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Abstract—Due to the availability of rapidly improving com-
puter speeds, industry is increasingly using nonlinear process
models in calculations that appear further down the control
hierarchy. Indeed, nonlinear models are now frequently used
for real-time control calculations. This trend means that there
is growing interest in the availability of high speed state and
parameter estimation algorithms for nonlinear models. One
family of algorithms that can be used for this purpose is
based on the, so called, Expectation Maximization Scheme.
Unfortunately, in its basic form, this algorithm requires large
computational resources. In this paper we review the EM
algorithm and propose several approximate schemes aimed at
retaining the essential flavour of this class of algorithm whilst
ensuring that the computations are tractable. We will also
compare the EM algorithm with several simpler schemes via a
number of examples and comment on the trade-offs that occur.

I. INTRODUCTION

Nonlinear stochastic models appear in many applications.

Examples include mathematical models used in economics

[8], [33], [6], ship steering [4] etc. Usually these models

arise as nonlinear continuous time stochastic differential

equations. The issue of discretization of these models is

discussed elsewhere - see for example the work of [34], and

the recent work of [37]. Here, we adopt a general nonlinear

discrete time stochastic model of the following form:

xt+1 = f(xt, ut, θ) + g(xt, ut, θ)wt (1)

yt = h(xt, ut, θ) + l(xt, ut, θ)vt (2)

where ut ∈ R
nu , xt ∈ R

n, yt ∈ R
ny are a measured input,

states, and measured output signal respectively. The random

processes {wt}, and {vt} are assumed to be independent
zero mean Gaussian noise with covariance matrices Q, and
R respectively. It is assumed that the functions f(·), g(·),
h(·), and l(·) are analytic functions [3]. For simplicity, we
also assume that g(·) and l(·) are non-singular. Note that the
results should be able to be extended to the singular case

-see the recent work of [28], [29].

In the current paper, we will focus on parameter and

state estimation for nonlinear discrete-time stochastic system

using Expectation-Maximization (EM) based algorithms.
EM is an iterative two step procedure [10], [21] where
(loosely speaking) one estimates the state based in the current

parameter estimate in the first step, and then updates the

parameters by maximizing a function that depends on the
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joint probability density function p(XN , YN |θ) evaluated
at the estimated states. For the case of linear systems,

this approach yields an explicit form for both steps of the

algorithm (See [27], [16], [23]). The method has also been

extended to the case of bilinear systems in [13]. Another

class of systems that can be treated in this fashion is those

of Hammerstein form [20]. To illustrate, say that we have the

following scalar function of powers of ūt, ut =
∑r

i=1 αiū
i
t,

where ūt is the input to the nonlinear part of the system and

ut is the input to a linear system. Then this is equivalent

to a linear model having an “r” dimensional input vector

Ut =
[
ūt ū2

t · · · ūr
t

]T
. We can then apply the usual

EM algorithm applicable to the linear case leading to an

explicit result for the E and M steps.

Unfortunately, however, in most estimation problems, nei-

ther of the steps in the EM algorithm have an explicit solution

[19], [31]. For the case of general non-linear systems, no

explicit form exists. In this case, Monte-Carlo sampling

techniques have been utilized [2], [11] to perform the E-

step. It is also possible to utilize the Extended Kalman Filter

(EKF) for the E-step [12], [26]. Also, for certain classes of
systems it is possible to obtain a closed form solution for the

M-step. For example, in [12], [26] a particular kind of neural

network model using radial basis functions is considered.

In this paper we will utilize linearization and Kalman Filter

techniques. However, a distinctive feature of our approach

is the choice of trajectory about which we linearize. We

choose this trajectory via a nonlinear maximum a-posteriori

estimator. We show that this yields an approximate EM
scheme which performs very well. Indeed, simulation studies

suggest that the new scheme has several advantage over the

earlier methods described above.

The layout of the remainder of the paper is as follows. In

section II, we describe the basic EM algorithm. In section
III, we review various approximations that have been used in

the context of the EM algorithm. In section IV, we describe a
novel EM type algorithm which, inter alia, uses a maximum
a-posteriori estimate as the basis of a local linearization. In

section V we present several examples.

II. THE EM ALGORITHM

The schemes that are studied in the current paper are

closely related to Maximum-Likelihood (ML). ML and
related algorithms such as Prediction Error (PEM) methods
are popular algorithms in identification [17], [20]. In the

ML framework, the following log-likelihood function is
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maximized:

l(θ) = log p(YN |θ) (3)

where YN denotes the given data set containing the system

outputs i.e. YN := {y1, y2, . . . , yN}. For future use, we also
introduce the state sequence XN := {x0, x1, . . . , xN}.
In simple cases, the likelihood function (3) can be easily

obtained as the following marginal distribution:

l(θ) = log
∫

p(XN , YN |θ)dXN (4)

based on the joint probability density function

p(XN , YN |θ).
However, in general, the evaluation of the integral in (3)

presents significant difficulties and hence approximations are

required, e.g. based on particle filtering. It is also possible

to avoid the integration involved in (3) by utilizing the EM
algorithm.

The EM algorithm may be summarized as follows [10]:

1) Choose an initial estimate θ̂0 ∈ Ω, where Ω is a
constraint set in the parameter space.

Then, for i = 0, 1, · · ·
2) Compute the auxiliary function Q(θ, θ̂i) which is the
expected value of the complete data log-likelihood with

respect to the random variable XN (usually called

“hidden data” in the statistics literature) given the

observed data YN and the previous estimate θ̂i:

Q(θ, θ̂i) = E
XN

{log[p(XN , YN |θ)]|YN , θ̂i} (5)

3) Set θ̂i+1 = arg max
θ∈Ω

Q(θ, θ̂i).

4) Go to step 2, and continue until convergence.

Steps 2 and 3 are usually known as the E-Step and M-Step

respectively. Under quite general conditions [10], [36], [7],

the EM algorithm can be proved to converge to a stationary
point which in many practical applications will be a local

maximum of the likelihood function [21].

The basic idea of the EM algorithm is to decompose the
log-likelihood function as:

log[p(YN |θ)] = E
XN

{log[p(XN , YN |θ)]|YN , θi}
− E

XN

{log[p(XN |YN , θ)]|YN , θi}
=Q(θ, θi) − H(θ, θi)} (6)

where the fact that E
XN

{log[p(YN |θ)]|YN , θi} =

log[p(YN |θ)] has been utilized.
By using the Jensen inequality [24], it is possible to prove

thatH(θ, θi) ≤ H(θi, θi) [10]. Then, if we can find a method
to choose θ such that Q(θ, θi) ≥ Q(θi, θi), we have a
simple mechanism to iteratively maximize the log-likelihood

function l(θ).

III. REVIEW OF APPROXIMATIONS USED IN THE EM
ALGORITHM

In most estimation problems, neither of the steps in the

EM algorithm have an explicit solution [19], [31]. Many
different approximations have been proposed in the statistics

literature. Indeed, there is a substantial literature on this

topic. A brief selection of the methods is contained in [32],

[18], [35], [31], [22] and the references therein. In this

section, we describe some of these approaches which are

more pertinent to our subsequent analysis.

For the E - step, Monte-Carlo methods have been proposed

(see for example [31] and the references therein). However,

this approach has difficulties when the number of data N
grows [2]. In general the E-step can be approximated as

Q(θ, θi) ≈ 1
m

m∑
j=1

log[p(X(j)
N , YN |θ)] (7)

where X
(j)
N is a sample from the joint probability density

function p(X(j)
N , YN |θi). It is also possible to use m =

1, provided X
(1)
N = X̂N is some “good” summary of

p(XN , YN |θi), such as a mode or expected value. These
approaches are usually called “EM-type” algorithms [35].
It is also possible [12], [26] to use the Extended Kalman

Filter to obtain samples of the joint distribution.

The traditional EM method requires that the function

Q(θ, θi) be maximized with respect to θ. One variant of
the M-Step is to simply find θi+1 such that Q(θi+1, θi) >
Q(θi, θi). This class of algorithm is usually called Gen-
eralized Expectation Maximization (GEM) [10]. In this
context, a variant of the traditional EM has been proposed
in [32], [18], [19]. One idea described in [19], is to use

the first iteration of Newton’s algorithm for the M-step.

The idea in Newton’s algorithm is to maximize, at each

iteration, a quadratic approximation, about θi, of the function

Q(θ, θi) [5]. Even though it is possible to carry out the
M - Step exactly by using a Newton type algorithm, this

is not attractive in the sense that it leads to iterations

within iterations. This method is usually called the Gradient

Expectation Maximization, GradEM, algorithm.
In the GradEM algorithm the following recursion is

utilized:

θi+1 = θi −H(θi, θi)−1∇(θi, θi) (8)

where H(θ, θi) = ∂2Q(θ,θi)
∂θ∂θT and ∇(θ, θi) = ∂Q(θ,θi)

∂θ
denotes the Hessian, and the first derivative of Q(θ, θi) with
respect to θ respectively.
The local and global convergence of this algorithm have

been analyzed in [19]. Additionally, since Newton’s method

often converges quickly, the local properties of the GradEM
algorithm are almost identical to those of the EM algorithm.
In fact, any strict local maximum point of the log-likelihood

function l(θ) locally attracts both algorithms at the same rate
of convergence [19].

Note that because the function H(θ, θi) in (6) achieves its
maximum at θ = θi, then its first derivatives vanish at that
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point. It then follows that

∂l(θ)
∂θ

∣∣∣∣
θ=θi

=
∂Q(θ, θi)

∂θ

∣∣∣∣
θ=θi

− ∂H(θ, θi)
∂θ

∣∣∣∣
θ=θi

=
∂Q(θ, θi)

∂θ

∣∣∣∣
θ=θi

(9)

and hence the iteration (8) can also be written as

θi+1 = θi − [H(θ, θi)]−1 ∂l(θ)
∂θ

∣∣∣∣
θ=θi

(10)

We see that this is similar to a Newton algorithm to

maximize the log-likelihood function l(θ). The only dif-
ference is that instead of using the Hessian of the log-

likelihood function, the Hessian of the function Q(θ, θi)
is used. Unfortunately, the GradEM algorithm does not

necessarily lead to a sequence θi which increases the log-

likelihood function l(θ). (It does not necessarily go “up-
hill”) [21]. This problem can be solved by using more

than one iteration in the Newton algorithm, or by using

different variants of the GradEM algorithm [21]. Moreover,
Newton’s algorithm usually suffers from other problems (e.g.

the inverse of the Hessian may not exist at some points,

the algorithm is attracted by local maxima just as much as

it is attracted by local minima, etc.). These problems can

be solved by using modifications of Newton’s algorithm.

Some choices are described in [5]. Alternatively, following

similar reasoning to that used above to motivate theGradEM
algorithm, one can use the first iterations of any optimization

procedure (relaxation, quasi-Newton, etc.) in order to obtain

an estimate that gives a greater value for Q(θ, θi).

IV. A NOVEL EM BASED SCHEME FOR NON-LINEAR
STOCHASTIC MODELS

As discussed above, it is generally impossible to obtain

closed form expressions for the E and M steps. Indeed, for

the nonlinear case, the E-step inherently involves some form

of nonlinear filtering. However, this involves a heavy compu-

tational load. In an effort to avoid this, we describe below an

approximate algorithm which is aimed at exploiting, as far

as possible, the closed form results available for the linear

case.

We describe the proposed algorithm under the two head-

ings of E and M step.

• The E-step: The E-step requires that we calculate the
following

Q(θ, θi) = E
XN

{log[p(XN , YN , θ)]|YN , θi}

=
∫

log[p(XN , YN |θ)]p(XN |YN , θi)dXN

(11)

This equation suggests that we actually have to solve

two sub-problems, namely, (i) obtain an expression for
the conditional distribution of the states (evaluated at
θ̂i) given the data and (ii) take the expected value of
log[p(XN , YN |θ)] over this distribution.

Thus, the E-step requires us to evaluate

Q(θ, θi) = E
XN

{log[p(XN , YN , θ)]|YN , θi}

= E
XN

{V0(θ) +
N∑

t=1

Vt(xt, xt−1, θ)|YN , θi} (12)

where for the case of Gaussian noise

V0(θ) = log[p(x0|θ)]
=const − 1

2
log[|P0|]

− 1
2
(x0 − µ)T P−1

0 (x0 − µ)

Vt(xt, xt−1, θ) = log[p(yt|xt, θ)] + log[p(xt|xt−1, θ)]
(13)

and where

log[p(yt|xt, θ)] = −1
2

log[|l(xt, ut, θ)Rl(xt, ut, θ)T |]

− 1
2
(yt − h(xt, ut, θ))T [l(xt, ut, θ)Rl(xt, ut, θ)T ]−1

(yt − h(xt, ut, θ))
(14)

log[p(xt+1|xt, θ)] = −1
2

log[|g(xt, ut, θ)Qg(xt, ut, θ)T |]

− 1
2
(xt+1 − f(xt, ut, θ))T [g(xt, ut, θ)Qg(xt, ut, θ)T ]−1

(xt+1 − f(xt, ut, θ))
(15)

We outline below a sub-optimal strategy aimed at ob-

taining a good approximation to (12). We assume we

have available very good initial estimates {x̄t}, {w̄t},
{v̄t} of the states, process noise, and measurement
noise (more will be said about this below). Then one

can linearize the state space model about these initial

estimates as follows:

xt+1 ≈f(x̄t, ut, θ) + g(x̄t, ut, θ)w̄t

+
∂f(x̄t, ut, θ)

∂xt
[xt − x̄t] +

∂g(x̄t, ut, θ)
∂xt

[xt − x̄t]w̄t

+ g(x̄t, ut, θ)[wt − w̄t] (16)

yt ≈h(x̄t, ut, θ) + l(x̄t, ut, θ)v̄t

+
∂h(x̄t, ut, θ)

∂xt
[xt − x̄t] +

∂l(x̄t, ut, θ)
∂xt

[xt − x̄t]v̄t

+ l(x̄t, ut, θ)[vt − v̄t] (17)

Based on the above, we now address the two sub-

problems in the E-step:

(i) Obtain an approximation to the conditional dis-
tribution of the states, given the data (evaluated
at θ̂i): The linear form of (16), (17) suggests that
one can directly apply the (time-varying) Kalman

Filter to approximate the conditional distribution

of xt given the data evaluated at θ̂i.
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(ii) Take the expected value of log[p(XN , YN |θ)]: Next
we turn to the problem of evaluating the expec-

tation in (12). This step is greatly facilitated by

the availability of a Gaussian approximation to the

conditional state distribution as provided in step

(i). In particular, one can use a Taylor’s series

expansion of Vt(xt, xt−1, θ) about x̄t, x̄t−1; i.e.

Vt ≈Vt(x̄t, x̄t−1) +
∂Vt(x̄t, x̄t−1)

∂xt
[xt − x̄t]

+
∂Vt(x̄t, x̄t−1)

∂xt−1
[xt−1 − x̄t−1]

+
1
2
[xt − x̄t]T

∂2Vt(x̄t, x̄t−1)
∂xt∂xt

[xt − x̄t]

+
1
2
[xt−1 − x̄t−1]T

∂2Vt(x̄t, x̄t−1)
∂xt−1∂xt−1

[xt−1 − x̄t−1]

+
1
2
[xt − x̄t]T

∂2Vt(x̄t, x̄t−1)
∂xt∂xt−1

[xt − x̄t−1] + · · ·
(18)

An advantage of having a Gaussian approxima-

tion to the state distribution is that all moments
are simple functions of the mean and covariance

[30], [17]. Hence, irrespective of the order of the

Taylor’s series used, one can readily evaluate the

expected value in (12).

Finally, we return to the question as to how one can best

obtain {x̄t}, {w̄t} and {v̄t} about which we linearize
the system. Our proposal is to use a Maximum-A-

Posteriori (MAP) estimate. Such an estimate can be

obtained by maximizing

log[p(XN , YN |θ)] = V0(θ) +
N∑

t=1

Vt(θ) (19)

with respect to {x0, · · · , xN}. This leads to the maxi-
mum a-posteriori estimates {x̄0, · · · , x̄N}. Also, by in-
verting (1), (2) we also obtain estimates {w̄0, · · · , w̄N},
and {v̄0, · · · , v̄N} for the sequences {wt}, and {vt}
respectively. Note that one requires that the joint dis-

tribution be symmetric and unimodal to ensure that the

MAP estimate is equal to the mean [9].

We make a further simplification by recognizing that

practical systems have finite memory, i.e. distant data

tells us little about the current state. Hence, we

use Rolling Horizon state estimation [25]. The key

idea here is to consider only data from [Min(1, k −
L),Max(N, k + L)] when estimating xk. Here L is
an a-priori estimate of the “memory” of the system.

For example, if we choose L = 10, then, each MAP
estimate is based on a maximization over (a maximum

of) 21 variables.
Remark 4.1: Notice that, in the case of linear stochastic
systems, the expressions given above are exact, i.e. the

proposed algorithm for the nonlinear case builds on the

known closed form expression for the linear case [27],

[15]. ���

• The M-step: Having approximated Q(θ, θi), the M-
step simply requires that this function be maximized

with respect to the parameters. This requires some form

of iterative algorithm. We propose using the GradEM
algorithm briefly described earlier.

V. EXAMPLES

A. Example 1

Consider the following simple example:

xt+1 = axt + but + wt (20)

yt = cxt + dut + ex2
t + vt (21)

where wt ∼ N(0, Q), vt ∼ N(0, R), and a = 0.8, c = 10,
b = d = e = 1, and Q = R = 0.1. The measured input, ut,

was chosen as Gaussian white noise of covariance σ2
u = 1.

N = 300 data points were collected from the system.
Notice that by doing a similarity transformation xt = αzt,

we obtain the following equivalent system:

zt+1 = azt +
b

α
ut +

1
α

wt (22)

yt = cαzt + dut + eα2z2
t + vt (23)

Hence, we see that the model is overparameterized since (at

least) two parameter values give the same description. For

the sake of comparison we will make a state transformation

to the estimated model (the one obtained after applying the

estimation algorithm), in order to have a normalized state

representation such that ĉ = 10.
For this system we have that:

p(x0|θ) =
exp

{
− 1

2P0
(x0 − µ)2

}
√

2πP0

(24)

p(yt|xt, θ) =
exp

{− 1
2R (yt − cxt − dut − ex2

t )
2
}

√
2πR

(25)

p(xt+1|xt, θ) =
exp

{
− 1

2Q (xt+1 − axt − but)2
}

√
2πQ

(26)

and thus

V0 = − 1
2

log[2πP0] − 1
2P0

(x0 − µ)2

Vt = − 1
2

log[2πQ] − 1
2Q

(xt − axt−1 − but−1)2

− 1
2

log[2πR] − 1
2R

(yt − cxt − dut − ex2
t )

2 (27)

Assuming that we have good estimates {x̄t}, {ūt}, {w̄t} for
some parameter value θ̂i, then the linearized model about

{x̄t}, {v̄t}, {w̄t} is of the form:
xt+1 = axt + but + wt (28)

yt = [c + 2ex̄t]xt + dut − ex̄2
t + vt (29)

To obtain the linearization point, we will use the MAP

estimate as described in section IV. We choose L = 10 for
the rolling horizon MAP estimator.
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Given {x̄t}, and the approximate model (28), (29) we then
utilize the Kalman Smoother to obtain a Gaussian approx-

imation for the joint conditional distribution of {xt, xt−1}.
Next, we take the expectation in (12). Here, we note from

(27) that only 4th order moments are needed to obtain the
result. Moreover, as explained in section IV, all moments

are readily calculable from the mean and covariance results

provided by the Kalman smoother. This completes the E-step.

Finally, for the M-step, we note that for this model there

are closed form expressions, as in the linear case, since the

model is linear in the parameters.

For the sake of comparison we have tested the following

algorithms:

1) Certainty Equivalence EM (CE-EM): Here the MAP

estimates x̄t, w̄t, v̄t are assumed to lie at a point such

that the entire probability mass is at these points. This

means that the expectation in (12) can be replaced by

simply evaluating (7) with m = 1.
2) EKF-EM: EM based on the use of the EKF as in [26].

3) MAP-EM: The new algorithm as described in section

IV.

We fix ĉ = 10 as explained previously. Algorithm 1
appears to give satisfactory results provided the measured

input variance is large (e.g. σ2
u = 10). However, when

this variance is reduced to σ2
u = 1, the algorithm fails to

converge. Figure 1 shows the convergence of algorithms

2 and 3 with initial values â = 0.5, b̂ = d̂ = ê = 0,
Q̂ = R̂ = 10. The results obtained by both algorithms are
essentially identical for this example.
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Fig. 1. Example V-A: Convergence of the parameter estimates obtained
by algorithms 2 and 3.

B. Example 2

Consider the following system

xt+1 = axt + but + wt (30)

yt = c cos(xt) + vt (31)

where wt ∼ N(0, Q), vt ∼ N(0, R), u ∼ N(0, σ2
u), and

a = 0.9, b = c = 1, Q = R = 0.1. N = 100 data points
were collected from the system.

We follow the procedure described in section IV, and in

example V-A to complete all the steps in order to estimate

the parameters, we use the following initial values: â = b̂ =
ĉ = 0.5, Q̂ = R̂ = 0.05.
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Fig. 2. Example V-B: Convergence of the parameter estimates by using
algorithm 3 (MAP-EM).

Notice that in this case, under a Gaussianity assumption,

it is possible to exactly calculate the expected value in (12)

since if x ∼ N(µ, σ2) then

E {cos(x)} = e−
σ2
2 cos(µ) (32)

E
{
cos(x)2

}
=

1
2

[
1 − e−2σ2

+ 2e−2σ2
cos(µ)2

]
(33)

Thus, it is possible to use algorithm EKF-EM. Notice that,

this also means that in algorithm 3 (MAP-EM) the Taylor

expansion step is not necessary. However, to demonstrate

the utility of the power series idea explained in step (ii) in

section IV, we use a fourth order approximation in (18). The

results obtained by using this approximation are identical

to the ones obtained by using the expressions above in the

algorithm MAP-EM.

The results obtained by using the three algorithms, EKF-

EM, CE-EM, and MAP-EM are presented in table I for two

different values of the measured input variance, σ2
u = 1, and

σ2
u = 4. The EKF-EM obtains reasonable results for σ2

u = 1,
but the results are very poor when the input variance is

increased to σ2
u = 4. The CE-EM does not give good results

for any of the cases analyzed. On the other hand the MAP-

EM algorithm gives good results for all the cases analyzed.

The convergence of the parameter estimates obtained by

using MAP-EM are shown in figure 2.

Remark 5.1: Notice that, for some applications, MAP
estimates are more useful than other kind of estimates such

as minimum square error [14]. In particular, in this example

we have shown that we obtain better results when using

372



TABLE I

EXAMPLE V-B: ESTIMATED PARAMETERS

N = 100 σ2
u = 1 σ2

u = 4
EKF-EM CE-EM MAP-EM EKF-EM CE-EM MAP-EM

â 0.9094 0.8346 0.9023 0.9409 0.7283 0.9004

b̂ 0.7993 0.6420 1.0593 0.2974 0.5164 0.9730

ĉ 0.8625 0.6961 1.0289 0.5873 0.2089 0.9938

Q̂ 0.0106 1.91 ·10−12 0.0765 0.1647 1.8 ·10−12 0.0793

R̂ 0.2248 0.3410 0.0912 0.3878 0.5344 0.099

MAP. However, we acknowledge that the approach proposed

in algorithm 3 is computationally more demanding than al-

gorithm 2. Indeed, an important issue in any MAP estimation

procedure is the optimization of a non-convex cost function.

Thus, it is important to use a “good” initial state estimate

in the optimization algorithm utilized to obtain the MAP

estimate. In this particular example, we obtained an initial

estimate for the states by using a rolling horizon approach,

with L = 2, but with a coarsely quantized state space.
We maximized the MAP cost function considering only the

following values for the state X = {−10,−5, 0, 5, 10}.
This means that we searched for the MAP estimate among

(a maximum of) 55 different possibilities in every window.

Then, we used this estimate to initialize the optimization

algorithm to find the MAP estimate, but now in the complete

state space. ���

VI. CONCLUSIONS

This paper has described a novel algorithm for nonlinear

state and parameter estimation. The algorithm is of the EM
type and uses a MAP estimate as the basis of a local
linearization in the E-step. Also, a Taylor’s series expansion

has been used for the joint log likelihood so that all moments

can be generated from the Gaussian approximation provided

by the linearized (about the MAP estimate) Kalman Filter.
The algorithm has been tested in simulated examples and

has been shown to offer superior performance compared with

other approximate EM algorithms described in the literature.
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