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Abstract— This paper aims at generalizing the well-known
Nevanlinna-Pick interpolation problem by considering addi-
tional constraints. The first type of constraints we consider
requires the interpolation function to be of a given degree.
Several results are provided for different degree constraints.
These results offer feasibility tests via linear matrix inequalities.
We have identified a number of degree constraints for which the
feasibility tests are exact. For other degree constraints, we offer
a relaxation scheme for checking the feasibility. The second
type of constraints we study is about spectral zero assignment,
which demands the zeros of the spectral factorization of the
interpolation function to be at given locations. This problem can
be solved using an iterative algorithm by Byrnes, Georgiou and
Linquist. However, we provide a much faster iterative algorithm
for this problem, although a proof of convergence is yet to be
offered.

I. INTRODUCTION

This paper is concerned with some generalizations of the
following well-known Nevanlinna-Pick interpolation prob-
lem: Given m+1 distinct complex numbers ξ0, ξ1, ξ1, . . . , ξm

with ξ0 = ∞ and |ξk| > 1 for k = 1, 2, · · · ,m, and m + 1
complex numbers f̂0, f̂1, . . . , f̂m with f̂k + f̂∗

k > 0, find a
rational function f(z) such that

f(ξk) = f̂k, k = 0, 1, . . . ,m, (1)

and that f(z) is strictly positive real (SPR), i.e., f(z) is
analytic in |z| ≤ 1 and that

f(z) + f∗(z−1) > 0, ∀|z| = 1 (2)

In the above, the choice of ξ0 = ∞ is for convenience.
The solutions to the rational interpolation problem are

known as Carathéodory functions in the mathematical litera-
ture [1] and have vast applications in circuits and systems [2],
stability analysis, linear and nonlinear control design [3],
signal processing [4], and stochastic systems theory [5].

In most applications, it is important that the interpolating
function satisfies additional constraints. In this paper, we
consider two important constraints. The first one is a degree
constraint, i.e., f(z) is required to be of a given degree
n ≤ m. The second constraint is to assign the spectral
zeros of f(z). More precisely, let φ(z) be the unique spectral
factorization of f(z), i.e., φ(z) is stable with minimum phase
and satisfying

f(z) + f∗(z−1) = φ(z)φ∗(z−1) (3)
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Then, the zeros of φ(z), which are referred to the spectral
zeros of f(z), need to be assigned at given locations. This
interpolation problem is of interest in spectrum analysis
applications [6].

The interpolation problem without degree constraints is
a classic problem and has been studied in depth (see a
summary in [2]). In particular, a solution is known to exist
if the so-called Pick matrix, defined by the given data, is
positive definite. In this case, there always exist solutions
with degree m [2]. However, when either of the two con-
straints is present, the interpolation problem becomes much
harder. While the Nevanlinna-Schur recursion algorithm [2]
and the well-known linear fractional parametrization of all
solutions with degree constraints given in [7] can be used to
generate rational solutions, they do not provide much clue
about how to handle additional constraints. In general, even
if the Nevanlinna-Pick problem without degree constraints is
solvable, the set of interpolation functions of degree n < m
may be empty, and to determine whether this is the case
is known to be a hard problem [8]. In contrast for the
case m = n, it has been shown [8] that solutions to the
Nevanlinna-Pick problem can be parameterized using the
spectral zeros of the interpolation function. That is, for each
set of n stable spectral zeros, there exists a unique solution to
the interpolation problem which matches the spectral zeros.
In addition, [8] provides an ingenious iterative algorithm for
searching the solution.

In this paper, a number of new results are presented for
the aforementioned generalization problems. For the degree
constraint problem, we first establish necessary and sufficient
conditions for testing whether a solution to the Nevanlinna-
Pick problem exists with degree n = m/2 (for even m) and
n = m1. This is followed by a relaxation scheme which gives
a sufficient condition for testing the existence of a solution
with any given m/2 < n < m − 1. All the tests are based
on linear matrix inequalities (LMIs) and are thus computa-
tionally tractable. For the spectral zero assignment problem,
we propose a new iterative algorithm much faster than the
algorithm in [8]. In fact, the algorithm in [8] requires solving
an algebraic Riccati equation in each iteration, whereas our
algorithm amounts solving a Lyapunov equation in each
iteration. However, we have not established theoretically our
algorithm always converges to the desired solution, although
the convergence has been tested extensively in simulations.

For notational simplicity, we assume that the sets {ξ}n
i=1

and {f̂i}
n
k=1 are self conjugate, and f̂0 is real valued. But all

the analysis in the paper can be extended readily even when
the assumption above does not hold.
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II. DEGREE-CONSTRAINED NEVANLINNA-PICK

PROBLEM

In this section, we consider the degree-constrained
Nevanlinna-Pick problem for different values of n.

The case of n = m corresponds to the classical
Neveanlinna-Pick problem without degree constraints and
its solvability is determined by the positive definiteness of
a corresponding Pick matrix. If the Pick matrix is positive
definite, the solution is not unique and can be parameterized
in terms of n free parameters [2], [3], [8]. Another case
of special interest is m = 2n. In this case, the solution to
f(z), if exists, is generically unique because f(z) has 2n+1
coefficients and there are m + 1 interpolation points. We
will give a necessary and sufficient condition for solving the
interpolation problem. We will also study the intermediate
situation when n < m < 2n and provide a necessary and
sufficient condition for solving the interpolation problem.
This condition, however, is difficult to test because it involves
a nonlinear matrix inequality. However, for the case of
m = n+1, we can replace this condition with a LMI without
conservatism. For n + 1 < m < 2n, we offer a relaxation
scheme using a LMI.

We start by introducing a simple characterization of all
possible rational functions which satisfy the first n inter-
polation data and f(∞) = f̂0 but not necessarily the SPR
condition. This will help simplify calculations to a significant
extent and give us an additional insight into the interpolation
problem.

Lemma 1: Let us define the n×n diagonal matrix Ω, n×1
vectors w and f̂ as

Ω =

⎡
⎢⎣

ξ1 · · · 0
...

. . .
...

0 · · · ξn

⎤
⎥⎦ , w =

⎡
⎢⎣

1
...
1

⎤
⎥⎦ , f̂ =

⎡
⎢⎣

f̂1

...

f̂n

⎤
⎥⎦ .

Let a be any n × 1 vector. Then

f(z) =
f̂0 + a∗(zIn − Ω)−1f̂

1 + a∗(zIn − Ω)−1w
(4)

satisfy the interpolation conditions in (1) for k = 1, . . . , n
and f(∞) = f̂0.

Proof: The proof simply follows by taking z → ξk in (4)
for each k or z → ∞ and evaluating the limit.

Using the lemma above we can parameterize all the
degree-n rational functions satisfying (1) via the free param-
eter vector a. As a determines the poles of the representation,
we see that for any choice of the poles of the rational
representation there exists a unique a and thus a unique
f(z) such that the first n interpolation conditions in (1) are
satisfied. However, not every a makes f(z) satisfy the SPR
condition (2).

A. The case m = n

In this case, the remaining n degrees of freedom can be
used to satisfy additional constraints. In [8], [9], it was shown
that it is possible to specify n spectral zeros, provided that

they are inside the closed unit disc. Therefore, the solution
set is completely parameterized via spectral zeros. In what
follows next, we seek for an alternative parameterization of
the solution set when m = n.

Lemma 2: The rational function f(z) in (4) is SPR if and
only if there exists a n×n Hermitian positive definite matrix
Q and a n × 1 vector a� to satisfy the following LMI:⎡

⎣ f̂w∗ + wf̂∗ + Q f̂ + wf̂0 ΩQ

f̂0w
∗ + f̂∗ 2f̂0 a∗

�

QΩ∗ a� Q

⎤
⎦ > 0 (5)

When the above holds, a is related to Q and a� via

a = Qa� (6)
Proof: Let us denote the numerator in (4) by Γ(z) and the

denominator in (4) by ∆(z). Since we assume that the sets
{ξ}n

i=1 and {f̂i}
n
k=1 are self-conjugate, we can write

Γ(z) =
[

f̂∗ f̂0

] [
(zIn − Ω∗)−1a

1

]
,

∆(z) =
[

w∗ 1
] [

(zIn − Ω∗)−1a
1

]
.

Then f(z) is SPR if and only if

Γ(z)∆∗(z−1) + ∆(z) + Γ∗(z−1) =

[
(z−1In − Ω∗)−1a

1

]∗

×

[
f̂w∗ + wf̂∗ f̂ + wf̂0

f̂0w
∗ + f̂∗ 2f̂0

] [
(zIn − Ω∗)−1a

1

]

is SPR. Next, we apply Kalman-Yakubovitch-Popov lemma
[10], [11] to find SPR condition. The function f(z) in (4) is
SPR if and only if there exists a n × n Hermitian positive
definite matrix Q such that[

f̂w∗ + wf̂∗ + Q f̂ + wf̂0

f̂0w
∗ + f̂∗ 2f̂0

]
>

[
Ω
a∗

]
Q

[
Ω∗ a

]
(7)

Now setting Q = QQ−1Q in the right hand side of (7),
using (6) and taking Schur complement, we obtain (5).

Lemma 2 provides us with an alternative approach to
parameterizing all the solutions to the Nevanlinna-Pick prob-
lem via the LMI (5) in Q and a�. Each feasible solution
(Q, a�) then leads us to a feasible a. However it is interesting
to investigate the conditions on the given data in order to
guarantee that such a feasible a exists. This is established in
the next Theorem.

Theorem 1: Let us define Ψ = f̂w∗ + wf̂∗. Then there
exist a� and Q (Hermitian and positive definite) such that
(5) holds if and only if the following LMIs

ΩQΩ∗ − Q < Ψ,

[
Q + Ψ f̂ + wf̂0

f̂∗ + f̂0w
∗ 2f̂0

]
> 0 (8)

hold for the same Q.
Proof: The LMI (5) can be written as

R + Ua�V
� + V a�U

� > 0,
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where

R =

⎡
⎣ Q + Ψ f̂ + wf̂0 ΩQ

f̂0w
∗ + f̂∗ 2f̂0 01×n

QΩ∗ 0n×1 Q

⎤
⎦ ,

U =

⎡
⎣ 0n×n

01×n

In

⎤
⎦ , V =

⎡
⎣ 0n×1

1
0n×1

⎤
⎦ .

It is straightforward to construct the full-rank matrices U⊥

and V⊥ orthogonal to U and v, respectively:

V⊥ =

⎡
⎣ In 0n×n

01×n 01×n

0n×n In

⎤
⎦ , U⊥ =

[
I2n

0n×2n

]
.

Now by the elimination lemma [11], [12], there exists a�

such that (5) holds if and only if U�
⊥RU⊥ > 0 and

V �
⊥ RV⊥ > 0. The first condition gives the second inequality

in (8). From the second condition we get[
Ψ + Q ΩQ
QΩ∗ Q

]
> 0. (9)

which is converted into (8) by using Schur complement.

Remark: The results in Theorem 1 are similar to the
results derived in [12] for the so-called continuous-time
bounded-real interpolation problem. However, the results
here are slightly more general as pointed out shortly. We
also emphasize that our proof is simpler that that in [12].

Next, we want to find out conditions on the interpolation
data under which (8) holds. It is natural to expect that this
condition is related to the Pick matrix. When ξ0 is finite, the
Pick matrix is defined as

P̄ =

[
f̂i + f̂∗

j

ξiξ∗j − 1

]m

i,j=0

(10)

However, since ξ0 = ∞, the first row and column of P̄
vanish, which makes P̄ unusable. To rectify this problem,
we return to the case when ξ0 is finite and note that P̄ > 0
if and only if the matrix below is positive definite:

P̂ =

[
ξiξ

∗
j

ξiξ∗j − 1
(f̂i + f̂∗

j )

]m

i,j=0

(11)

which is obtained by multiplying diag{ξ0, ξ1, . . . , ξm} and
its Hermitian to the left and right of P̄ , respectively. Now,
taking ξ0 → ∞, the first row and column of P̂ no longer
vanish. By moving the first row and column to the last, P̂
becomes the following modified Pick matrix:

P̃ :=

[
ΩP̄mΩ∗ f̂ + wf̂0

f̂0w
∗ + f̂∗ 2f̂0

]
. (12)

where P̄m is P̄ without the first row and column.
The expected result is given below.
Corollary 2: The LMI conditions given by (8) are equiv-

alent to P̃ being positive definite.

Proof: First note from the definition of P̄m and Ψ that

ΩP̄mΩ∗ = Ψ + P̄m ⇒

[
P̄m + Ψ f̂ + wf̂0

f̂∗ + f̂0w
∗ 2f̂0

]
= P̃ .

(13)
First we show the sufficiency. Suppose that P̃ is positive def-
inite. This implies P̄m is positive definite. Now set Q = P̄m

in (8). Comparing with (13) we see that the first inequality
in (8) becomes an equality if we have Q = P̄m, while the
second inequality is satisfied. Therefore, it is possible to find
Q > 0 (by perturbing from P̄m a little) such that both the
inequalities in (8) hold.

Conversely, suppose that there exists Q > 0 such that the
LMIs in (8) hold. Then using the first equality in (13) in the
first inequality in (8) we get

Ω(P̄m − Q)Ω∗ > P̄m − Q ⇒ P̄m > Q (14)

since |ξi| > 1 for all i. Now we use the second equality in
(13) in the second inequality of (8). We get

P̃ >

[
P̄m − Q 0m×1

01×m 0

]
≥ 0,

which follows from (14), and the result is proven.

B. The case m > n

If f(z) in (4) satisfies the interpolation constraints in (1),
then it follows that

(f̂ − wf̂k)∗(ξ∗kIn − Ω∗)−1a = f̂∗
k − f̂0

for 1 ≤ k ≤ m. If we have m > n, the equation above serves
as additional linear constraints on the parameter vector a,
and thereby reducing the degree of freedom. We can form a
linear equality constraint in the matrix form as

f̌ = Ga

where

f̌ =
[

f̂∗
n+1 − f̂0 · · · f̂∗

m − f̂0

]�
,

G =

⎡
⎢⎣

(f̂ − wf̂n+1)
∗(ξ∗n+1In − Ω∗)−1

...

(f̂ − wf̂m)∗(ξ∗mIn − Ω∗)−1

⎤
⎥⎦ (15)

In the rest of this section, we assume, without loss of
generality, that G has a full row rank. Indeed, if G has rank
deficiency, some of the interpolation points are redundant
and can be removed.

The general solution for a can then be written as

a = a0 + G∗
⊥α, a0 = G∗[GG∗]−1f̌ , (16)

where G⊥ is a n × (2n − m) matrix having a full column
rank such that GG⊥ = 0. For the special case m = 2n,
the term G∗

⊥α vanishes and a is completely known, i.e.,
a = a0 = G−1f̌ . It turns out that we can check whether
this unique solution is SPR using an LMI. This is formally
stated in the following theorem.
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Theorem 3: Suppose n = 2m and G in (15) is invertible.
Then the interpolation problem has a unique solution given
by (4) with a = G−1f̌ . This solution is SPR if and only if
there exists a Hermitian and positive definite Q to satisfy the
following LMI:[

Q + Ψ f̂ + wf̂0

f̂0w
∗ + f̂∗ 2f̂0

]
>

[
Ω

f̌∗G−∗

]
Q

[
Ω∗ G−1f̌

]

Proof: The solution to a follows from the discussion
prior to the theorem and the LMI condition follows from
Lemma 2 (see (7) in particular).

Next we investigate the case when n < m < 2n. Naturally,
in this case the solvability conditions become more stringent
as we increase m. In the following lemma we formulate the
solvability conditions.

Lemma 3: Suppose n < m < 2n. Then there exists α as
in (16) such that f(z) in (4) is SPR if and only if

ΩQΩ∗ − Q < Ψ (17)

and ⎡
⎣ Q + Ψ f̂ + wf̂0 ΩG∗

f̂0w
∗ + f̂∗ 2f̂0 f̌∗

GΩ∗ f̌ GQ−1G∗

⎤
⎦ > 0 (18)

for some Hermitian and positive definite Q.
Proof: Taking Schur complement in (7) and using (16) we

see that f(z) in (4) is SPR if and only if⎡
⎣ Q + Ψ f̂ + wf̂0 Ω

f̂0w
∗ + f̂∗ 2f̂0 a∗

0

Ω∗ a0 Q−1

⎤
⎦ + ŪαV ∗ + V α∗Ū∗ > 0

(19)
for some positive definite Q and α. Here we have used

Ū =

[
0(n+1)×(2n−m)

G⊥

]
.

and V is as in the proof of Theorem 1. We have

Ū⊥ =

[
I2n+1 0(2n+1)×(m−n)

0(m−n)×(2n+1) G

]
.

By the elimination lemma, there exists α and Q such that
(19) is satisfied if and only if (9) and (18) hold. Finally, it
is easy to verify that (17) is equivalent to (9).

It is interesting to see how the additional interpolation
constraints impose more and more stringent requirements
for solvability of the problem. Comparing (18) with the
second inequality in (8) we see that when m = n we only
need to satisfy the inequality obtained by taking the first
n + 1 rows and first n + 1 columns of (18). The (n + 1)-
th interpolation condition then adds the (n + 2)-th row and
the (n + 2)-th column in (18), and the process continues.
It is straightforward to see that the solvability for n + k
interpolation constraints implies solvability for n + k − 1
interpolation conditions, but converse is not true. Finally,

when m = 2n, the feasible set contain a maximum of one
point.

It is evident that (18) gives a non-convex set in Q, and
it is in general difficult to solve (18) using any numerical
technique. For this purpose we propose a relaxation scheme
in the following. The idea of the relaxation scheme is to find
a convex subset of the set of feasible Q given by (18).

Theorem 4: Consider the case when n < m < 2n. Then
there exists a solution to the interpolation problem if the LMI[

Q + Ψ f̂ + wf̂0

f̂0w
∗

+ f̂∗
2f̂0

]
>

[
ΩΠG

f̌∗G†∗

]
Q

[
ΠGΩ

∗ G†f̌
]

(20)
is feasible in a positive definite matrix Q, where

G† = G∗(GG∗)−1, ΠG = G†G.

Proof: We first note that feasibility of the LMI⎡
⎢⎢⎣

Q + Ψ f̂ + wf̂0 ΩG∗
0n×(2n−m)

f̂0w
∗

+ f̂∗
2f̂0 f̌∗

01×(2n−m)

GΩ
∗ f̌ GQ−1G∗ GQ−1G⊥

0(2n−m)×n 0(2n−m)×1 G∗
⊥Q−1G∗ G∗

⊥Q−1G⊥

⎤
⎥⎥⎦ > 0

(21)
implies (18). However, the converse is not true. Now taking

Schur complement of (21) we have[
Q + Ψ f̂ + wf̂0

f̂0w
∗ + f̂∗ 2f̂0

]
>

[
ΩG∗ 0n×(2n−m)

f̌∗ 01×(2n−m)

]
×

[
G∗ G⊥

]−1
Q

[
G

G∗
⊥

]−1 [
ΩG∗ 0n×(2n−m)

f̌∗ 01×(2n−m)

]∗

(22)

Now note that [
G

G∗
⊥

]−1

=
[

G† G†∗
⊥

]
,

which we substitute in (22) to get (20).

Next we study the case m = n + 1. Our goal is to show
that we do not need any relaxation in this case, i.e. we can
get a necessary and sufficient condition for the solvability.

Theorem 5: Suppose m = n + 1. Then there exists a
solution to the interpolation problem if and only if

λ� ≤ GQ−1G∗ (23)

where λ� and Q (Hermitian and positive definite) are the
solution to the optimization problem

λ� = inf λ,

subject to

⎡
⎣ Q + Ψ f̂ + wf̂0 ΩG∗

f̂0w
∗ + f̂∗ 2f̂0 f̌∗

GΩ∗ f̌ λ

⎤
⎦ > 0,

and ΩQΩ∗ − Q < Ψ.

Proof: For the case m = n+1, the term GQ−1G∗ in (18)
is a scalar. We denote

α(Q) := [ GΩ
∗ f̌ ]Π(Q)

[
ΩG∗

f̌∗

]
with

Π(Q) =

[
Q + Ψ f̂ + wf̂0

f̂0w
∗ + f̂∗ 2f̂0

]
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Then, the optimal solution λ� can be rewritten as

λ� = inf
Q

α(Q), subject to ΩQΩ∗ − Q < Ψ (24)

From Lemma 3, the interpolation problem admits a solution
if and only if there exists Q = Q∗ > 0 such that

GQ−1G∗ > α(Q); ΩQΩ∗ − Q < Ψ (25)

If (23) holds for some λ� and Q�, then by (24) we have
GQ−1

� G∗ > λ� = α(Q�) which implies (25) with Q = Q�.
The proof of the converse is more involved and thus omitted.

III. SPECTRAL ZERO ASSIGNMENT

In this section we reconsider the case m = n. Here our
objective is to derive a fast algorithm for the Nevanlinna-Pick
interpolation problem subject to spectral zero assignment. To
this end, we first recite a key result in [8], [9].

Theorem 6: Let the modified Pick matrix P̃ in (12)
be positive definite and n = m. Then for every monic
marginally Schur stable polynomial σ̄(z) of order n, there
exists a unique n-th order monic Schur stable polynomial
τ̄(z) such that

f(z) + f∗(z−1) = ρ2 σ̄∗(z−1)

τ̄∗(z−1)

σ̄(z)

τ̄(z)
(26)

such that the interpolation conditions in (1) are satisfied,
where the gain ρ is determined by f(∞) = f̂0.

Proof: When ξ0 is finite, the result above comes from
[8], [9]. When taking ξ0 → ∞, the result remains except
that the modified Pick matrix P̃ is used.

In contrast to the previous section we take a different
approach here. In the previous section we formulated a state
space realization of f(z) such that the interpolation condi-
tions in (1) are automatically satisfied. Here we work with
a different realization, where we parameterize the minimum
phase spectral factor σ̄(z)/τ̄(z) of f(z)+f∗(z−1) such that
the spectral zeros are automatically assigned to the desired
points. Now the free parameters are the coefficients of
denominator polynomial τ̄(z). Hence it remains to tune only
the coefficients of τ̄(z) so that the interpolation conditions
in (1) are satisfied while maintaining the SPR condition.

We express

σ̄(z) = zn + σ1z
n−1 + · · · + σn,

τ̄(z) = zn + τ1z
n−1 + · · · + τn.

and denote

σ = [ σ1 · · · σn, ]�; τ = [ τ1 · · · τn ]�

J =

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0

⎤
⎥⎥⎥⎦ , h =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ , F = J − τh�.

Hence the problem under consideration is to find τ such that
the interpolation conditions in (1) are satisfied. Using the
observable canonical state-space realization, we have

σ̄(z)

τ̄(z)
= 1 + h�[zIn − F ]−1(σ − τ). (27)

Then f(z) in (26) is uniquely given by [5]

f(z) =
ρ2

2
(1+h�Ph)+ρ2h�[zI −F ]−1{FPh+(σ− τ)},

(28)
where P is a symmetric and positive definite matrix satisfy-
ing

P = FPF� + (σ − τ)(σ − τ)�. (29)

We are ready to state the following lemma.
Lemma 4: Let us define

D1 = diag
{

f̂1−f̂0

f̂1+f̂0

· · · f̂n−f̂0

f̂n+f̂0

}
,

D2 = diag
{

1

f̂1+f̂0

· · · 1

f̂n+f̂0

}
,

L =

⎡
⎢⎣

ξn−1
1 · · · ξ1 1
...

. . .
...

...
ξn−1
n · · · ξn 1

⎤
⎥⎦ , � =

⎡
⎢⎣

ξn
1
...

ξn
n

⎤
⎥⎦ ,

and
x = L−1D1�, X = L−1D2L.

Then f(z) in (28) satisfies the interpolation conditions in (1)
if and only if

τ =
2f̂0

1 + h�Ph
X(JPh + σ) − x, (30)

and

ρ2 =
2f̂0

1 + h�Ph
. (31)

where P satisfies (29).
Proof: Taking z → ∞ in (28) we get

f(∞) =
ρ2

2
(1 + h�Ph). (32)

Recall that ξ0 = ∞. Thus, the interpolation condition at ξ0

gives (31). It is easy to verify that

h�[zI − F ]−1 =
q(z)

zn + q(z)τ
,

where
q(z) =

[
zn−1 · · · z 1

]
.

Now by combining the above observations, we get

f(z) − f(∞)

ρ2
[zn+q(z)τ ] = q(z)[J−τh�]Ph+q(z)(σ−τ).

Using (32) and rearranging the equation above, we get

f(z) − f(∞)

f(z) + f(∞)
zn +q(z)τ =

ρ2q(z)

f(z) + f(∞)
(JPh+σ). (33)
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Now we apply the interpolation constraints in (1). For each
interpolation point, (33) gives an equation. Stacking these
equations in a matrix form we get

D1� + Lτ = ρ2D2L(JPh + σ),

which after a rearrangement using (31) gives (30).

Lemma 4 gives us a way to find τ . From (29) we can find
P as a function of τ by solving (29). But (30) gives τ as
a function of P . Therefore, we can eliminate τ to obtain a
generalized Riccati equation in P . However, it is not clear
how to solve it. Instead we can solve the equation using (29)
and (30) repeatedly until convergence. The Recursion is as
follows. Initialize k = 0 and P0 = In. Then the following
steps are repeated until convergence:

1) ρ2
k = 2f(∞)

1+h�Pkh
,

2) τ (k) = ρ2
kX(JPkh + σ) − x,

3) Fk = J − τ (k)h�

4) Pk+1 = FkPkFk + (σ − τ (k))(σ − τ (k))�

Although we do not have a theoretical justification that
the recursion described above converges, extensive numerical
study has shown that the recursion does always converge. It
is also interesting to compare the above recursive algorithm
with the Byrnes-Georgiou-Lindquist algorithm proposed in
[8]. In [8], a gradient decent method is used to compute
the solution. However, each iteration of the gradient decent
amounts to solving a Riccati equation and searching for an
optimal step size. The proposed algorithm involves solving a
Lyapunov equation (Step 4) plus some minor computations
(Steps 1, 2 and 3). This makes the proposed algorithm much
more efficient from a practical point of view.

IV. SIMULATION RESULTS

We consider the results in Section II in a numerical simu-
lation study by considering interpolation problems of degree
2, 4 6 and 8, respectively. For each degree n we consider a
known positive real transfer function g(z), which is used to
generate the interpolation data by f̂i = g(ξi). In this way we
can guarantee that the interpolation problem considered in
the simulation experiment always has a solution. The main
idea is to test the relaxation scheme described via Theorem
4. For each value of n, we consider the cases m = n,
n < m < 2n and m = 2n. For each pair (m,n) we
consider 100 different interpolation problems corresponding
to 100 different combinations of {ξi}

m
i=1 chosen randomly

outside the unit disc. It is expected that when m = n we
should always get a feasible solution by using Theorem 1.
Similarly, the unique solution (which should be g(z)) for
the case m = 2n should be tested to be a positive real
solution by using the result in Theorem 3. However, for
n < m < 2n, simulation results are used to check the
tightness of the relaxation scheme in Theorem 4. Simulation
results are shown in Table I, where the number in each box
indicates the success rate (in percentage). We notice that
the relaxation is reasonably tight when the degree is low.

m 3 4 6 8 10 12 14 16

n = 2 100 100 − − − − − −

n = 4 − 100 100 100 − − − −

n = 6 − − 100 100 93 100 − −

n = 8 − − − 100 99 73 42 100

TABLE I

However, as the degree increases, we get a lower percentage
of correct outcomes.

V. CONCLUSION

We have provided a number of new results on con-
strained Nevanlinna-Pick interpolation problems. The results
on degree constrained problems are derived based on a new
parameterization of the unconstrained solution set, as given
in Lemmas 1 and 2. This leads to a number of LMI based
tests for the solvability of degree constrained interpolation
problem. For the cases of m = 2n,m = n and m = n + 1,
the tests are exact. For the case of n+1 < m < 2n, it would
be interesting to see whether the relaxation scheme can be
further improved. For the spectral zero assignment problem,
our solution is based on a totally different parameterization
of the unconstrained solution set, as given in Lemma 4. The
result is a very fast iterative algorithm. It remains to be
verified theoretically that this algorithm always converges
correctly, although this is the case in numerous simulations
we have conducted so far.
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[12] E. van der Meché and O. Bosgra, “Nevanlinna-Pick interpolation with
degree constraints: complete characterization based on Lyapunoov
inequalities,” in 43rd IEEE conference on Decision and Control,
Atlantis, Paradise Islands, Bahamas, December 2004, pp. 471–476.

4304


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




