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Abstract—We propose an adaptive output-feedback control
design technique for feedforward systems with Input-to-State
Stable (ISS) appended dynamics and disturbance inputs. The
design is based on our recent results on the application of dy-
namic high-gain scaling to state-feedback and output-feedback
control of feedforward systems. Unlike previous approaches
to the control of feedforward systems, the dynamic high-gain
scaling technique provides robustness to additive disturbances
and enabled the first output-feedback controller design for
feedforward systems. In this paper, we further investigate
the robustness properties of the dynamic high-gain scaling
approach by introducing exogenous disturbance inputs and
ISS appended dynamics coupled with all the system states and
the input. The designed adaptive output-feedback controller
achieves BIBS stability with respect to disturbance inputs and
also provides a disturbance attenuation result. This provides
the first results for feedforward systems with ISS appended
dynamics and disturbance inputs.

I. INTRODUCTION
We consider the class of systems given by

żi = qi(t, y, z, xi+2, . . . , xn, u, ω) , i = 1, . . . , n − 2

żn−1 = qn−1(t, y, z, u, ω)

ẋ1 = φ(1,2)(y)x2 + φ1(t, y, x3, . . . , xn, u, z1, . . . , zn−1, ω)

ẋ2 = φ(2,3)(y)x3 + φ2(t, y, x4, . . . , xn, u, z2, . . . , zn−1, ω)

...
ẋn−2 = φ(n−2,n−1)(y)xn−1+φn−2(t, y, xn, u, zn−2, zn−1, ω)

ẋn−1 = φ(n−1,n)(y)xn + φn−1(t, y, u, zn−1, ω)

ẋn = µ(y)u

y = [x1, xn]T (1)

where x = [x1, . . . , xn]T ∈ Rn is the state of the system,
u ∈ R is the input, y ∈ R2 is the measured output, and
z = [zT

1 , . . . , zT
n−1] ∈ Rnz1

+...+nzn−1 is the state of the
appended dynamics. ω ∈ Rnω is a bounded disturbance
input. µ and φ(i,i+1), i = 1, . . . , n−1, are known continuous
functions of y. qi, i = 1, . . . , n−1, and φi, i = 1, . . . , n−1,
are uncertain time-varying functions1 which are assumed to
satisfy sufficient conditions (e.g., local Lipschitz property)
for local existence and uniqueness of solutions of (1).

In [1,2], the dynamic high-gain scaling technique [3,4] was
applied to feedforward systems to obtain state-feedback and
output-feedback controllers. Previously available controller
design techniques for feedforward systems in the litera-
ture include saturation-based designs [5–8] and forwarding
[9,10]. Nested saturation designs rely on the use of small
inputs and require the φi functions to involve only quadratic
or higher powers in their arguments. Since the saturation
levels are restricted to be sufficiently small, the scheme is
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1While qi, i = 1, . . . , n−1, and φi, i = 1, . . . , n−1, can depend on all

the states and the input, they are shown in (1) to depend only on subsets of
the state to emphasize the state dependence of the bounds to be introduced.

sensitive to additive disturbances. Forwarding is a recursive
passivation scheme which proceeds by adding one integrator
at a time through the design of cross terms. However,
forwarding is computationally complicated and the cross
terms often need to be approximated numerically. A combi-
nation of forwarding and nested saturation was proposed in
[11] to obtain weaker growth conditions. An adaptive state-
feedback scaling-based design with the scaling governed by
a switching logic was considered in [12]. However, due to
lack of robustness to additive disturbances in these previous
designs [5–12], the extension to the output feedback case
was not feasible. In contrast, the dual high-gain approach in
[1,2] provided a robustly stabilizing controller and enabled
an output-feedback solution.

High-gain scaling is a popular technique for the control of
strict-feedback systems. The basic adaptive high-gain con-
troller given by u = −ry, ṙ = y2 provides global stabiliza-
tion under the assumption that the system is minimum-phase
and of relative-degree one ([13–15] and references therein).
Observer design based on static high-gain scaling (using
observer gains r, . . . , rn with a constant r) was considered
in [16,17] and semiglobal results were obtained. In [18], a
high-gain observer and a backstepping based controller were
designed with the dynamics of the scaling parameter r being
of the form of a scalar Riccati equation. In [3], it was shown
that the high-gain scaling in [18] essentially amplifies the
upper diagonal terms (φ(i,i+1)) thus inducing the Cascading
Upper Diagonal Dominance (CUDD) condition introduced in
[19] (see Remark 2). The dual observer/controller dynamic
high-gain scaling technique was introduced in [4] and uti-
lized a high-gain observer and a high-gain controller with a
single scaling parameter. Furthermore, the flexibility of the
dynamic high-gain scaling technique was demonstrated in
[4] through the introduction of uncertain terms dependent
on all states and uncertain ISS appended dynamics with
nonlinear gains from all the system states and the input
(previous results allowed the ISS appended dynamics to have
a nonzero gain only from the output). The dynamic high-
gain scaling technique provides a unified framework for both
strict-feedback [4] and feedforward [2] systems.

In this paper, we further investigate the robustness of the
dynamic high-gain scaling based controllers as applied to
feedforward systems. The system (1) contains the appended
dynamics with states z1, . . . , zn−1. Note that the coupling
between the x system and the appended dynamics involves
all the states and the input. As in the strict-feedback case
[4], we consider a triangular hierarchy of zi subsystems
coupled with portions of the state. As could be expected, the
coupling in the feedforward case follows an upper triangular
pattern. Uncertain parameters are allowed in both the bounds
on the functions φi and in the appended dynamics (z).
Furthermore, a disturbance input ω is introduced and appears
in both the dynamics of x and the appended dynamics. The
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observer and controller are similar to [2] with the novelty
being in the form of the Lyapunov function and in the
design of the high-gain scaling parameter. As in the results
on ISS appended dynamics in the strict-feedback case [4],
the dynamics of r are fashioned to make the derivative
of the Lyapunov function negative if either the high-gain
parameter or the derivative of the high-gain parameter is
large (compared to functions of the states). The results in this
paper further deepen the parallel between the feedforward
and strict-feedback cases that was initiated in [2] and [4].

II. ASSUMPTIONS AND PROBLEM STATEMENT

We consider the output-feedback stabilization of sys-
tem (1). The control objective is to regulate the state x to
the origin using dynamic output feedback with output y =
[x1, xn]T . A particular case in which only x1 measurement
is required is given in Remark 5.

Assumption A1: (Controllability of system (1)) A positive
constant σ exists such that

|φ(i,i+1)(y)| ≥ σ , i = 1, . . . , n − 1 ∀y ∈ R2 (2)
|µ(y)| ≥ σ ∀y ∈ R2

. (3)
Assumption A2: The functions φi, i = 1, . . . , n− 1, can be
bounded as2

|φi| ≤ |φ(1,2)(y)|γ1(xn)γ2

(
γu(y)u

)

×

[ n−1∑
j=i+2

|xj | + θ|xn| + θγu(y)|u|

]

+

√
|φ(1,2)(y)|γ1(xn)γ2

(
γu(y)u

)[ n−1∑
j=i

|zj | + χxi
(ω)

]
, i = 1, . . . , n − 2 (4)

|φn−1| ≤ θ|φ(1,2)(y)|γ1(xn)γ2

(
γu(y)u

)
γu(y)|u|

+

√
|φ(1,2)(y)|γ1(xn)γ2

(
γu(y)u

)
|zn−1| (5)

where θ is an unknown positive parameter and γ1, γ2, γu,
and χxi

, i = 1, . . . , n−2, are known continuous nonnegative
functions. Furthermore, nonnegative constants p1, p2, and α1

exist such that γ1(xn) ≤ p1 + p2|xn|
α1 for all xn ∈ R.

Assumption A3: Positive constants ρi and ρ̃i, i = 2, . . . , n−
1, exist such that the functions φ(i,i+1)(y) satisfy for all
y ∈ R2 and i = 2, . . . , n − 1,
|φ(i,i+1)(y)|≤ρi|φ(i−1,i)(y)| ; |φ(i,i+1)(y)|≥ ρ̃i|φ(i−1,i)(y)|. (6)

Assumption A4: A continuous nonnegative function γo(xn)
exists such that for all y ∈ R2, |φ(n−1,n)(y)|γu(y)/|µ(y)| ≤
γo(xn) and nonnegative constants p3, p4, and α2 exist such
that γo(xn) ≤ p3 + p4|xn|

α2 for all xn ∈ R.

Assumption A5: The zi, i = 1, . . . , n − 1 subsystems are
ISS with ISS Lyapunov functions Vzi

satisfying

V̇zi
≤ −αzi

|zi|
2 + |φ(1,2)(y)|γ1(xn)γ2

(
γu(y)

)

×

[ n−1∑
j=i+2

x
2
j + θx

2
n + θ[γu(y)u]2

]
+ χzi

(ω)

, i = 1, . . . , n − 2 (7)
V̇zn−1 ≤ −αzn−1 |zn−1|

2

+|φ(1,2)(y)|γ1(xn)γ2

(
γu(y)

)
θ[γu(y)u]2 (8)

2For notational convenience, we drop the arguments of functions when
no confusion will result.

with αzi
, i = 1, . . . , n−1 being known positive constants and

χzi
, i = 1, . . . , n − 2 being known continuous nonnegative

functions. Furthermore, positive constants V zi
and V zi

are

known such that V zi
|zi|

2 ≥ Vzi
≥ V zi

|zi|
2, i = 1, . . . , n−1.

Remark 1: Note that the bounds imposed on φi in Assump-
tion A2 provide a relaxation of the feedforward structure
since φi are allowed to depend on the first state x1. No
magnitude bounds are required on the unknown parameter θ
which is taken to be an aggregate of any unknown parameters
in the system dynamics. For simplicity, without any loss of
generality, γ1, γ2, γu, and θ are taken in Assumptions A2
and A5 to be the same for all the φi and Vzi

. Note that
the introduction of φ(1,2) in the bounds in Assumptions A2
and A5 does not impose a constraint (since |φ(1,2)| ≥ σ)
but is incorporated to make the assumptions weaker. The
term

√
|φ(1,2)|γ1γ2(γuu) in the bounds in Assumptions A2

and A5 does not involve any restriction and is equivalent to
the term

√
|φ(1,2)|γ̃1(xn)γ̃2(γu(y)u) where γ̃1 and γ̃2 are

nonnegative functions with γ̃1 being polynomially bounded.
The form of the bounds shown in Assumptions A2 and A5
is intended to simplify the expressions which arise in the
Lyapunov stability analysis.

Remark 2: Assumption A3 is instrumental in ensuring the
solvability of a pair of coupled matrix Lyapunov inequalities
that arise in the stability analysis and is the CUDD condition
[3,19] applied to the nominal system obtained from (1) by
dropping the appended dynamics and φi, i = 1, . . . , n − 1.
Let

Do = diag(n − 1 + b, n − 2 + b, . . . , 1 + b, b) (9)
Dc = diag(n − 1 + b, n − 2 + b, . . . , 1 + b, b, bv + b)(10)
C = [1, 0 . . . , 0] (11)

with b and bv being positive constants. Let Ao(y) be the
n × n matrix with (i, j)th element

Ao(i,i+1)
= φ(i,i+1) , i = 1, . . . , n − 1

Ao(i,1)
= gi , i = 1, . . . , n (12)

with zeros everywhere else where gi, i = 1, . . . , n, are design
freedoms and let Ac(y) be the (n+1)× (n+1) matrix with
(i, j)th element

Ac(i,i+1)
= φ(i,i+1) , i=1, . . . , n − 1 ; Ac(n,n+1)

=ρnφ(n−1,n)

Ac(n+1,j)
= kj , j = 1, . . . , n + 1 (13)

with zeros everywhere else where kj , j = 1, . . . , n + 1,
are design freedoms and ρn is a positive constant. Using
Theorem A1 in [3] and the reasoning in Remark 2 in [2],
(2) and the first inequality in (6) are necessary and sufficient
for existence of a constant matrix Po > 0, positive constants
ν1o, ν

∗

1o ν2o, and ν2o, and functions g1, . . . , gn such that the
following coupled Lyapunov inequalities are satisfied:

PoAo + AT
o Po ≤ −ν1o|φ(1,2)|I − ν∗

1o|φ(1,2)|C
T C

ν2oI ≤ PoDo + DoPo ≤ ν2oI

}
(14)

Using the dual of Theorem A1 in [3], (2) and the second
inequality in (6) are necessary and sufficient for existence
of a constant matrix Pc > 0, positive constants ν1c, ν2c,
and ν2c, and functions k1, . . . , kn+1 such that the coupled
Lyapunov inequalities

PcAc+A
T
c Pc≤−ν1c|φ(1,2)|I ; ν2cI≤PcDc+DcPc ≤ ν2cI (15)

are satisfied for all y ∈ R2. Furthermore, from the con-
struction in the proof of Theorem A1 in [3], the functions
g1, . . . , gn can be chosen to be linear constant-coefficient
combinations of φ(i,i+1), i = 1, . . . , n − 1. Hence, using
Assumption A3, a positive constant g exists such that√

g2
1(y) + g2

2(y) + . . . + g2
n(y) ≤ g|φ(1,2)(y)|. (16)
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Remark 3: Assumption A4 is satisfied in two important
special cases: (1) if γu(y) and φ(n−1,n)(y) are bounded by
polynomial functions of xn; (2) if γu(y) = 0, i.e., u does
not appear in the bound on |φi|. In case (2), γo can be taken
to be identically zero and it is observed in Remark 6 that the
polynomial boundedness assumption on γ1 can be removed.

Remark 4: Additive classK functions of zi+1, . . . , zn−1 can
be allowed in (7). This case can be transformed back to the
case considered here (under mild local order restrictions) by
considering as zi the collection (zi, . . . , zn−1) and forming
a new Lyapunov function Vzi

whose derivative satisfies (7).
Furthermore, Assumption A5 can be relaxed to require Input-
to-State practical Stability rather than Input-to-State Stability
and Assumption A2 can be relaxed to include additive
nonnegative constants in the bounds on φi. In that case, the
technique in this paper provides practical stabilization results.

III. OBSERVER DESIGN
A full-order observer to estimate the unmeasured states

x2, . . . , xn−1 is designed as
˙̂xi = φ(i,i+1)(y)x̂i+1 + r

−i
gi(y)(x̂1−x1), 1 ≤ i ≤ n − 1

˙̂xn = µ(y)u + r
−n

gn(y)(x̂1−x1) (17)
where g1(y), . . . , gn(y) are continuous functions of y =
[x1, xn]T chosen as in Remark 2 and r is a dynamic high-
gain scaling parameter whose dynamics to be designed later
will ensure that r(t) > 1 for all t ≥ 0. The observer errors
ei and the scaled observer errors εi are defined as

ei = x̂i − xi ; εi =
ei

rn−i
, i = 1, . . . , n. (18)

The dynamics of the scaled observer errors are given by,
i = 1, . . . , n,

ε̇i =
1

r
φ(i,i+1)εi+1 −

1

rn−i
φi +

1

r
giε1 − (n − i)

ṙ

r
εi (19)

where φn ≡ 0 and εn+1 ≡ 0 are dummy variables. In matrix
form,

ε̇ =
1

r
Aoε −

ṙ

r
(Do − bI)ε − Φ (20)

where ε = [ε1, . . . , εn]T , b is a positive constant to be chosen
later, Φ = [r1−nφ1, . . . , r

−1φn−1, 0]T , and Do and Ao are
given by (9) and (12), respectively.

IV. CONTROLLER DESIGN
The control input is designed as

u =
φ(n,n+1)(y)ξn+1

µ(y)r
(21)

where φ(n,n+1)(y) = ρnφ(n−1,n)(y) with ρn being a positive
constant. ξn+1 is a new state variable with the dynamics

ξ̇n+1 = v − bv

ṙ

r
ξn+1 (22)

with v being the new control input and bv being a design
parameter which can be picked to be any positive constant.
The control input transformation given by (21) and (22)
corresponds to a dynamic extension of the state so that in
the extended system, the uncertain functions φi are bounded
by a function of the states x and ξn+1 and do not involve
the new input v. Defining

ξi =
x̂i

rn−i
, i = 1, . . . , n, (23)

the dynamics of ξi, i = 1, . . . , n, are given by

ξ̇i =
1

r
φ(i,i+1)ξi+1 − (n − i)

ṙ

r
ξi +

1

r
giε1 (24)

and the dynamics of ξn+1 are given in (22). The control
input v is picked to be

v = r
−1[k1(y), k2(y), k3(y), . . . , kn+1(y)]ξ (25)

where ξ = [ξ1, . . . , ξn+1]
T and k1(y), . . . , kn+1(y) are

continuous functions of the output y chosen as in Remark 2.
With the control law (25), the dynamics of ξ are

ξ̇ =
1

r
Acξ −

ṙ

r
(Dc − bI)ξ +

1

r
gε1 (26)

where g = [g1, . . . , gn, 0]T and Dc and Ac are given by (10)
and (13), respectively.

V. STABILITY ANALYSIS
The functions g1, . . . , gn, k1, . . . , kn+1 are chosen as in
Remark 2 so that the Lyapunov inequalities (14) and (15)
are satisfied with some symmetric positive-definite matrices
Po and Pc and some positive constants ν∗

1o, ν1o, ν2o, ν2o,
ν1c, ν2c, and ν2c. Consider an observer Lyapunov function
Vo and a controller Lyapunov function Vc given by

Vo = ε
T
Poε , Vc = ξ

T
Pcξ. (27)

The dynamics of r will be designed such that r(t) is
monotonically nondecreasing and greater than 1 for all time
t. Using (14) and (15), the derivatives of Vo and Vc can be
bounded as

V̇o ≤ −
ν1o

r
|φ(1,2)||ε|

2 −
ν∗

1o

r
|φ(1,2)|ε

2
1 −

ṙ

r
ε
T [PoDo + DoPo]ε

+2b
ṙ

r
ε
T
Poε − 2ε

T
PoΦ (28)

V̇c ≤ −
ν1c

r
|φ(1,2)||ξ|

2 −
ṙ

r
ξ

T [PcDc + DcPc]ξ

+2b
ṙ

r
ξ

T
Pcξ +

2

r
ξ

T
Pcgε1. (29)

Using Assumption A2, a bound on Φ can be obtained as

|Φ| ≤
1

r2
|φ(1,2)(y)|γ(xn)γ2

(
γu(y)u

){
n[|ξ| + |ε|]

+n
1
2 θ[|ξn| + |ξn+1| + |εn|]

}

+

√
φ(1,2)(y)|γ1(xn)γ2

(
γu(y)u

){
n

n−1∑
j=1

|zj |

rn−j
+

χx(ω)

r2

}
(30)

where χx(ω) =
∑n−2

i=1 χxi
(ω) and γ(xn) = γ1(xn)[1 +

ρnγo(xn)]. Hence,

|2ε
T
PoΦ| ≤

5n

r2
λmax(Po)|φ(1,2)(y)|γ(xn)γ2(γu(y)u)[|ξ|2+|ε|2]

+
3θ2

r2
λmax(Po)|φ(1,2)(y)|γ(xn)γ2(γu(y)u)[ξ2

n+ξ
2
n+1+ε

2
n]

+nλmax(Po)
[
n

2

n−1∑
j=1

|zj |
2

r2(n−j−1)
+

χ2
x(ω)

r2

]
. (31)

A composite Lyapunov function for the x subsystem is
defined as

Vx =
1

r2b
[cVo + Vc] =

1

r2b
[cεT

Poε + ξ
T
Pcξ] (32)

where c is a positive constant such that c ≥
4

ν∗

1o
ν1c

λ2
max(Pc)g

2. The constant c in (32) is used to

handle the cross term 2
r
ξT Pcgε1 in (29). The term

1
r2b

in (32) is introduced to cancel the terms 2b ṙ
r
εT Poε and

2b ṙ
r
ξT Pcξ in (28) and (29). The motivation for using a

constant b > 0 is to ensure that Do and Dc are positive-
definite making the Lyapunov inequalities (14) and (15)
feasible. Differentiating (32) and using (28), (29), and (31),

V̇x ≤ −
cν1o

r1+2b
|φ(1,2)||ε|

2 −
ν1c

2r1+2b
|φ(1,2)||ξ|

2

−
cṙ

r1+2b
ε
T [PoDo + DoPo]ε −

ṙ

r1+2b
ξ

T [PcDc + DcPc]ξ

+
5cn

r2+2b
|φ(1,2)|λmax(Po)γ(xn)γ2

(
γu(y)u

)
[|ε|2 + |ξ|2]

+
3cθ2

r2+2b
|φ(1,2)|λmax(Po)γ(xn)γ2

(
γu(y)u

)
[ξ2

n+ξ
2
n+1+ε

2
n]

+
cn3

r2b
λmax(Po)

n−1∑
j=1

|zj |
2

r2(n−j−1+b)
+

cn

r2+2b
λmax(Po)χ

2
x(ω).(33)
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The positive zi-dependent terms in (33) must be handled
by incorporating the ISS Lyapunov functions of the zi
subsystems. Noting the ISS Lyapunov inequalities assumed
in Assumption A5, the overall Lyapunov function is defined
as

V = Vx +

n−1∑
j=1

{
1

αzj

(
cn

3
λmax(Po) + κ

∗

z

) Vzj

r2(n−j−1+b)

}

+
1

2cθr2b+2b2
(θ̂ − θ

∗)2 (34)

where κ∗

z , cθ, and b2 are positive design freedoms and θ∗ =
θ + θ2. The scaling 1/r2b+2b2 in the term quadratic in the

adaptation error (θ̂ − θ∗) is required to induce a time-scale
separation between |ξ| and θ̂ and will be seen to be crucial
in the stability analysis below.

Differentiating (34) and using (14), (15), and (33),

V̇ ≤ −
cν1o

r1+2b
|φ(1,2)||ε|

2 −
ν1c

2r1+2b
|φ(1,2)||ξ|

2

−κ
∗

z

n−1∑
j=1

|zj |
2

r2(n−j−1+b)
−

cṙν2o

r1+2b
|ε|2 −

ṙν2c

r1+2b
|ξ|2

+
1

r2+2b
w1(xn, γu(y)u)|φ(1,2)|[|ε|

2 + |ξ|2]

+
1

r2+2b
w2(xn, γu(y)u)|φ(1,2)|θ

∗[ξ2
n + ξ

2
n+1 + ε

2
n]

+
cn

r2+2b
λmax(Po)χ

2
x(ω)+

n−2∑
j=1

(cn3λmax(Po)+κ∗

z)

αzj
r2+2b

χzj
(ω)

+
1

cθr2b+2b2
(θ̂ − θ

∗)
˙̂
θ (35)

where

w1(xn, γu(y)u) =
[
5cnλmax(Po)

+

n−2∑
j=1

2(cn3λmax(Po) + κ∗

z)

αzj

]
γ(xn)γ2(γu(y)u) (36)

w2(xn, γu(y)u) =
[
3cλmax(Po)

+

n−1∑
j=1

2(cn3λmax(Po) + κ∗

z)

αzj

]
γ(xn)γ2(γu(y)u) (37)

γ(xn) = γ1(xn)[1 + ρnγo(xn) + ρ
2
nγ

2
o(xn)]. (38)

By Assumptions A2 and A4, γ1 and γo are polynomially
bounded implying that γ(xn) can be bounded by a function
of xn/rb as

γ(xn) ≤ γ̃

(
xn

rb

)
r

b(α1+2α2) (39)

γ̃

(
xn

rb

)
=

[
p1 + p2

∣∣∣xn

rb

∣∣∣α1
][

1 + ρn

(
p3 + p4

∣∣∣xn

rb

∣∣∣α2
)

+ρ
2
n

(
p3 + p4

∣∣∣xn

rb

∣∣∣α2
)2]

(40)
if r ≥ 1. Hence,

wi(xn, γu(y)u) ≤ w̃i

(
xn

rb
, γu(y)u

)
r

b(α1+2α2)
, i = 1, 2 (41)

w̃1

(
xn

rb
, γu(y)u

)
=

[
5cnλmax(Po)

+

n−2∑
j=1

2(cn3λmax(Po) + κ∗

z)

αzj

]
γ̃

(
xn

rb

)
γ2(γu(y)u) (42)

w̃2

(
xn

rb
, γu(y)u

)
=

[
3cλmax(Po)

+

n−1∑
j=1

2(cn3λmax(Po) + κ∗

z)

αzj

]
γ̃

(
xn

rb

)
γ2(γu(y)u).(43)

The dynamics of the parameter estimator θ̂ are designed as

˙̂
θ = cθ

[
−

σθ

r
θ̂+

w2(xn, γu(y)u)|φ(1,2)(y)|

r2−2b2
[ξ2

n+ξ
2
n+1+ε

2
n]
]
(44)

where σθ is a nonnegative design parameter representing
the σ-modification which is required to prevent parameter
drift instability in the presence of the exogenous disturbance
ω. The factor 1/r incorporated into the σ-modification term
dynamically reduces the bandwidth of the dynamics of θ̂ with
increasing r and is required to integrate the σ-modification
feature into the high-gain control design framework for

feedforward systems. θ̂ is initialized to be positive. By (44),
θ̂ remains positive for all time (however, θ̂(t) could go to
zero asymptotically as t → ∞).

The dynamics of the scaling parameter r are designed to
be of the form

ṙ=λ

(
R

(
xn

rb
, γu(y)u,

θ̂

rb+b2

)
−r

)
Ω(r, y, γu(y)u, θ̂); r(0)>1 (45)

R

(
xn

rb
, γu(y)u,

θ̂

rb+b2

)
= max

{
R,

[
max

(
2

cν1o

,
4

ν1c

)
w̃1

(
xn

rb
, γu(y)u

)] 1
1−b(α1+2α2)

[
max

(
2

cν1o

,
4

ν1c

)
w̃2

(
xn

rb
, γu(y)u

)
θ̂

rb+b2

] 1
1−b(1+α1+2α2)−b2

}
(46)

Ω(r, y, γu(y)u, θ̂) = max

{
Ω, max

(
1

cν2o

,
1

ν2c

)
|φ(1,2)(y)|

×
(w1(xn, γu(y)u) + w2(xn, γu(y)u)θ̂)

r

}
(47)

with R and Ω being nonnegative constants free to be picked
by the designer. λ is chosen to be any nonnegative continuous
function such that λ(π) = 1 for π > 0 and λ(π) = 0 for π <
−εr with εr being some positive constant. r is initialized to
be bigger than 1. By (45), r is monotonically nondecreasing
and r(t) remains greater than 1 for all time t. The design
of the function R as shown in (46) is obtained by requiring
that the positive terms in the third and fourth lines of (35)
should be dominated by the negative terms in the first line

of (35) if r ≥ R and θ∗ = θ̂. R is designed in terms of
xn/rb and θ̂/rb+b2 rather than simply in terms of xn and

θ̂ since boundedness of the Lyapunov function V in (34)
directly only guarantees boundedness of xn/rb and θ̂/rb+b2

but not necessarily boundedness of xn and θ̂. Hence, as will
be shown below, the design of R in (46) and the dynamics
of r in (45) enable boundedness of r to be inferred from
boundedness of the Lyapunov function V . To ensure that the
exponents in the second and third terms in (46) are positive,
b and b2 will be picked such that

0 ≤ b ≤ 1
α1+2α2

(48)
0 ≤ b2 ≤ 1 − b(1 + α1 + 2α2). (49)

To satisfy (49), (48) must be strengthened to

0 ≤ b ≤ 1
1+α1+2α2

. (50)

The definition of Ω in (47) is obtained by requiring that the
positive terms in the third and fourth lines of (35) should be
dominated by the negative terms in the second line of (35)

if ṙ = Ω and θ∗ = θ̂. The form of the dynamics of r in
(45) involving the functions λ, R, and Ω is similar to the
strict-feedback case[4] and ensures that ṙ is large (ṙ = Ω)
until r becomes large (i.e., until r ≥ (R + εr)). Considering
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the two cases: (a) r ≥ R and (b) r < R, and using (35),
(44), (46), and (47), it follows that in either case,

V̇ ≤ −
cν1o

2r1+2b
|φ(1,2)||ε|

2 −
ν1c

4r1+2b
|φ(1,2)||ξ|

2

−κ
∗

z

n−1∑
j=1

|zj |
2

r2(n−j−1+b)
−

σθ

2r1+2b+2b2
(θ̂ − θ

∗)2

+
cn

r2+2b
λmax(Po)χ

2
x(ω)

+

n−2∑
j=1

(cn3λmax(Po) + κ∗

z)

αzj
r2+2b

χzj
(ω)+σθ

θ∗
2

2r1+2b+2b2
(51)

≤ −
1

r
σV V +

cn

r2+2b
λmax(Po)χ

2
x(ω)

+

n−2∑
j=1

(cn3λmax(Po) + κ∗

z)

αzj
r2+2b

χzj
(ω)+σθ

θ∗
2

2r1+2b+2b2
(52)

where

σV = min

{
σν1o

2λmax(Po)
,

σν1c

4λmax(Pc)
, σθcθ,

κ∗

zαzj

V zj
(cn3λmax(Po) + κ∗

z)

}
. (53)

Since the disturbance ω is a bounded signal, the Lyapunov
inequality (52) guarantees that V̇ is negative if

V ≥
1

σV

{
cnλmax(Po) sup

t

χ
2
x(ω(t))

+

n−2∑
j=1

(cn3λmax(Po) + κ∗

z)

αzj

sup
t

χzj
(ω(t))+σθ

θ∗
2

2

}
.(54)

Hence, V (t) is a bounded signal on the maximal interval
of existence of solutions [0, tf ). From the definition of V in
(34), this implies that |ε|/rb, |ξ|/rb, Vzj

/r2(n−j−1+b), j =

1, . . . , n−1, and θ̂/rb+b2 are bounded implying boundedness

of
x2

n

r2b ≤
2(ε2n+ξ2

n)
r2b . Using (21) and Assumption A4,

|γu(y)u| ≤
[
p3 + p4

∣∣∣xn

rb

∣∣∣α2
] ∣∣∣ρn

ξn+1

rb

∣∣∣ r
bα2+b−1 (55)

if r ≥ 1. If b is smaller than 1/(1 + α2), it follows from
(55) that the boundedness of xn/rb and ξn+1/r

b implies the
boundedness of γu(y)u. Hence, picking b such that

0 ≤ b ≤ min
(

1
1+α1+2α2

, 1
1+α2

)
, (56)

boundedness of V implies boundedness of

R(xn/rb, γu(y)u, θ̂/rb+b2). By the scaling parameter
dynamics (45), ṙ is zero if r ≥ (R + εr) so that
boundedness of R implies boundedness of r. With the
boundedness of V and r established, the boundedness of
all closed-loop signals follows by routine signal-chasing.
Hence, tf = ∞ and solutions exist for all time.

Theorem 1: Under Assumptions A1-A5, given any
initial conditions (x(0), z(0)) for the plant state and
(r(0), θ̂(0), x̂(0)) for the controller state with r(0) > 1
and θ̂(0) ≥ 0, the closed-loop system formed by (1), (17),
(21), (44), and (45) possesses a unique solution on the time
interval [0,∞) and all closed-loop signals are uniformly
bounded on [0,∞). Furthermore, by an appropriate choice
of the controller parameters, xn can be regulated to an
arbitrarily small neighbourhood of the origin.

Proof of Theorem 1: The existence and uniqueness of so-
lutions and uniform boundedness of all closed-loop signals

were proved in the foregoing analysis. Using the Comparison
Lemma, it follows from (52) that in the limit as t → ∞, the
closed-loop solutions tend to the compact set in which

1

r
σV V ≤

1

rmin(1,2b2)

1

r1+2b

{
cnλmax(Po) sup

t

χ
2
x(ω(t))

+

n−2∑
j=1

(cn3λmax(Po) + κ∗

z)

αzj

sup
t

χzj
(ω(t))+σθ

θ∗
2

2

}
. (57)

Noting that V ≥ 1
r2b ξT Pcξ ≥ 1

r2b λmin(Pc)ξ
2
n, it follows

that in the compact set (57), ξn satisfies

ξ
2
n ≤

1

rmin(1,2b2)

1

σV λmin(Pc)

{
cnλmax(Po) sup

t

χ
2
x(ω(t))

+

n−2∑
j=1

(cn3λmax(Po) + κ∗

z)

αzj

sup
t

χzj
(ω(t))+σθ

θ∗
2

2

}
. (58)

Given a positive constant εξ, ξn can be regulated to the

compact set [−εξ, εξ] by picking Ω > 0 and picking R to be

R ≥

[
1

ε2ξσV λmin(Pc)

{
cnλmax(Po) sup

t

χ
2
x(ω(t))

+

n−2∑
j=1

(cn3λmax(Po)+κ∗

z)

αzj

sup
t

χzj
(ω(t))+σθ

θ∗
2

2

}] 1
min(1,2b2)

.(59)

With Ω > 0, it follows from (45) that r becomes larger than
R within a finite time. Hence, the convergence of ξn to the
compact set (58) proved above implies convergence of ξn to
the set [−εξ, εξ]. �

Theorem 2: Under the assumptions of Theorem 1, if, further-
more, χxi

≡ 0, i = 1, . . . , n− 2 and χzi
≡ 0, i = 1, . . . , n−

2, then picking σθ = 0, asymptotic regulation of the state and
input to the origin is achieved, i.e., limt→∞ xi(t) = 0, i =
1, . . . , n, limt→∞ x̂i(t) = 0, i = 1, . . . , n, limt→∞ |zi(t)| =
0, i = 1, . . . , n − 1, and limt→∞ u(t) = 0.

Proof of Theorem 2: With σθ = 0, the foregoing analysis
on existence and uniqueness of solutions must be modified
slightly since σV defined in (53) reduces to zero when σθ =
0. However, the existence and uniqueness of solutions and
boundedness of all closed-loop signals can be inferred from
(51) by noting that with σθ = 0, χxi

≡ 0, i = 1, . . . , n − 2,
and χzi

≡ 0, i = 1, . . . , n − 2, we have

V̇ ≤ −
1

r
σ̃V V (60)

σ̃V = min

{
σν1o

2λmax(Po)
,

σν1c

4λmax(Pc)
,

κ∗

zαzj

V zj
(cn3λmax(Po) + κ∗

z)

}
. (61)

The conclusions of Theorem 2 follow directly from (60).

Remark 5: From the stability analysis, it is seen that only x1

measurement is required (i.e., measurement of xn not neces-
sary) in the special case in which φ(i,i+1), i = 1, . . . , n− 1,
and µ depend only on x1, γ1 and γo are bounded functions,
and θ is known. In this case, it is not necessary to build the
estimator θ̂ and the term θ̂ in (45) can be replaced by θ2.

Remark 6: The polynomial boundedness of functions γ1

and γo occuring in the bounds in Assumptions A2, A4, and
A5 can be relaxed if the bounds in Assumptions A2 and A5
do not explicitly involve u, i.e., if any dependence on the
control input is bounded. In this case, the dynamic extension
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ξn+1 introduced in Section IV is not required. Instead, the
control input u designed in (21) incorporates an additional
term − b2

µ
ṙ
r
xn. The assumption γu ≡ 0 (i.e., that the bounds

in Assumptions A2 and A5 do not involve u) is crucial
for the introduction of this term to ensure that ṙ does not
appear in the bounds on φi. The extra term in u obviates the
need for the additional scaling 1

r2b in the Lyapunov function
definition (32). The removal of this additional scaling implies
that boundedness of xn follows directly from boundedness
of V . Thus, it is not necessary to appeal to a polynomial
boundedness assumption on γ1 and γo as was done in the
foregoing stability analysis. The stability and convergence of
the closed-loop system can be proved by using the techniques
in [2] along with the new scaling techniques in this paper.
The details are omitted here for brevity.

VI. AN ILLUSTRATIVE EXAMPLE

Consider the seventh-order system

ż1 = −z1 + θ1x4x1x3

ż2 = −(1 + z
2
3)z2 + ω + x

2
4x1

ż3 = −2z3 + x1x4u

ẋ1 = (1+x
2
1+x

2
4)x2+x3x

2
1+θ2x1x

2
4 + x1z1 + x4ω + x4z2

ẋ2 = (1 + x1x4 + x
2
1 + x

2
4)x3 + θ3x

5
4u + x1ω + x

2
4z3

ẋ3 = (2 + x
2
1 + x

2
4 + 0.5x

2
4 sin(x1))x4 + θ4x1x4u + x

3
4z3

ẋ4 = (1 + x
2
1)u

y = [x1, x4]
T (62)

with θ1, . . . , θ4 being unknown parameters with no known
magnitude bounds. The system (62) is of the form (1) with
n = 4, q1 = −z1 +θ1x4x1x3, q2 = −(1+z2

3)z2 +ω+x2
4x1,

q3 = −2z3+x1x4u, φ(1,2) = 1+x2
1+x2

4, φ(2,3) = 1+x1x4+
x2

1 + x2
4, φ(3,4) = 2 + x2

1 + x2
4 + 0.5x2

4 sin(x1), µ = 1 + x2
1,

φ1 = x3x
2
1 + θ2x1x

2
4 + x1z1 + x4ω + x4z2, φ2 = θ3x

5
4u +

x1ω+x2
4z3, and φ3 = θ4x1x4u+x3

4z3. Assumptions A1 and
A3 are satisfied with σ = 1, ρ2 = 3/2, ρ̃2 = 1/2, ρ3 = 4,
and ρ̃3 = 1/3. Assumptions A2, A4, and A5 are also satisfied
with γ1 = 1 + x2

4 + x4
4, γ2 = γu = 1, χx1

= χx2
= |ω|,

χx3
= 0, θ = max(1, 1

2θ2
1,

1
2 |θ2|, |θ3|,

1
2 |θ4|), γo = 2 + 3

2x2
4,

Vzi
= 1

2z2
i , i = 1, 2, 3, αz1

= αz2
= 1

2 , αz3
= 3

2 , χz2
= ω2,

and χz1
= χz3

= 0.

Thus, Assumptions A1-A5 are satisfied by system (62)
and hence, the output-feedback control scheme proposed in
this paper is applicable to the system (62). In this case, the
observer and controller are given by

˙̂x1 = (1 + x
2
1 + x

2
4)x̂2 +

g1(y)

r
(x̂1 − x1)

˙̂x2 = (1 + x1x4 + x
2
1 + x

2
4)x̂3 +

g2(y)

r2
(x̂1 − x1)

˙̂x3 = (2 + x
2
1 + x

2
4 + 0.5x

2
4 sin(x1))x̂4 +

g3(y)

r3
(x̂1 − x1)

˙̂x4 = (1 + x
2
1)u +

g4(y)

r4
(x̂1 − x1)

u =
ρ4(2 + x2

1 + x2
4 + 0.5x2

4 sin(x1))ξ5

(1 + x2
1)r

ξ̇5 =

4∑
i=1

ki(y)

r5−i
x̂i +

k5(y)

r
ξ5 − bv

ṙ

r
ξ5 (63)

with ρ4 and bv being any positive constants and
g1, . . . , g4, k1, . . . , k5 being functions chosen as in Remark 2.
The overall controller is given by (63), (44), and (45).

VII. CONCLUSION

We proposed an adaptive output-feedback control design
technique for feedforward systems with ISS appended dy-
namics and disturbance inputs. Prior work on both ISS
appended dynamics and disturbance attenuation has been re-
stricted to systems of the strict-feedback form. Furthermore,
previous results required the ISS appended dynamics to be
driven only by the output of the system and the dynamic
high-gain scaling technique based controller in [4] provided
the first results for state-level coupling with ISS appended
dynamics. The results in this paper confirm the expectation
noted in [2] that the new paradigm of dynamic high-gain
scaling should allow extensions for feedforward systems
along various lines that have been hitherto investigated only
for strict-feedback systems.
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