algorithm was used to design a sequence of control
inputs in order to choose between two models for the aircraft
shown in Fig. 1. According to Hypothesis 0 the aircraft has a

working elevator actuator, and according to Hypothesis 1 this
actuator is broken. The inputs in the latter case have no effect
on the system, as described in section I-A. The maximum
allowable elevator angle is ±0.25rad and the horizon length
is 40 time steps, or 20 seconds. Fig. 4 shows the sequence of
inputs designed by the algorithm along with the trajectories
of the expected observations conditioned on Hypothesis 0
and Hypothesis 1. The Battacharyya bound for the generated
sequence is 0.0029, meaning that the probability of model
selection error is at most 0.29%.

B. Constrained State and Inputs

Although the control sequence for this scenario produces
a low bound on the Bayes Risk, the resulting motion of
the aircraft closely resembles an unstable oscillation, with
steadily increasing magnitude. This is readily addressed by
placing constraints on the expected mean of the system state
x. Fig. 5 shows results for an identical scenario, except with
the additional constraints that at the end of the horizon,∣∣E[θ̇]

∣∣ ≤ 0.25rad/s and
∣∣E[θ]

∣∣ ≤ 0.25rad for both H0

and H1. This time the generated control sequence induces
a trajectory for the mean of the system state that ends up
within these bounds at the end of the horizon; and with a
Battacharyya bound that is only slightly greater than for the
unconstrained case at a value of 0.0031.

C. Manually Generated Identification Sequence
When performing system identification for the longitudinal

dynamics of an aircraft, a pilot often issues elevator inputs
that form a pulse or doublet pattern [17]. Fig. 6 shows
the expected observations for such a sequence with the
same actuator limits as for the optimized sequences. The
Battacharyya bound for this sequence is 0.073, more than
twenty times the bound for the optimized sequence in Fig. 5.

Note that the human-generated doublet sequence is similar
to the first portion of the sequence optimized for model
discrimination. However the optimized sequence in Fig. 5 is,
by comparison, able to reduce the bound on the probability
of error dramatically while guaranteeing that the final state
of the system is bounded.

D. Model Discrimination during Altitude Change Maneuver

The ability to constrain the state of the system means that
this method can be used to optimize model discrimination
during a specified maneuver. Fig. 7 shows results for a
maneuver where the aircraft performs a change in altitude.
The two plots compare the maneuver designed to minimize
the probability of model selection error to that designed to
minimize fuel consumption. A fuel-optimal design is typical
for finite horizon path planning with unmanned air vehicles.

The Battacharyya bound for the fuel-optimal case is 0.13
whereas the bound for the model discrimination optimized
case is 0.0053. This example demonstrates the significant
improvement in fault detection that can be achieved by using
control inputs designed specifically for model discrimination,
rather than those optimized with regard to some other param-
eter and employing only passive model selection.
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Fig. 4. Optimized control inputs and predicted observation means for aircraft with |u|max = 0.25rad. The algorithm has arrived at a solution that gives
a sequence of inputs at the furthest extremes of the allowable range, alternating between periods of u = 0.25rad and periods of u = −0.25rad. Notice
also that the period of this sequence is close to that of the short period oscillation mode of the aircraft seen in the unforced sequence µ1. Hence the
control sequence effectively drives the aircraft as far as possible over the time horizon in order to reduce the ambiguity between the two hypotheses.
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V. DISCUSSION

In this section, some properties of the new method are dis-
cussed. Firstly, the new method has an additional capability
that was not demonstrated in this paper. The expected system
state can be constrained conditioned on either model being
the true one. This means that, for example, control inputs
can be constrained so as to guarantee safe operation or task
completion under either hypothesis. Note that the ability to
apply these constraints does not guarantee that a feasible
solution exists.

In addition the method can be applied to a slightly different
problem formulation than that described in the previous
sections. In this alternative formulation, we would like to
constrain the probability of model selection error to be below
an acceptable threshold while minimizing some other cost,
such as fuel consumption. In this formulation the constraint
on the probability of error gives rise to quadratic constraints,
and the new problem can be solved using Quadratically
Constrainted Quadratic Programming. This formulation is,
however, less tractable than the simpler Quadratic Program-
ming formulation.

The algorithm presented in this paper has three main lim-
itations. Firstly, while the method aims to reduce the Bayes
Risk for model selection, in fact it is only an upper bound on
this value that is minimized. Furthermore, there are no guar-
antees of the tightness of this bound. In many cases, however,
an optimized trajectory that yields a low upper bound on
the Bayes Risk will be an acceptable solution. Second, the
method is limited to the case of discrimination between two
models. In a fault detection scenario, for example, there
may be more than two competing models, corresponding
to different failure modes of the system. Future work will
extend the method to the case of multiple models. Lastly,
the method is restricted to linear systems. While linearization
may be used to solve this problem in certain cases, future
work will investigate model discrimination for non-linear
dynamic systems.

VI. CONCLUSION

This paper presents a new algorithm for model discrimi-
nation that poses the problem as a finite horizon trajectory
design problem and minimizes an upper bound on the prob-
ability of model selection error. This problem is an example
of a concave Quadratic Program, and hence can be solved
efficiently by methods that are guaranteed to converge to the

global optimum in bounded time. The Quadratic Program-
ming formulation allows arbitrary linear constraints to be
placed on the control inputs and expected system state.

Simulation results showed that compared to a typical
human-generated control sequence, and a control sequence
optimized with regard to fuel consumption, the new method
can significantly reduce the upper bound on the probability
of model selection error.
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