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Abstract— We offer a systematic algorithm for the identifi-
cation of static nonlinear maps in interconnected systems. The
class of systems considered are those consisting of linear time-
invariant systems and static nonlinear functions. Under the
conditions that the linear dynamics are known and the inputs
to the nonlinearities are measurable, the identification problem
is reduced to a least squares problem. Notions of identifiability
and persistence of excitation are introduced to demonstrate
convergence of the estimate to the true nonlinear function under
the L1-norm.

I. INTRODUCTION

The nonlinear system identification problem presents a
difficult challenge. Given noisy measurement data, the aim
is to reconstruct an estimate of the internal processes that
produced the data. In general, these types of inverse problems
are ill-posed, and require additional assumptions to be made
regarding the solution.

Even with the addition of structural interconnection infor-
mation, the estimation of arbitrary static nonlinear functions
remains an ill-posed problem. In the study of such problems,
it is common to assume certain smoothness properties about
the solution and employ regularization methods to enforce
these properties [1], [2], [3]. This prerequisite of smoothness
has also been shown to be an effective tool in the identifica-
tion of static nonlinear maps in interconnected systems [4],
[5]. In this paper we will consider a measure of smoothness
that we call the dispersion function, which will impose a
regularization based on total variation.

There exists great interest in the systematic inclusion
of a priori structural information in system identification
problems. Information regarding the structural interconnec-
tion of the system is generally known with a high degree
of confidence due to an understanding of the underlying
relationships between the system’s components. While the
identification of systems with specific interconnections (such
as Wiener and Hammerstein systems) has been thoroughly
studied [6], [7], [8], [9], [10], a theory for the identification
of general interconnected systems has been relatively absent.
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In this paper, we consider those interconnections consisting
of finitely many linear time-invariant (LTI) systems and static
nonlinear maps. To approach this class of systems, we first
make the assumption that the linear dynamics are known.

The methods presented here are nonparametric in the sense
that no parameterization is assumed or forced upon the
nonlinear functions. The idea of enforcing smoothness in the
estimated solution is extended to multi-input nonlinearities
and a least squares algorithm is proposed. Furthermore,
notions of identifiabilitly and persistence of excitation are
formalized and asymptotic convergence of the estimates to
the true nonlinear functions is shown.

The remainder of this paper is organized as follows. In
Section II, we describe the class of systems under consider-
ation. Section III motivates and describes our metric of stat-
icness, the dispersion function. The identification algorithm
is described in Section IV. Section V discusses the notion of
identifiability. In Section VI, we explore various properties
of input signals that lead to sufficiently rich input-output
data sets. Section VII contains our main results regarding
convergence.

NOTATION

x infinite vector-valued sequence (xk)∞k=1

x[L] finite vector-valued sequence (xk)L
k=1

xk kth element of x or x[L]

x∗
k complex-conjugate transpose of xk

L known discrete-time LTI system
N static nonlinear function
M(L,N ) input-output operator of LFT model

structure defined by L and N
C set of continuous functions on Ω
Lγ class of Lipschitz continuous functions

with Lipschitz bound γ.
N set of static nonlinear functions with

a particular input-output structure
‖DN‖ total variation of N
BV (Ω) functions of bounded variation on Ω
S S = BV (Ω) ∩ N

uk ∈ R
nu known input to L

ek ∈ R
ne unknown input to L

yk ∈ R
ny measured output of L

zk ∈ R
p input to N

wk ∈ R
m output of N

ŵ[L] estimate of w

I [L] interpolant of (z[L], w[L])

Î [L] interpolant of (z[L], ŵ[L])
DL dispersion function
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n[L] number of triangles in the Lth triangulation
pi number of inputs to N [i]

p p =
∑m

i=1 pi

Ω[i] ⊆ R
pi domain over which N [i] is to be identified

Ω ⊆ R
p Ω[1] × Ω[2] × · · · × Ω[m]

E E = {e : ‖e‖∞ < ∞}

BV (Ω) is the set of functions N ∈ L1(Ω) with bounded
total variation,

‖DN‖ = sup

{∫
Ω

N divφdx : φ = (φ1, . . . , φn) ∈ C1
0(Ω),

|φ(x)| � 1 for x ∈ Ω

}
< ∞,

where div φ =
∑n

i=1
∂φi

∂xi
, φ : Ω → R

n, and C1
0(Ω) is the

set of C1 functions on Ω with compact support in Ω. Note
that if N is differentiable, the total variation ‖DN‖ becomes∫
Ω |∇N|dz.

II. PROBLEM FORMULATION

We focus our attention towards those interconnected sys-
tems consisting of any finite number of linear time-invariant
(LTI) systems and static nonlinear maps. The identification
problem we consider is that of identifying the static nonlinear
maps in the interconnected system. The linear components
of the interconnection are assumed to be known.

To exploit the known interconnection structure, let the
system be represented as a Linear Fractional Transformation
(LFT) as shown in Figure 1. The LFT is a powerful data

�

�

� �

�

y u
e

z w
L

N
Fig. 1. LFT model structure

structure that can be used to formulate all systems of interest
into one common framework [11]. In this paper, we use the
LFT to effectively separate the known linear dynamics L
from the unknown static nonlinearities N . We will refer
to the generalized system in Figure 1 as the LFT model
structure.

In general, the nonlinear block N has a block diagonal
structure that we represent as

N =

⎡
⎢⎣
N [1]

. . .
N [m]

⎤
⎥⎦ .

We can assume without loss of generality that the com-
ponents of N are each single-output. This can always be
realized by introducing redundant copies of the respective
inputs. In some cases, the nonlinear block N may also

contain repeated components. However, we do not consider
these cases in this paper. For ease of notation, we will
proceed with the analysis with m = 1. The generalization to
m > 1 is straightforward.

The linear block L may also be partitioned as

L =

[
Lyu Lye Lyw

Lzu Lze Lzw

]
.

In addition to our assumption that the linear dynamics
are known, we will require that L possesses the following
property.

Definition 1: z is measurable if there exists an LTI system
ΨM such that[

Lze Lzw

]
= ΨM

[
Lye Lyw

]
.

Measurability of z implies that

z = Lzuu + Lzee + Lzww

= Lzuu + ΨM (Lyee + Lyww)

= Lzuu + ΨM (y − Lyuu).

That is, z can be inferred from u, y and L. Of course, the
measurability property can be relaxed if z is already known.

We will equate the selection of a candidate static nonlinear
function with specifying a sequence of input-output pairs that
represent a sampling of the function. In order for a candidate
sequence to possess some validity, we desire that it have the
following properties.

1) Consistency with the known data u, y,L.
2) Consistency with a priori knowledge regarding the

unmeasured signal input e.
3) The sequence must be representative of a sampling

from a static function.
The first two properties are standard criterion in system
identification problems. The third requirement of staticness
is the subject of the following section. Loosely speaking,
we relate the staticness of a candidate sequence with the
complexity of interpolating the points in the sequence, as
measured by a metric we call the dispersion function.

III. THE DISPERSION FUNCTION

Consider the following problem. Given input-output data
(uk, yk)L

k=1 and a linear system L, we wish to find a static
nonlinear function N that is consistent with the measured
data. In general, there are multiple solutions. It is then of
interest to develop a metric to aid in the selection of a
candidate function among the set of possible solutions. In
this section, we develop a particular metric that possesses
many computational advantages [4], [5].

Let us examine the scatter plots shown in Figure 2. It
is intuitively obvious that the scatter plot on the right is
representative of a sampling of a static function whereas
the scatter plot on the left is not. We speculate that this
intuition is based on a metric of how easily the points can
be interpolated using simple functions. One way in which we
can realize this metric is to relate the staticness of a scatter
plot to the total variation of the graph of its interpolant. We
propose to mathematically capture this intuition as follows.
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Fig. 2. Data sampled from a dynamic system (left) and static map (right)

Let us first consider the case where z and w are sequences
of scalars. We will assume that no points in z are repeated,
i.e., zi �= zj for every i �= j. We define the dispersion
function DL to be the sum of the squares of the distances
between the neighboring points on the scatter plots, scaled
by L − 1. To illustrate the dispersion function, consider the
linear interpolant depicted in Figure 3. Here, the (z, w) pairs
are sorted so that z is an increasing sequence. The dispersion
of this sampling is 4

∑4
i=1 d2

i . For the case where z is vector-

(z5, w5)

w-axis

z-axis

(z1, w1)

(z3, w3)

(z4, w4)(z2, w2)

d1

d2

d4

d3

Fig. 3. Illustrating the dispersion function (scalar case).

valued, we can no longer sort the input data as in the scalar
case. The analagous operation will be one that associates
neighboring points via a triangularization.

Consider a set of points {zk}L
k=1 ⊂ R

2. A triangulation
partitions the convex hull of {zk}L

k=1 into a disjoint set
of triangles whose vertices are points in {zk}L

k=1. More
generally, for a set of points {zk}L

k=1 ⊂ R
p, a triangulation

partitions the convex hull of {zk}L
k=1 into a set of simplices.

We will also refer to these simplices as “triangles”.
Now consider a sequence of data points (zk, wk)L

k=1

with zi �= zj for every i �= j. If each point zk ∈ R
p

is paired with a scalar wk ∈ R, corresponding to each
triangulation is a faceted interpolant I [L] (See Figure 4).
For the Lth triangularization, we denote the area of triangle
i to be R

[L]
i and the area of the corresponding facet to

be A
[L]
i . While triangulations are not unique, we consider

the Delaunay triangulation due to its attractive geometric
and computational properties [12]. Our subsequent results,
however, do not rely on this choice of triangulation.

When {zk}L
k=1 ⊂ R

p, p > 1, we define the dispersion
function as follows.

Definition 2: Consider a set of points {zk}L
k=1 ⊂ R

p

and {wk}L
k=1 ⊂ R. Let n[L] be the number of triangles

resulting from a triangularization of {zk}L
k=1. The dispersion

w-axis

z-hyperplane Triangle i with area R
[L]
i

Facet i with area A
[L]
i

Fig. 4. Triangulation and corresponding facets.

of (z[L], w[L]) is defined to be

DL(z[L], w[L]) = n[L]
n[L]∑
i=1

(
A

[L]
i

)2

.

It can be shown that the dispersion can be easily computed.
Consider the following theorem.

Theorem 1: Let w̄ ∈ R
L denote a vector whose com-

ponents are the elements of the sequence w[L]. Then, the
dispersion function DL is quadratic in w̄. That is, there exists
a matrix Q 
 0 and a scalar r (both dependent on z [L]) such
that

DL(z[L], w[L]) = w̄∗Qw̄ + r.

The quadratic nature of the dispersion function will be
exploited in the identification algorithm to yield a least
squares problem.

There is also an intimate connection between the disper-
sion of a sampling from a function and the total variation
of a function. Of particular importance is the regularization
that the dispersion imposes on the iterpolants defined by the
sampling.

Lemma 1: If DL(z[L], w[L]) < M , then I [L] is of
bounded variation with ‖DI [L]‖ <

√
M .

In this paper, we are concerned with the convergence
properties of the estimated interpolants Î [L]. Some of the
ideas from parametric identification, namely identifiability
and persistence of excitation, have direct analogs. These will
be discussed in detail in Sections V and VI. For now, let us
consider the following intuitive notions.

1) The LFT model structure is identifiable if it allows
for nonlinear functions to be distinguishable through
input-output experiments.

2) Let the nonlinearity N in the LFT model structure be
a non-zero function. The input is persistently exciting
if the response to this input cannot be zero.

Clearly, if we do not make a restriction on the class of
functions that we consider, there is no hope that the above
conditions can ever be satisfied and thus no convergence
results can be established. It is then necessary to make
an assumption about the class of functions that we are
considering and ensure that the estimates lie within this class.
With this in mind, we consider the class of functions S =
BV (Ω) ∩ N due to the relationship between the dispersion
and total variation of a function.
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IV. IDENTIFICATION ALGORITHM AND ANALYSIS

FRAMEWORK

A. The Identification Algorithm

We now propose the following identification algorithm.
Define the cost function

JL(w[L]) =
1

L

L∑
i=1

(e
[L]
i )∗e

[L]
i + β(L)DL(z[L], w[L]).

Here, β(L) is a weighting parameter that may be obtained
through cross-validation procedures. We can parameterize all
possible solutions as[

e

w

]
=

[
e◦

w◦

]
+

[
Be

Bw

]
f,

where [
Lye Lyw

] [
Be

Bw

]
= 0,

(e◦, w◦) is a particular solution obtained via Kalman
Smoothing [4], and f is a free signal. Due to the quadratic
nature of the dispersion function, the minimization of JL can
be performed over the free signal f and the identification
problem can be formulated as a least squares problem,

fopt = argmin
f

∥∥∥∥∥
[

1√
L
e◦√

β(L)Q
1
2 w◦

]
+

[
1√
L
Be√

β(L)Q
1
2Bw

]
f

∥∥∥∥∥
2

.

B. Analysis Framework

For analysis purposes, we will consider a similar problem
with the additional assumption that L−1

ye exists. The opti-
mization problem can then be approached analytically by
considering the following formulation.

min
w[L]

L∑
i=1

(e
[L]
i )∗e

[L]
i

s.t. DL(z[L], w[L]) � M.

(1)

With this formulation in mind, we can begin the analysis
regarding convergence of the estimates to the true nonlinear-
ity. We summarize our principal assumptions for this analysis
below.

A.1 The region over which N is to be identified, Ω, is
an open subset of R

p.
A.2 The LFT model structure is well-posed.
A.3 The input-output data (uk, yk)L

k=1 is known, and the
signal y − Lyuu is bounded.

A.4 L is known, Lye is invertible with a stable inverse,
and Lyw is stable.

A.5 z is measurable, there exists B such that for every
N ∈ S,

lim
L→∞

1

L
‖N (z)‖1 ≤ B‖N‖1

A.6 There is no undermodelling. That is, there exists a
true nonlinearity N true ∈ S and true signal etrue ∈ E

that generated the input-output data.
A.7 limL→∞DL(z[L],N true(z[L])) < ∞.

A.8 etrue and z are independent. That is,

lim
L→∞

1

L

L∑
i=1

(etrue
i )∗(L−1

ye LywN (z))i = 0

uniformly over S.

Remark 1: Assumption A.5 is related to a stationarity and
density condition on z. The independence of etrue and z

in Assumption A.8 is not defined as in the statistical sense.
However, this may be satisfied by the statistical independence
of etrue and z with further conditions on the class of
nonlinearities S.

V. IDENTIFIABILITY

We now address the issue of identifiability. Loosely speak-
ing, the LFT model structure in Figure 1 is identifiable
if it is possible to determine the static nonlinear block N
uniquely on the basis of noise-free input-output experiments.
Essentially, identifiability requires that no two nonlinearities
in S result in the same input-output behavior of the LFT
model structure. As is well known, identifiability concepts
are of fundamental importance in system identification [13].
Let us begin with the following definition.

Definition 3: The LFT model structure in Figure 1 is
identifiable if for every N1 ∈ S, there does not exist N1 �=
N2 ∈ S such that M(L,N1) = M(L,N2).

For our analysis on identifiability, we will also require the
following co-measurability property. Note that this property
is not pertinent towards the identification algorithm.

Definition 4: z is co-measurable if there exists an LTI
system ΨC such that[

Lze Lzw

]
= LzuΨC .

Co-measurability of z implies that

z = Lzuu + Lzee + Lzww

= Lzu

[
I ΨC

] ⎡
⎣u

e

w

⎤
⎦ .

That is, all possible signals z lie in Range(Lzu).
In the remainder of this section, we will develop tests for

identifiability. Let the following assumptions hold for this
section.

I.1 Every N ∈ S is differentiable on Ω.
I.2 z is measurable and co-measurable.
I.3 For every N ∈ S, there exists ω ∈ Ω such that
N (ω) = 0.

The following theorem demonstrates when the identifia-
bility can be evaulated by considering only the “forward”
path from u to y. This allows us to disregard the effect of
the unmeasured signal e and the feedback interconnection
between z and w. For ease of notation, we will denote
LywNLzu to be the operator LywN (Lzu(·)).

Theorem 2: (See [4]). Let Assumptions I.1-I.3 hold. The
LFT model structure is identifiable if and only if there does
not exist 0 �= N ∈ S such that LywNLzu = 0.
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Theorem 2 shows that the identifiability of the LFT model
structure can be determined by searching over S to see if
LywNLzu = 0. For a more computationally tractable test,
it can be shown that we can further simplify the test for
identifiability by searching only over a set of structured
matrices. For this, let us define

X =

⎡
⎢⎣

X [1]

. . .
X [m]

⎤
⎥⎦ ,

where X [i] has the same input-output dimensions as N [i].
We have the following result.

Theorem 3: (See [4]). Let Assumptions I.1-I.3 hold. The
LFT model structure is identifiable if and only if there does
not exist 0 �= X ∈ X such that LywXLzu = 0.

This result allows us to formulate a computationally
simple test for identifiability. The goal is to to compute the
existence of the required matrix X . Since we know that the
mapping from X to LywXLzu is linear, we can determine if
this mapping has a nontrivial nullspace on X. A computable
test for identifiablity is given in Figure 5.

1 Parameterize X as X =
∑q

i θiKi, where
Ki ∈ R

m×p and q is the dimension of X.
2 Perform coprime factorization of systems

Lyw = D−1
ywNyw and Lzu = NzuD−1

nu with
poles of Nyw and Nzu at zero.

3 Form Toeplitz matrix T of (finite) impulse
response of

∑q
i θiNywKiNzu

4 Check null space of T . If Null(T ) �= φ, then
the LFT model structure is not identifiable.

Fig. 5. Computatable identifi ability test.

VI. PERSISTENCE OF EXCITATION

In this section, we discuss the notion of persistently
exciting signals. Intuitively, a signal is persistently exciting
if it produces an input-output data set that is informative
enough for a unique estimate to arise from the identification
process. General conditions for persistence of excitation are
very complex. However, considerable insight can be obtained
in the case where the signal z is measurable.

For the remainder of this section, we will assume that
the LFT model structure is identifiable. Our condition for
persistence of excitation will be stated in terms of the signal
z.

Definition 5: The signal z is persistently exciting if for
every N ∈ S,

lim
L→∞

1

L

L∑
i=1

(L−1
ye LywN (z[L]))∗i (L−1

ye LywN (z[L]))i = 0

implies that ‖N‖1 = 0.
Note that the persistence of excitation condition is de-

pendent on the linear block of the LFT model structure.
More specifically, a signal z that is persistently exciting for a
given LFT model structure may be not persistently exciting

for another. While persistence of excitation conditions are
commonly independent of the model, a notion of persistence
of excitation that considers the model structure may be more
appropriate in the case of general interconnected systems.
One should also note that if the LFT model structure is
not identifiable, no persistently exciting signal exists. This
explains the neccessity of the identifiability assumption
throughout this section.

We now pose the question, “What types of signals are
persistently exciting?” In order to present an illustrative
example, let the following assumptions hold.

PP.1 Let H = L−1
ye Lyw be an FIR filter with t+1 taps.

PP.2 For every N ∈ S, there exists ω ∈ Ω such that
N (ω) = 0.

Let us begin with the following Theorem. In Example
1, we demonstrate how to construct a persistently exciting
signal.

Theorem 4: (See [14]). Let N ∈ BV (Ω). Then, there
exists a sequence of functions (Nk)∞k=1 ⊂ BV (Ω)∩ C∞(Ω)
such that

1) Nk → N in L1

2) ‖DNk‖ → ‖DN‖
Example 1: Suppose that N ∈ C(Ω). Let M(L,N ) be

identifiable. We can write the signal ẽ = HN (z) as

ẽk = h∗
0N (zk) + h∗

1N (zk−1) + · · · + h∗
tN (zk−t).

Define 0t to be a sequence of t zeros. We will construct the
signal z as follows. Let

z = (0t, a1, 0t, a2, 0t, a3, 0t, . . . ),

where (ak)∞k=1 is dense in Ω. Then,

ẽ = (. . . , h∗
0N (a1), h

∗
1N (a1), . . . ,

h∗
tN (a1), h

∗
0N (a2), h

∗
1N (a2), . . . ).

Suppose that limL→∞
1
L

∑L
i=1(HN (z[L]))∗i (HN (z[L]))i =

0. Then for every ε > 0, there exists I such that for almost
every i > I , ‖hjN (ai)‖ < ε for j = 0, . . . , t. Since N
is continuous and (ai)

∞
i=1 is dense in Ω, this implies that

hjN = 0 on Ω for j = 0, . . . , t. We can then conclude that
HN = 0 on Ω. The identifiability of the LFT model structure
results in N = 0. As a result, the signal z is persistently
exciting.

Now suppose that N ∈ BV (Ω). From Theorem 4, there
exists a sequence (Nk) ⊂ BV (Ω) ∩ C∞(Ω) such that

1) Nk → N in L1

2) ‖DNk‖ → ‖DN‖
By the triangle inequality,

‖N‖1 ≤ ‖Nk −N‖1 + ‖Nk‖1.

We have from Assumption A.5 that as a functional of N ,
limL→∞

1
L

∑L
i=1(HN (z[L]))∗i (HN (z[L]))i is continuous in

L1 . Then, since z is persistently exciting for every Nk and
‖Nk −N‖1 → 0, z is persistently exciting for N .

Example 2: Example 1 demonstrates how a dense, im-
pulsive input can be persistently exciting. Despite the fact
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that we are seeking a nonparametric estimate, some very
simple signals may also be persistently exciting. Consider the
LFT model structure with the following linear and nonlinear
blocks.

L =
[
1 z−2

]
N =

[
f

g

]
,

where f and g are static nonlinearities and z−2 is a two-
sample delay operator. Then, a sinusoidal input with fre-
quency ω chosen such that ω

π
is irrational is persistently

exciting.
The key property of a persistently exciting signal is that

it satisfies a density in both space and time.

VII. CONVERGENCE RESULTS

We now present our results regarding convergence of the
estimated nonlinear function. It is important to note that the
proof for convergence rests heavily on Assumption A.8.

Let us assume that DL(z[L],N true(z[L])) ≤ M , which
implies that ‖DN true‖ ≤

√
M . We can now state our main

result.
Theorem 5: Let the LFT model structure be identifiable

and let z be persistently exciting. Let Î [L] be the estimated
nonlinearity, formed from an interpolation of the points
(z[L], ŵ[L]). Then,

‖Î [L] −N true‖1 −→ 0.

Proof: Let H = L−1
ye Lyw. Note that the cost function

can be written as

JL(N (z[L])) =
1

L

L∑
i=1

(e
[L]
i )∗e

[L]
i

=
1

L

L∑
i=1

(etrue)∗i (e
true)i

+
2

L

L∑
i=1

(etrue)∗i (HÑ (z[L]))i

+
1

L

L∑
i=1

(HÑ (z[L]))∗i (HÑ (z[L]))i,

where Ñ = N true − Î [L]. From Lemma 1 , Î [L] ∈ S. Thus,
we have by Assumption A.8 that the middle term converges
to zero. It then follows that

JL(Î [L](z[L])) ≤ JL(N true(z[L]))

lim sup
L→∞

JL(Î [L](z[L])) ≤ lim sup
L→∞

JL(N true(z[L])).

Since

lim sup
L→∞

JL(N true(z[L])) = lim sup
L→∞

1

L

L∑
i=1

(e
[L]
i )∗e

[L]
i ,

we have

lim
L→ ∞

1

L

L∑
i=1

(HÑ (z[L]))∗i (HÑ (z[L]))i = 0.

Since z is persistently exciting, this implies that

‖Î [L] −N true‖1 −→ 0.

VIII. CONCLUSION

An algorithm for the identification of static nonlinear
maps in interconnected systems was proposed. Utilizing the
dispersion function, the identification problem is reduced to
a least squares problem. Formal notions of identifiability
and persistence of excitation have been developed, and
convergence of the estimates to the true nonlinearity has been
shown. Future work may involve a thorough investigation of
the persistence of excitation condition and a more delicate
treatment of Assumption A.8.
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