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Abstract— We study the closed-loop behavior of the ex-
tended Kalman filter for a class of deterministic nonlinear
systems that are transformable to the special normal form
with linear internal dynamics. We argue that the closed-
loop system is asymptotically stable and the estimation error
exponentially converges to zero. We compare the performance
of the extended Kalman filter to a high-gain observer through
the use of numerical examples.

I. INTRODUCTION

The extended Kalman filter has seen wide use in the areas
of control and signal processing as a state estimator for
nonlinear stochastic systems. For an introduction see [7].
In the noise free case, the EKF can be parameterized to
function as a deterministic observer for nonlinear systems.
A method for constructing deterministic observers as as-
ymptotic limits of filters was studied in [2]. Additional work
on the convergence properties of extended Kalman filters
used as observers has been conducted in [5],[14],[15],[16].
Many of these results are local and often the convergence
properties are shown under assumptions on the behavior of
the state under control. Furthermore, analysis of the closed-
loop system under EKF feedback has been limited. In [5]
it was recognized that, for a particular parameterization,
the EKF is a time-varying high-gain observer that asymp-
totically approaches a fixed gain observer as the gain is
pushed higher. Furthermore, it was shown that the EKF is a
global exponential observer for a class of nonlinear systems
where the nonlinearities appear in a lower triangular form.
This argument was based on a global Lipschitz property
for the system nonlinearities. Here we attempt to study
the closed-loop behavior of a class of systems under EKF
feedback. Section II presents the main result. We relax the
global Lipschitz condition and consider a class of systems
transformable to the special normal form with linear internal
dynamics. Based on a parameterization of the Riccati equa-
tion, the closed-loop system under EKF feedback is placed
in the standard singularly perturbed form. We note that
by relaxing the global Lipschitz condition, difficulties may
arise as a result of the peaking phenomenon. In addition
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to globally bounding the control, the time-varying terms
of the Riccati equation must be globally bounded in order
to have a well defined solution. We argue that the origin
of the closed-loop system is asymptotically stable under
EKF output feedback. In section III we compare through
simulation the use of the extended Kalman filter versus a
fixed-gain high-gain observer.

II. MAIN RESULT

Consider the system

ż = A11z + B1x1 (1)

ẋ = Ax + B2φ(x, z, u) (2)

y = Cx (3)

where x ∈ R
r and z ∈ R

q are the states, u is the input,
and y is the output. The function φ is assumed to be
continuously differentiable and satisfies φ(0, 0, 0) = 0. The
q× q matrix A11 is Hurwitz. The r× r matrix A, the r× 1
matrix B2, and the 1 × r matrix C are given by

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 · · · · · · 0
0 0 1 · · · 0
...

...
0 · · · · · · 0 1
0 0 · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎦

, B2 =

⎡
⎢⎢⎢⎣

0
0
...
1

⎤
⎥⎥⎥⎦

C =
[

1 0 · · · · · · 0 ]
The internal dynamics (1) are driven by the output y = x1.
Given this structure, the system (1)-(2) is said to be in the
special normal form [9]. Let χ = [z x]T and rewrite (1)-(2)
as

χ̇ = f(χ, u) (4)

The extended Kalman filter for this system is given by

˙̂χ = f(χ̂, u) + P (t)CT
e R−1(y − Ceχ̂) (5)

Ṗ = AeP + PAT
e + Q − PCT

e R−1CeP (6)

where R, Q, and P (0) are positive definite symmetric
matrices and

Ce = [01×q C] (7)
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The matrix Ae takes the form

Ae =
[

A11 A12

A21 A22

]

in which
A12 = [B1 0 · · · 0]q×r

A21 = B2
∂φ

∂z
(ẑ, x̂, u), A22 = A + A0

where

A0 =

⎡
⎢⎢⎢⎣

0 · · · · · · 0
...

...
0 0

dφ1 dφ2 · · · dφr

⎤
⎥⎥⎥⎦ , dφi =

∂φ

∂xi
(ẑ, x̂, u)

(8)
We consider the following full state feedback controller

u = γ(z, x) (9)

The closed-loop system under state feedback is given by

ż = A11z + B1x1 (10)

ẋ = Ax + B2φ(x, z, γ(x, z)) (11)

We state our assumptions.
Assumption 1:
1) The origin (x = 0, z = 0) of (10)-(11) is globally

asymptotically stable.
2) The function γ is locally Lipschitz in its arguments

and globally bounded in x. Furthermore, γ(0, 0) = 0.
In addition we assume that the closed-loop system satisfies
the following ISS property

Assumption 2: The system

ż = A11z + B1x1 (12)

ẋ = Ax + B2φ(x, z, γ(x, z + v)) (13)

with v viewed as the input, is input-to-state stable (ISS).
Assumption 3: The functions

∂φ

∂z
(ẑ, x̂, u) and

∂φ

∂xi
(ẑ, x̂, u)

for i = 1, · · · , r are globally bounded in ẑ and x̂.1

Assumption 3 ensures that the matrices A21, A22 of the
Riccati equation are bounded. We parameterize Q in the
following way

Q =
[

Q1 Q2

Q2
1
ε2 D−1Q3D

−1

]
(14)

where Q1 and Q3 are chosen to be positive definite symmet-
ric, D = diag[1, ε, · · · , εr−1], and ε > 0. We take R to be
the identity matrix. The above parameterization produces
a two-time scale behavior in the solution to the Riccati
equation (6). We partition and scale P according to

P =
[

P1 P2D
−1

D−1PT
2

1
εD−1P3D

−1

]

1Global boundedness can always be achieved by saturating x̂ and ẑ
outside a compact region of interest.

Then, the observer can be written as

˙̂z = A11ẑ + B1x̂1 + P2D
−1CT (y − Cx̂) (15)

˙̂x = Ax̂ + B2φ(x̂, ẑ, u) +
1
ε
D−1P3D

−1CT (y−Cx̂) (16)

The gain 1
εD−1P3D

−1CT has the structure of a high-
gain observer ([1], [5]). This was exploited in [5], using
a parameterization similar to the above, to show global
exponential stability of the extended Kalman filter. For the
fast estimation error we use the standard rescaling

ξi =
xi − x̂i

εr−i
(17)

for i = 1, · · · , r. Thus, x − x̂ = D2ξ, where D2 =
diag[εr−1, εr−2, · · · , 1]. Define the estimation error for the
internal states by η = z − ẑ. The closed-loop system
under output feedback can now be written in the standard
singularly perturbed form

ż = A11z + B1x1 (18)

ẋ = Ax + B2φ(x, z, γ(x − D2ξ, z − η)) (19)

η̇ = A11η + εr−1(B1 − P2C
T )ξ1 (20)

εξ̇ = (A − P3C
T C)ξ + εB2δ(x, z, η, ξ) (21)

Ṗ1 = A11P1 + A12P
T
2 + P1A

T
11 + P2A

T
12 (22)

+Q1 − P2C
T CPT

2

εṖ2 = εA11P2 + A12P3 + εP1A
T
21D + εQ2D (23)

+P2(A + εA0ε)T − P2C
T CP3

εṖ3 = ε2DA21P2 + (A + εA0ε)P3 + Q3 (24)

+P3(A + εA0ε)T + ε2PT
2 AT

21D − P3C
T CP3

where δ = φ(x, z, u) − φ(x̂, ẑ, u) and

A0ε =

⎡
⎢⎢⎢⎣

0 · · · · · · 0
...

...
0 0

εr−1dφ1 εr−2dφ2 · · · dφr

⎤
⎥⎥⎥⎦

Note that A12D
−1 = A12. Equations (18)-(20) and (22)

characterize the “slow” dynamics and (21), (23), and (24)
the “fast” ones. We have the following result.

Theorem 1: Consider the closed-loop system (18)-(24)
under output feedback. Let Assumptions (1)-(3) hold and
let M and N be any compact subsets of R

q×r×q and R
r

respectively. Then, for trajectories (z, x, η) × x̂ starting in
M×N the following holds:

• There exists ε∗ such that, for all 0 < ε ≤ ε∗ the origin
(z = η = 0, x = ξ = 0) of the closed-loop system
is asymptotically stable and M×N is a subset of its
region of attraction.

• The origin of the estimation error equations (20)-(21)
is exponentially stable.
Proof: The quasi steady-state equations of the fast

dynamics are
0 = (A − P̂3C

T C)ξ̂ (25)

0 = A12P̂3 + P̂2A
T − P̂2C

T CP̂3 (26)
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0 = AP̂3 + P̂3A
T + Q3 − P̂3C

T CP̂3 (27)

By standard results on algebraic Riccati equations [13],
with Q3 positive definite and (C, A) observable, (27) has a
unique solution P+

3 = P+T
3 > 0 such that (A − P+

3 CT C)
is a Hurwitz matrix. Hence, we have from (25) and (26)
that ξ̂ = 0 and

P+
2 = −A12P

+
3 (A − P+

3 CT C)−T (28)

It is easy to show that

−A12P
+
3 (A − P+

3 CT C)−T = A12 (29)

Therefore, P+
2 = A12. This results in the reduced system

ż = A11z + B1x1 (30)

ẋ = Ax + B2φ(x, z, γ(x, z − η)) (31)

η̇ = A11η (32)

Ṗ1 = A11P1 + P1A
T
11 + Q1 + B1B

T
1 (33)

where Q1 + B1B
T
1 is positive definite and symmetric.

Therefore, P1(t), with P1(0) = PT
1 (0) > 0 is a bounded

positive definite symmetric solution to (33) for all t ≥ 0
and approaches P+

1 = P+T
1 > 0 as t → ∞.

We proceed by studying the Riccati equation (22)-(24)
alone. To do so, we will treat A21 and A22 as bounded
time-varying matrices and use singular perturbation theory
[12] to argue that the solutions of (22)-(24) are bounded.
We begin by viewing the following equations as a nominal
model (ε = 0 on the right hand side) of (22)-(24)

˙̄P 1 = A11P̄1+P̄1A
T
11+A12P̄

T
2 +P̄2A

T
12+Q1−P̄2C

T CP̄T
2

(34)
ε ˙̄P 2 = P̄2(A − P̄3C

T C)T + A12P̄3 (35)

ε ˙̄P 3 = AP̄3 + P̄3A
T + Q3 − P̄3C

T CP̄3 (36)

Since Q3 is positive definite, we can show [3] that

‖P̄3(t) − P+
3 ‖ ≤ g3e

(−σ3t/ε) (37)

for some positive constants g3 and σ3. Next, rewrite (35)
as

ε ˙̄P 2 = P̄2(A−P+
3 CT C−(P̄3−P+

3 )CT C)T +A12P̄3 (38)

we have
‖P̄2(t) − P+

2 ‖ ≤ g2e
(−σ2t/ε) (39)

for some positive constants g2 and σ2. From (34) we
have that the driving terms are bounded and exponentially
approach Q1 + B1B

T
1 . We can show that

‖P̄1(t) − P+
1 ‖ ≤ g1e

(−σ1t/ε) (40)

for some positive constants g1 and σ1. Hence, we have that
each P̄i is bounded for all t ≥ 0.

Now let P̃i(t) := P1(t) − P̄i for i = 1, 2, 3. We point
out that P̃i(0) = 0 and that the equations (22)-(24) are an
ε perturbation of (34)-(36). Using this information we can
show that each Pi is bounded uniformly in t and ε for all

t ≥ 0.2 Next we argue that P3 in (24) is positive definite.
Let τ = t/ε and rewrite (24) as

dP3

dτ
= A2P3 + P3A

T
2 + Q3 + P3C

T CP3 + εψ(Pi) (41)

where ψ contains depends continuously on P2 and P3, Q3+
P3C

T CP3 is positive definite, and

A2 = A − P+
3 CT C − (P3 − P+

3 )CT C

We note that A2 is bounded by some constant L for all
t ≥ 0. It can be shown that the corresponding state transition
matrix satisfies the lower bound

‖Φ(τ, t0)x‖ ≥ ‖x‖e−2L(τ−t0)

Following analysis similar to Theorem 4.12 of [10] we can
show that P3 is positive definite uniformly in t and ε. From
these arguments we arrive at

κ1I ≤ P3(t) ≤ κ2I (42)

It can be seen that
S3 = P−1

3

satisfies

εṠ3 = −(A + εA0ε)T S3 − S3(A + εA0ε) + CT C (43)

−S3Q3S3 − ε2S3DA21P2S3 − ε2S3P
T
2 AT

21S3

And by the argument above S3 will have a bounded, positive
definite, symmetric solution for all t ≥ 0. Thus, we have

κ3I ≤ S3(t) ≤ κ4I (44)

for all t ≥ 0 where the κi’s are positive constants, indepen-
dent of ε.

Next we argue for the boundedness and ultimate bound-
edness of (z, x, ẑ, x̂). Denote the right hand side of (18)-
(20) as

χ̇ = F (χ, η, ξ) (45)

η̇ = A11η + εr−1(B1 − P2C
T )ξ1 (46)

With ξ = 0 we have from Assumptions 1 and 2 that (45)-
(46) has a globally asymptotically stable equilibrium at the
origin. Thus, there exists a positive definite radially un-
bounded function V1(χ, η) and a positive definite function
U(χ, η) such that

∂V1

∂χ
F (χ, η, 0) +

∂V1

∂η
A11η ≤ −U(χ, η) (47)

for all χ and η. Let M be any compact subset of R
q×r×q .

Choose c such that M ⊂ Ωc = {V1(χ, η) ≤ c} ⊂ R
q×r×q .

Due to the global boundedness of f and δ in x̂, for all
(χ, η) ∈ Ωc and ξ ∈ R

r, we have

‖F (χ, η, ξ)‖ ≤ k1 , ‖δ(x, z, η, ξ)‖ ≤ k2 (48)

2A detailed argument of this statement will be made in the full paper.
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where k1 and k2 are positive constants independent of ε.
Letting W (ξ) = ξT S3ξ it can be shown that

V̇1 ≤ −U(χ, η) + k4‖ξ‖ (49)

Ẇ ≤ −k3

ε
‖ξ‖2 + 2κ4‖ξ‖k2 (50)

for all (χ, η, ξ) ∈ Ωc × {W (ξ) ≤ ρε2}, for some positive
constants k3,k4, ρ > 0 independent of ε. Following analysis
similar to [1] we have that for ε sufficiently small, (χ, η, ξ)
enters the invariant set Ωc × {W (ξ) ≤ ρε2} during a finite
time period [0, T (ε)] where T (ε) → 0 as ε → 0. During
[0, T (ε)], ξ will be bounded by an O(1/εr−1) value. Also,
from (48), T (ε) can be made small enough that (χ, η) will
remain in Ωc for all t ∈ [0, T (ε)]. Consequently, all closed-
loop trajectories are bounded for all t ≥ 0. Furthermore, it
can be shown that given any µ > 0 there exists ε∗1 > 0 and
T1(µ) such that for all 0 < ε < ε∗1, ‖(χ, η)‖+ ‖ξ‖ ≤ µ for
all t ≥ T1.

From the ultimate boundedness of (z, x, ẑ, x̂) we can
work locally to argue asymptotic stability of the closed-
loop system. First, define ζ = [η ξ]T . We have that
‖δ(x, z, η, ξ)‖ ≤ L1‖ζ‖ for all (χ, η) ∈ B(0, µ) × {‖ξ‖ ≤
µ} where µ is the ultimate bound from above. Let

V2 = ζT

[
PL 0
0 S3

]
ζ (51)

be a Lyapunov function candidate for ζ where PL satisfies
PLA11 + AT

11PL = −I . Due to the boundedness of A12

and A21 in x̂ and ẑ, the boundedness of P2, S3, and the
fact that εA0ε is bounded and O(ε), it can be shown that
there exits ε∗2 sufficiently small such that

V̇2 ≤ −k5V2 (52)

where k5 is a positive constant. Hence, for all
(χ(0), η(0), ξ(0)) starting in M×N the estimation error,
(η, ξ), converges exponentially. Finally, asymptotic stabil-
ity of the closed-loop system follows from the following
composite Lyapunov function

V (χ, η, ξ) = θV1(χ, η) + (V2(ζ))1/2 (53)

with θ > 0. We have

V̇ ≤ −θU(χ, η) + θL2L3‖ζ‖ − k6‖ζ‖ (54)

for some positive constant k6, a Lipschitz constant L2, and
L3, an upper bound on [∂V1/∂χ , ∂V1/∂η] in Ωc. Taking
θ ≤ k6/2L2L3 yields asymptotic stability.

III. COMPARISON

The stability results for locally Lipschitz nonlinear systems
in the previous section came at the expense of sacrificing
global results for semiglobal ones. An essential factor in
this sacrifice is the effect of peaking on the closed-loop
system. In high-gain observers, peaking is caused by the
special structure of the observer gain

HT =
[

α1
ε

α2
ε2 · · · αn

εr

]
(55)

For high-gain observers, peaking can be overcome by
globally bounding the control outside a compact region of
interest [6]. This can be done by using a saturation function
on the controller. For the case of the extended Kalman filter,
globally bounding the control alone is not enough. Peaking
in the estimates may induce numerical difficulties in the
solution to the RDE as the following example shows.

Example 1: Consider the following system

ẋ1 = x2, ẋ2 = x3, ẋ3 = xa
2 + u (56)

and the feedback linearizing controller

u = −xa
2 − x1 − 3x2 − 3x3 (57)

where a will be chosen later on. By saturating the control
outside a compact region of interest the effect of peaking
can be overcome and the closed-loop system under (fixed-
gain) high-gain observer feedback can recover the response
under state feedback as ε → 0. Let a = 3. Using the
extended Kalman filter parameterized as in the previous
section we have that the matrix A + εA0ε in (24) is

A + εA0ε =

⎡
⎣ 0 1 0

0 0 1
0 0 3εx̂2

2

⎤
⎦ (58)

where in this example a = 3. During any occurrence of
peaking, the estimate x̂2 will become O(1/ε). Therefore,
from (58) with saturation only on the control, the RDE
will contain unbounded terms as ε → 0 . This system
was simulated for ε = 0.01 with x1(0) = 0.9, x2(0) =
x3(0) = 0, x̂1(0) = x̂2(0) = x̂3(0) = 0, P (0) = Identity,
Q3 = diag[3, 3, 1], and with the control saturated outside
(-20,20). Figure 1 illustrates the effect this has on the
system response. The peaking in x̂2 induces a very large
gain (from the solution to the RDE) and this gain in turn
exacerbates the peaking in the estimate. Figure 1 shows
that the saturation of the control prevents the system states
from deviating too much from their initial values, but the
estimate x̂2 and the gain h2(t) have become prohibitively
large. These difficulties are overcome by saturating the
estimates themselves outside a compact region of interest.
This will globally bound the control and the time-varying
terms in the RDE. This approach is shown in Figure 2 where
we have saturated x̂1, x̂2, and x̂3 outside (-2,2). Figure 2
shows that the estimate x̂2 saturates then quickly converges.
Also, we see that the control remains bounded, the gain h2

converges quickly to its steady-state value, and the output
x1 gracefully approaches the origin.

Like the HGO, the EKF achieves faster and more accurate
reconstruction of the state x as ε → 0. It can be shown from
analysis similar to the above that the response for the EKF
approaches the response for the HGO as ε → 0. Here we
illustrate this through a numerical example. Figure 3a plots
the output y = x1 of the closed-loop system for the EKF
(solid) and the HGO (dashed) for x1(0) = 2 and ε = 0.1
with all other parameters as above. Figure 3b shows that
the two responses have converged for ε = 0.001.
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Fig. 1. Simulation for Example 1, showing the output x1, the estimate
x̂2, the control u, and the gain h2(t) for EKF feedback under control
saturation only.
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Fig. 2. Simulation for Example 1, showing the output x1, the estimate
x̂2, the control u, and the gain h2(t) for EKF feedback under estimate
saturation.
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Fig. 3. Simulation for Example 1, showing the output x1, for (a) the
EKF and HGO for ε = 0.1 and (b) the EKF and HGO for ε = 0.001.

Considering the foregoing observation we note that for
relatively large values of ε, the time-varying terms in the
Riccati equation will have more influence over the closed-
loop response. Whether the added complexity of the time-
varying gain gives an advantage over a time-invariant gain
appears to be system dependent. We consider the system
above (56) for two cases. First, let a = 3. This system was
simulated for ε = 0.3, x1(0) = 2. We choose an initial
convariance P (0) such that the EKF gain is equal to its
steady-state value. The behavior of the estimate x̂2 will
cause the gain to deviate from steady-state. For the HGO
we used an observer with gain matrix

HT =
[
3/ε 3/ε2 1/ε3

]
which is the steady-state value of the EKF gain. Figure
4 shows the response of the output x1 and the control
signal u for the closed-loop system under EKF feedback
(left) and HGO (right). The time-varying gain was able to
stabilize the system where as the response under the HGO
observer went unstable. We compare these observations
with the second case where we now take a = 2 in (56)
and (57). Conversely, the fixed-gain high-gain observer was
able to achieve stability and the time-varying observer went
unstable. This is a result of the sensitivity of the Riccati
equation to the transient response of the estimate x̂2 as
illustrated in Figure 5. We emphasize that both the EKF and
the HGO can stabilize each system (a = 2, 3) by making ε
small enough (e.g. ε = 0.01). But, these examples indicate
that advantages to using a time-varying high-gain observer
versus a fixed gain high-gain observer at steady state are,
at least, system dependent.

Finally we remark that for the EKF, the initial condi-
tion of the Riccati equation can be chosen to eliminate
peaking during the initial transient. Initialization strategies
to overcome peaking have been explored for observers
with time-varying gains in [4],[8], and for sampled data
output feedback control in [11]. However, it has been
pointed out [4],[11] that these designs may suffer from
peaking through impulsive-like disturbances that occur after
the initial transient. Therefore, the peaking phenomenon is
relevant irrespective of the initial gain choice.

IV. CONCLUSIONS

We have examined the closed-loop behavior of a class
of deterministic nonlinear systems with locally Lipschitz
nonlinearity under extended Kalman filter feedback. We
have shown that the origin of the closed-loop system is
asymptotically stable and the origin of the estimation error
is exponentially stable. We have seen that in addition to
globally bounding the control, the time-varying functions
in the Riccati equation must be globally bounded for the
Riccati equation to have a well defined solution. Through
simulation we have compared the closed-loop performance
of the time-varying EKF versus the time-invariant HGO.
Efforts to expand this result beyond the special normal form
are complicated by a difficulty in rescaling the partitioned
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Fig. 4. Simulation for Example 1, showing the output x1, and the
control u for EKF feedback and HGO feedback for a = 3.
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Fig. 5. Simulation for Example 1, showing the output x1, and the
control u for EKF feedback and HGO feedback for a = 2

Riccati equation such that it will be in the standard singu-
larly perturbed form.
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