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Abstract— It is well-known that the zeros of sampled-data
models for deterministic systems depend on the hold device
used to generate the continuous-time system input. A dual
result holds also for stochastic systems. In the latter case, the
zeros of the sampled-data model depend on the anti-aliasing
filter used before sampling. Generically, extra zeros appear in
both deterministic and stochastic discrete-time models. These
zeros have no continuous-time counterpart. This paper presents
an anti-aliasing filter design, such that the stochastic sampling
zeros are asymptotically assigned to the origin, for fast sampling
rates. The design procedure relies only on the system relative
degree.

I. INTRODUCTION

The sampling process is a key element when obtain-

ing discrete-time to represent continuous-time systems [1].

Sampled-data models will depend not only on the underlying

continuous-time system characteristics, but also on the arti-
facts of the sampling process itself, i.e., how the continuous-

time input is generated, and how samples are taken from the

continuous-time output.

For deterministic systems, it is well-known that the poles

of the discrete-time pulse transfer function depend only

on the sampling period and the poles of the underlying

continuous-time system [2]. However, the relationship be-

tween the continuous and discrete-time zeros is much more

involved. Furthermore, the sampled-data model is known to

have sampling zeros with no continuous-time counterpart.

For a system of relative degree r, there are exactly r − 1 of

these zeros. As the sampling rate increases, these zeros con-

verge to specific locations in the complex plane. Moreover,

the (asymptotic) zero locations depend on the hold device
used to generate the continuous-time input to the system [3],

[4], [5].

For stochastic systems, i.e., systems with white-noise
input, sampled-data models have, in general, relative degree

0. The poles depend only on the sampling period and the

poles of the underlying continuous-time model. However, as

for the deterministic case, the stochastic discrete-time model

has extra zeros which have no continuous-time counterpart.

These stochastic sampling zeros converge to particular loca-

tions in the complex plane as the sampling rate increases,

depending on the system relative degree. Furthermore, the

(asymptotic) location of these zeros is known to depend on

the choice of the anti-aliasing filter used before sampling.

In particular, three different cases have been discussed in the
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literature: pure instantaneous sampling (i.e., no pre-filter),

rational filter, and integrating filter [6].

In this paper we show how to design the anti-aliasing

filter to asymptotically assign the stochastic sampling zeros.

In particular, we assign them to the origin leading to an

output spectrum with no zeros. The anti-aliasing filter is

characterised as a generalised sampling filter (GSF), defined

by its impulse response [5]. The proposed GSF design

procedure is independent of the specific plant model, relying

only on knowledge of the system relative degree.

The authors have previously obtained similar results for

the design of generalised hold devices to asymptotically

assign the deterministic sampling zeros [7]. Other duality

results between generalised hold devices and generalised

sampling filters have been previously highlighted. In [5], for

example, an optimal sampled-data control problem, using a

zero-order hold input, was shown to be dual to an optimal

state estimation problem using an integrating filter before

sampling the system output.
The result presented in the current paper could be ap-

plied, for example, when estimating continuous-time auto-

regressive (CAR) models from sampled data. Replacing

derivatives by divided differences in these models and using

standard least squares estimation, may lead to very poor

estimates of the model parameters [8]. In [9], a filtered least

square algorithm is proposed by prefiltering the data using

the stochastic sampling zeros polynomial. Alternatively, one

could utilise the GSF described here to filter the system

output before instantaneous sampling. This would lead to

unbiased results without the need for any data prefiltering.

We also analyse the robustness of the GSF design to high

frequency modelling errors.

II. SAMPLED-DATA MODELS FOR STOCHASTIC SYSTEMS

Consider the following continuous-time system:

A(ρ)y(t) = B(ρ)v̇(t) (1)

where the input v̇(t) is a continuous-time white noise
(CTWN) process with (constant) spectral density equal to

1, and:

A(ρ) = ρn + an−1ρ
n−1 + . . . + a0 (2)

B(ρ) = bmρm + bm−1ρ
m−1 + . . . + b0 (3)

are polynomials in the derivative operator ρ = d
dt

, and n >
m. The continuous-time system (1) can be represented in

state space form:

ρx(t) =
dx(t)

dt
= Ax(t) + Bv̇(t) (4)

y(t) = Cx(t) (5)
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where A ∈ R
n×n and B, CT ∈ R

n.

Remark 1: The CTWN process that appears as input in

(1) is a mathematical abstraction that does not exist in any

meaningful sense [10], [11]. In fact, (4) should be considered

as a stochastic differential equation (SDE):

dx(t) = Ax(t)dt + Bdv (6)

where v(t) is a Wiener process with zero mean and unitary

incremental variance [5]:

E{(dv)2} = E{|v(t + dt) − v(t)|2} = dt (7)

However, linear systems modelled by an SDE as in (6)

can be formally analysed by the standard state-space model

(4) [12].

y(t) ȳ(t) ȳk

∆B(ρ)

A(ρ)v̇(t)
GSF

Fig. 1. Sampling scheme using a Generalised Sampling Filter.

We assume a sampling scheme as shown in Figure 1,

where a Generalised Sampling Filter (GSF) is used prior to

sampling the system output. The output sequence is obtained

by instantaneously sampling the output of this filter:

ȳk = ȳ(k∆) =
1

∆

∫ k∆

k∆−∆

y(τ)hg(τ − k∆)dτ (8)

where hg(t) is the impulse response of the GSF defined on

the interval [0, ∆).
Remark 2: The GSF defined in (8) can be understood as

a generalisation of the, so called, integrating filter:

ȳk = ȳ(k∆) =
1

∆

∫ k∆

k∆−∆

y(τ)dτ (9)

This is also called averaging filter, and its impulse re-

sponse in given by:

hg(t) =

{
1/∆ ; t ∈ [0, ∆)

0 ; t /∈ [0, ∆)
(10)

The following result allows one to obtain a discrete-time

description of the sampling scheme in Figure 1 in terms of

the delta operator δ = q−1
∆ [1]. This model is exact in the

sense that its output sequence has the same second order

properties as the continuous-time output at the sampling
instants.

Lemma 1: Consider the sampling scheme in Figure 1. If

the output of system (1) (or, equivalently, (4)–(5)) is pre-

filtered using a GSF with impulse response hg(t), then the

exact discrete-time model is given by:

δxk = Aδxk + vk (11)

ȳk+1 = Cgxk + wk (12)

where:

Aδ =
eA∆ − I

∆
Cg =

∫ ∆

0

hg(τ)CeA(∆−τ)dτ (13)

and vk and wk are white noise sequences such that:

E

{[
vk

wk

] [
v�

w�

]T
}

=

[
Ωδ Σδ

ΣT
δ Γδ

]
δK [k − �]

∆
(14)

where δK represents the delta Kronecker function, and we

have defined the matrices:[
Ωδ Σδ

ΣT
δ Γδ

]
�

1

∆

∫ ∆

0

Mg(σ)Mg(σ)T dσ (15)

Mg(σ) �

⎡
⎣ eAσB

∆

∫ σ

0

hg(ξ)CeA(σ−ξ)Bdξ

⎤
⎦ (16)

Proof: The proof is similar to that of Lemma 6.4.1 in

[5]. Details can be found in [13].

Remark 3: The exact discrete-time model (11)–(12) can

equivalently be rewritten using the shift operator q as:

q xk = xk+1 = Aqxk + ṽk (17)

ȳk = Cgxk + wk (18)

where Aq = I + ∆Aδ = eA∆, and the input noise sequence

is ṽk = ∆vk. As a consequence:

E

{[
ṽk

wk

] [
ṽ�

w�

]T
}

=

[
Ωq Σq

ΣT
q Γq

]
δK [k − �] (19)

where Ωq = ∆Ωδ , Σq = Σδ, and Γq = 1
∆Γδ.

Even though Lemma 1 gives an exact sampled-data model

for the system in Figure 1, this discrete-time description

depends on two noise sequences as inputs. The following

lemma allows one to express ȳk as the output of a system

with a single (scalar) white noise input, i.e., it is in innova-
tions form [14].

Lemma 2: The state-space model (17)–(18) and the fol-

lowing innovations model are equivalent in the sense that

their outputs share the same second order properties:

zk+1 = Aqzk + Kqek (20)

ȳk = Cgzk + ek (21)

where ek is a white noise sequence with covariance matrix

E{e2
k} = Γq + CgPCT

g (22)

The Kalman gain, Kq , is given by:

Kq = (AqPCT
g + Σq)(Γq + CgPCT

g )−1 (23)

and P is the state covariance matrix given by the discrete-

time Riccati equation:

AqPAT
q − P − Kq(Γq + CgPCT

g )KT
q + Ωq = 0 (24)
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A consequence of the innovations form in Lemma 2 is that

the sequence of output samples ȳk can be exactly described

by the model:

ȳk+1 = H(q) ek (25)

H(q) = Cg(qI − Aq)
−1Kq + 1 (26)

Remark 4: Equation (26) clearly shows that the discrete-

time poles depend only on Aq , i.e., on the continuous-time

system matrix A and the sampling period ∆. However, the

zeros of the model depend on Cq and Kq, and, thus, on the

GSF impulse response hg(t).
Given a GSF, Lemmas 1 and 2 provide a systematic way of

obtaining a sampled-data model for a given continuous-time

system. However, given a desired location for the sampling

zeros, is not clear how to obtain a GSF that fulfils these

requirements. In particular, the procedure would require the

solution of the Riccati equation (24) in terms of the GSF

impulse response hg(t). In the next section we will see that

a more basic approach can be followed to design a GSF

to achieve a designated numerator polynomial of the output

spectrum.

III. SAMPLING ZEROS OF THE OUTPUT SPECTRUM.

In this section we analyse how the zeros of the spectral

density of ȳk depend on the choice of the GSF. We argue that

the role of the impulse response hg(t) in the output spectrum

can be described more directly.

Lemma 3: Given the discrete-time model (17)–(19), the

discrete-time output spectrum, expressed in the complex

variable z = ejω∆, is given by:

Φȳ(z) = ∆
[
Cg(zIn − Aq)−1 1

]
×

[
Ωq Σq

ΣT
q Γq

] [
(z−1In − AT

q )−1CT
g

1

]
(27)

Proof: From (17)–(18), we note that the discrete-time

output can be expressed as:

ȳk+1 =
[
Cg(qIn − Aq)

−1 1
] [

ṽk

wk

]
= H(q)nk (28)

Thus, the output spectrum can be obtained as:

Φȳ(z) = H(z)Φn

[
H(z−1)

]T
(29)

where Φn is the spectral density of the two noise sources

vector nk. From (19), we have that:

Φn = Fd{E{n�+k(n�)
T }} = ∆

[
Ωq Σq

ΣT
q Γq

]
(30)

Note that we have used the discrete-time Fourier transform

as in [5], with a scaling factor ∆ in front, which allows a

clearer connection to the continuous-time case.

The result in Lemma 3 is closely related to Lemma 2,

noting that the output spectrum of the innovations model

(20)–(21) is given by:

Φȳ(z) = H(z)H(z−1)Φe (31)

where the spectral factor H(z) is given by (26) and Φe =
∆(Γq + CgPCT

g ) is the (constant) spectral density of the

innovations sequence.

As pointed out above, the zeros of H(z) in (26) depend

on the choice of the GSF impulse response hg(t) (matrices

Cg and Kq). This is apparent also in (27), where Cg , Σq,

and Γq are functions of the GSF. However, in the first case,

determining Kq involves the solution of the Riccati equation

(24). Thus, we can compute the output spectrum as in (27),

and then we can obtain a (stable) spectral factor H(z) such

that (31) holds.

In the next section, we follow this approach to assign the

stochastic sampling zeros of Φȳ(z) (and, thus, the sampling

zeros of the spectral factor H(z)) by choosing the coeffi-

cients of an appropriate parametrisation of the GSF impulse

response hg(t).

IV. GENERALISED FILTERS TO ASSIGN THE ASYMPTOTIC

SAMPLING ZEROS

In this section we turn to the key focus of the current

paper, namely, how to design a GSF such that the stochastic

sampling zeros converge asymptotically to specific locations

in the complex plane, as the sampling period goes to zero. In

particular, we are interested in assigning the sampling zeros

to the origin. Equivalently, we seek an output spectrum with

no stochastic sampling zeros.

The choice of the GSF to assign the sampling zeros is not

unique. Thus, we restrict ourselves to a class of filters whose

impulse response satisfies the following constraint.

Assumption 1: Given a system relative degree r, we

consider a GSF such that its impulse response can be

parametrised as:

hg(t) =

{
1
∆(h0 +

∑r
�=1 h�φ�(t)) ; t ∈ [0, ∆)

0 ; t /∈ [0, ∆)
(32)

where h0, . . . , hr ∈ R, and the functions φ�(t) satisfy the

following condition: ∫ ∆

0

φ�(t)dt = 0 (33)

Note that we have introduced the scaling factor 1
∆ in (32)

to resemble the averaging idea of the integrating filter (10).

In fact, the integrating filter corresponds to the choice h0 = 1
and h� = 0, for � = 1 . . . r. We will see that the condition

(33) simplifies some of the calculations required to obtain

the output spectrum (27).

Remark 5: Assumption 1 guarantees that, once the func-

tions φ�(t) in (32) are chosen, the r + 1 coefficients

h0, . . . , hr provide enough degrees of freedom to assign the

r sampling zeros and the noise variance, if required.

The design procedure presented in this section is based

on a key limiting argument used in contemporary results

regarding asymptotic behaviour of the sampling zeros [3],

[6], [15]. Specifically, for fast sampling rates, any linear

system (with a rational transfer function) of relative degree

r evolves, at high frequencies, as an r-order integrator.
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Thus, in the following sections, we consider the first and

second order integrator cases and we show how different

GSFs can be designed to assign their asymptotic sampling

zeros. We also show that when using the obtained GSFs for

arbitrary systems of relative degree 1 and 2, similar stochastic

sampling zeros are obtained when using fast sampling rates.

A. First order integrator

We consider the first order integrator
B(ρ)
A(ρ) = ρ−1. The

matrices of the corresponding state space representation (4)–

(5) are given by A = 0, B = 1, and C = 1. Note that, for

any given sampling period ∆, Aq = 1.

Example 1 (Integrating filter): This is one of the filters

considered in [6], where asymptotic results are obtained for

fast sampling rates. The impulse response, in this case, is

defined in (10). For this choice we have:

Cg = 1

[
Ωq Σq

ΣT
q Γq

]
=

[
∆ ∆

2
∆
2

∆
3

]
(34)

which, replacing in (27), yields:

Φȳ(z) =
∆2

3!

(z + 4 + z−1)

(z − 1)(z−1 − 1)
(35)

This is consistent with the asymptotic result in [6, Theo-

rem 3.2], and we can readily obtain a sampled-data model

by spectral factorisation as in (31):

H(z) =
∆(

√
3 + 1)

2
√

3

(z + 2 −√
3)

(z − 1)
(36)

Example 2 (Piecewise constant GSF): This GSF has the

same kind of impulse response filter as the generalised hold

functions considered in [7]. Here, however we parameterise

hg(t) in a slightly different way:

hg(t) =

⎧⎪⎨
⎪⎩

1
∆(h0 + h1) ; t ∈ [0, ∆

2 )
1
∆(h0 − h1) ; t ∈ [∆2 , ∆)

0 ; t /∈ [0, ∆)

(37)

where h0, h1 ∈ R. For such a choice we have:

Cg = h0 (38)[
Ωq Σq

ΣT
q Γq

]
=

[
∆ ∆

2

(
h0 + 1

4h1

)
∆
2

(
h0 + 1

4h1

)
∆
3

(
h2

0 + 3
4h0h1 + 1

4h2
1

)]
(39)

which, on substituting into (27), gives:

Φȳ(z) = h2
0

∆2

3!

(
z + 4 + z−1

)
(z − 1)(z−1 − 1)

+
h2

1

2

∆2

3!

(−z + 2 − z−1
)

(z − 1)(z−1 − 1)
(40)

If we now choose, for example, h0 = 1 and h1 =
√

2, we

obtain a sampled spectrum with no zeros, or, equivalently, a

stable spectral factor with zeros at the origin:

Φȳ(z) =
∆2

(z − 1)(z−1 − 1)
⇒ H(z) =

∆z

(z − 1)
(41)

Example 3 (Sinusoidal GSF): Another simple GSF im-

pulse response which satisfies Assumption 1 is given by:

hg(t) =

{
1
∆

(
h0 + h1π sin

(
2π
∆ t

))
; t ∈ [0, ∆)

0 ; t /∈ [0, ∆)
(42)

where h0, h1 ∈ R, and the constant π has been introduced

only as a scaling factor. For this choice we have:

Cg = h0 (43)[
Ωq Σq

ΣT
q Γq

]
=

[
∆ ∆

2 (h0 + h1)
∆
2 (h0 + h1)

∆
3

(
h2

0 + 3
2h0h1 + 9

8h2
1

)]
(44)

Upon substituting into (27), we obtain:

Φȳ(z) =
∆2

3!

[
h2

0

(
z + 4 + z−1

)
(z − 1)(z−1 − 1)

+
9h2

1

4

(−z + 2 − z−1
)

(z − 1)(z−1 − 1)

]

(45)

If we now choose, for example, h0 = 1 and h1 = 2/3,

we obtain again a sampled spectrum (and a stable spectral

factor) as in (41).

The GSFs obtained in Examples 2 and 3 allow one to

assign the sampling zeros of the discrete-time model of a

stochastic first order integrator. Specifically, we chose the

weighting coefficients h� to assign these zeros to the origin.

However, this GSF can also be used, for fast sampling rates,

with any system of relative degree 1 to obtain asymptotic

sampling zeros near the origin. We illustrate this principle

in the following example.

Example 4: We consider the continuous-time system:

B(ρ)

A(ρ)
=

1

ρ + 2
(46)

We fix the sampling period to be ∆ = 0.1, which

corresponds to a sampling frequency around one decade

above the model bandwidth.

If we use the piecewise GSF obtained in Example 2,

we obtain the following stable spectral factor of the output

spectrum:

H(z) =
0.287(z − 2.489 · 10−4)

(z − e−0.2)
(47)

On the other hand, if we use the sinusoidal GSF obtained

in Example 3, we obtain:

H(z) =
0.287(z − 6.590 · 10−5)

(z − e−0.2)
(48)

Note that, as expected, for both cases the only sampling

zero is basically at the origin.

B. Second order integrator

For a second order integrator, associated with any system

of relative degree 2, the expressions that allow one to

describe the stochastic sampling zero are more involved.

However, the design procedure outlined above can be readily

adapted as we show next.
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Thus, consider the second order integrator
B(ρ)
A(ρ) = ρ−2.

The state space representation (4)–(5) is given by:

A =

[
0 1
0 0

]
B =

[
0
1

]
C =

[
1 0

]
(49)

Given sampling period ∆, we have that:

Aq =

[
1 ∆
0 1

]
(50)

Example 5 (Integrating filter): This filter is given by (10).

In this case we have that:

Cg =
[
1 ∆

2

] [
Ωq Σq

ΣT
q Γq

]
=

⎡
⎢⎣

∆3

3
∆2

2
∆3

8
∆2

2 ∆ ∆2

6
∆3

8
∆2

6
∆3

20

⎤
⎥⎦ (51)

which, substituting into (27), gives:

ΦIF
ȳ (z) =

∆4

5!

(z2 + 26z + 66 + 26z−1 + z−2)

(z − 1)2(z−1 − 1)2
(52)

Which, again, is consistent with the asymptotic result [6,

Theorem 3.2].

Example 6 (Piecewise constant GSF): We consider a

GSF defined by its impulse response:

hg(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
∆ (h0 + h1 + h2) ; t ∈ [0, ∆

4 )
1
∆ (h0 + h1 − h2) ; t ∈ [∆4 , ∆

2 )
1
∆ (h0 − h1 + h2) ; t ∈ [∆2 , 3∆

4 )
1
∆ (h0 − h1 − h2) ; t ∈ [ 3∆4 , ∆)

0 ; t /∈ [0, ∆)

(53)

where h0, h1, h2 ∈ R. For this choice we have:

Cg =
[
h0

∆
2

(
h0 + 1

2h1 + 1
4h2

)]
(54)

Computing the noise spectrum (30) and replacing in (27),

we obtain:

Φȳ(z) = h2
0Φ

IF
ȳ (z) + h2

1Φ
1
ȳ(z) + h2

2Φ
2
ȳ(z) + h1h2Φ

3
ȳ(z)

(55)

where ΦIF
ȳ (z) is spectrum (52) obtained in Example 5, and

Φ�
ȳ(z) (� = 1, 2, 3) are other spectra that do not depend on

the GSF parameters. Solving numerically for the parameters,

we obtain that any of the following choices:

h0 = 1 h1 = ∓9.891 h2 = ±23.782 (56)

or h0 = 1 h1 = ∓4.691 h2 = ±5.382 (57)

leads us to a sampled spectrum with no zeros:

Φȳ(z) =
∆4

5!

K

(z − 1)2(z−1 − 1)2
(58)

Example 7 (Sinusoidal GSF): Here we restrict the GSF

impulse response to the form:

hg(t)=

⎧⎪⎨
⎪⎩

1
∆

(
h0 + h1π sin

(
2π
∆ t

)
+ h2π sin

(
4π
∆ t

))
; t ∈ [0, ∆)

0 ; t /∈ [0, ∆)

(59)

where h0, h1, h2 ∈ R. For this choice we have:

Cg =
[
h0

∆
2

(
h0 + h1 + 1

2h2

)]
(60)

Computing the noise spectrum (30) and substituting in

(27), gives:

Φȳ(z) = h2
0Φ

IF
ȳ (z) + h2

1Φ
1
ȳ(z) + h2

2Φ
2
ȳ(z) + h1h2Φ

3
ȳ(z)

(61)

where ΦIF
ȳ (z) is the spectrum (52) obtained in Example

5, and Φ�
ȳ(z) (� = 1, 2, 3) are other spectra that do not

depend on the GSF parameters. Solving numerically for the

parameters, we see that for any of the following choices:

h0 = 1 h1 = ±3.902 h2 = ∓9.804 (62)

or h0 = 1 h1 = ±1.902 h2 = ∓1.804 (63)

yields a sampled spectrum with no zeros, as in (58).

The GSFs described above can be used to assign the

stochastic sampling zeros of general linear models of relative

degree 2 close to the origin, when using fast sampling rates.

In the following example we illustrate the use of the GSFs

obtained in Examples 6 and 7 for a general system of relative

degree 2.

Example 8: Consider the following second order system:

B(ρ)

A(ρ)
=

2

(ρ + 2)(ρ + 1)
(64)

We first use the piecewise GSF obtained in Example 6.

In particular, in (53) we choose h0 = 1, h1 = 4.691, and

h2 = −5.382. For a sampling period ∆ = 0.1, we obtain

the following stable spectral factor:

H(z) =
5.269 · 10−2(z − z1)(z − z∗1)

(z − e−0.1)(z − e−0.2)
(65)

where z1 = −0.014+ j0.081, and where ∗ denotes complex

conjugation.

We also use the sinusoidal GSF obtained in Example 7.

The sampling period is fixed to ∆ = 0.01. In (59) we choose

h0 = 1, h1 = 1.902, and h2 = −1.804. The sampled-data

model is then given by:

H(z) =
0.22 · 10−10(z − z1)(z − z2)

(z − e−0.01)(z − e−0.02)
(66)

where z1 = −1.0435 · 10−3 and z1 = −1.0439 · 10−3.

Note that, as in Example 4, both GSFs design success-

fully assign the sampling zeros very close to the origin, as

expected.

V. ROBUSTNESS ISSUES

The design procedure describe in this paper relies only

on knowledge of the relative degree of the continuous-

time system. However, the presence of high frequency poles

and/or zeros can make the relative degree difficult to define,

especially when considering fast sampling. Moreover, a

continuous-time white noise process is only a mathematical

abstraction that can only be approximated, in practice, by

standard processes with broad-band spectra [16]. The latter

6995



observation implies also potential high frequency modelling

errors in the nominal continuous-time system description.

The issues raised above stress the fact that any GSF design

of the type described in this paper should be applied only

within a bandwidth of validity for the continuous-time

model. This means that one has to restrict the sampling

frequency to the bandwidth where one can rely on the relative

degree assumption. The authors have previously highlighted

this issue both for the design of generalised holds for

deterministic systems [7], and for CAR system identification

[17].

The following example illustrates the use of the GSF

designed in Example 2, in the presence of unmodelled high

frequency dynamics.

Example 9: Consider the presence of an unmodelled fast

pole in the continuous-time system defined (46), i.e., the true

system is then given by:

B(ρ)

A(ρ)
=

1

(ρ + 2)( 1
ωu

ρ + 1)
(67)

We use the piecewise constant GSF obtained in Example

2 for nominal systems of relative degree 1.

We assume an unmodelled fast pole located at ωu =
200[rad/s], and we consider the following two cases for the

sampling period:

(i) ∆ = 0.1: This corresponds to a sampling frequency

ωs ≈ 60[rad/s]. In this case, the unmodelled pole

lies well beyond the sampling frequency, so we expect

no considerable effect on the sampled-data model. We

obtain the spectral factor:

H(z) =
1.1 · 10−3(z + 1.2 · 10−2)(z − 5.3 · 10−3)

(z − e−0.2)(z − e−20)
(68)

We can see that the sampling zeros and the (unmod-

elled) fast discrete-time pole are located close the origin.

Thus, the system can be roughly approximated as in

(47).

In the above case, we have chosen a sampling frequency

within the bandwidth where the assumption on the

relative degree is justified.

(ii) ∆ = 0.01: We now increase the sampling frequency

to ωs ≈ 600[rad/s]. The unmodelled pole, in this case,

should ideally be considered in the GSF design. How-

ever, assuming that the presence of the high frequency

pole is unknown, and using the same GSF as above, we

obtain the following sampled-data model:

H(z) =
3.8 · 10−5(z + 2.1 · 10−1)(z − 3.3 · 10−2)

(z − e−0.02)(z − e−2)
(69)

We see that, in this case, the slowest sampling zero

is far from the origin. The reason for this outcome is

understandable since the relative degree assumption on

the nominal model is no longer valid at this sampling

rate.

The previous example confirms the heuristic notion that

the system relative degree and our design procedure, should

be considered in terms of a bandwidth of validity for the

nominal model of the continuous-time system.

VI. CONCLUSIONS

In this paper we have developed a procedure to design an

anti-aliasing (generalised) filter which assigns the stochastic

sampling zeros asymptotically to the origin, as the sampling

period goes to zero.
The design procedure relies only on knowledge of the

system relative degree. The proposed methodology is based

on the observation that, at high frequencies (i.e., for fast

sampling rates), any linear system of relative degree r
evolves as an r order integrator.

The design procedure has been illustrated for systems of

relative degree 1 and 2. Nonetheless, the general design

principle can be adapted for any system having higher

relative degree.
Finally, we have made an important observation regarding

nominal continuous-time models when using fast sampling

rates. In particular, relative degree may be an ill-defined

quantity in continuous-time because of the presence of high

frequency poles or zeros. Thus, the use of the proposed

methodology should be considered within a bandwidth of
validity where one can rely on the relative degree assumption.
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