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Abstract— We show that a nonlinear system that is asymptot-
ically controllable to a compact set can be stabilized by a hybrid
feedback that is robust to small measurement noise, actuator
error, and external disturbances. The construction of such a
feedback hinges upon recasting a stabilizing patchy feedback in
the hybrid framework. Auxiliary results on generic robustness
of stability in hybrid systems are given.

I. INTRODUCTION

In nonlinear control system theory, numerous methods,

say backstepping, forwarding, feedback linearization, and

passivation, exist to design locally or globally asymptotically

stabilizing feedbacks; see e.g. [15]. It is fair to conclude

that the stabilization problem is well understood from a

mathematical point of view, and that a rich array of design

tools is available for applications.

In contrast, the robust stabilization problem is not yet

completely solved, and is under active investigation. Many

designs of controllers have been given to treat this problem:

discontinuous sampling feedbacks [5], [29], [4], time varying

control laws [7], [6], [21], [23], or patchy feedbacks [1], [2].

They enjoy different robustness properties depending on the

class of considered errors and on the design structure.

Out of different errors that come into play, measurement

errors are probably the most troublesome. For example, in

[29], [4], where discontinuous feedbacks were used, the

sampling rate of the π-solutions had to be adjusted based on

the class of measurement errors allowed. In the work most

important to our paper, [1] showed that an asymptotically

controllable system can be stabilized with a patchy feedback,

i.e. appropriately defined feedback from a family of open

sets and constant feedbacks on each on them, and such a

feedback is robust to external disturbances. In [2], impulsive

perturbations were also considered. When a hybrid strategy

is used, one may consider unknown parameters or unmodeled

dynamics, see e.g. [18], [14], [22], [25], [24], where several

types of hybrid stabilizing control laws have been considered.

In [27], [28], quasi-optimal robust stabilization has been

achieved by means of hybrid feedbacks.
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In this paper, we show that any asymptotically controllable

to a compact set nonlinear system can be stabilized with

a hybrid feedback that is robust to small measurement

noise, actuator error, and external disturbances. We achieve

this by recasting the patchy feedback of [1] as a hybrid

feedback, and altering the latter slightly to eliminate some

delicate issues of the existence of solutions under time-

varying perturbations. This part of our work is conceptually

similar to [24]. However, we do take advantage of some

general results on hybrid systems made possible by working

in the framework that was motivated in [9] by the pursuit

of robust stability for hybrid systems and developed in [10]

(see also [11]). A particular advantage of this framework,

besides its generality, is that it guarantees good compactness

and upper semicontinuity properties of the set of solutions to

hybrid systems, and also that Zeno solutions do not require

special treatment. This features are not always present in

the numerous other approaches to hybrid systems, see for

example [30], [20], [19], [31], [24].

The hybrid feedback we build, and the resulting closed

loop hybrid system, has favorable growth and closedness

structure, similar to that used by [10]. Thus, robustness of

the constructed feedback is shown as a general property of

hybrid systems possessing the said structure, rather than as a

consequence of the particular construction. This generalizes

the results of [24] and parallels those outlined in [9] and

developed in [10] for a slightly different setting.

The link between notion of solution and robust asymptotic

stability for nonlinear (but not hybrid) systems is well-

understood. Consider for example the generalized solutions a

la Filippov [8], or a la Krasovskii [16], or limits of solutions

under vanishing noise. [13], [12]. We note that the notion

of solutions for hybrid systems defined in [9], [10] can

been considered in the context of the generalized solutions

for nonlinear systems with a discontinuous right-hand side

defined in [8], [16], [13], [12].

The paper is organized as follows. Section II states the

robust stabilization via hybrid feedback results, and gives

several definitions that make the result precise. Section III

recalls the patchy feedback concepts of [1] and describes how

a patchy vector field can be recast in the hybrid framework.

Section IV deals with the robustness of stability issue:

Subsection IV-A states an interesting on its own result on the

generic robustness to autonomous perturbations of stability

in hybrid systems, Subsection IV-B deals with the “robust”

existence of solutions to hybrid systems under time-varying

perturbations, finally Subsection IV-C collects various facts

from the paper and proves the main result.
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II. MAIN RESULT

Let the set Õ ⊂ R
n be open, the set A ⊂ Õ and the set

of feasible controls U ⊂ R
m be compact, and the function

f : Õ × U → R
n be smooth. Consider the system

ẋ(t) = f(x(t), u(t)), u(t) ∈ U, for all t ≥ 0. (1)

It is called asymptotically controllable on Õ to A if

(a) for each ξ ∈ Õ there exists a measurable uξ : [0,∞) →
R

nu with u(t) ∈ U for almost all t such that the

maximal trajectory x to (1) with u replaced by uξ is

complete and such that x(t) → A as t → ∞;

(b) for any ε > 0 there exists δ > 0 such that for any

ξ ∈ Õ with ‖ξ‖A < δ one can find uξ as in (a) so that

the resulting x is such that ‖x(t)‖A < ε for all t ≥ 0.

Here, ‖x‖A denotes the distance from the set A to x.

Theorem 2.1: If (1) is asymptotically controllable on Õ
to A, then there exists a hybrid feedback on Õ \ A which
renders A asymptotically stable on Õ for the system (1),
robustly to measurement noise, actuator errors, and external
disturbances.

Below, we explain the meaning of each term in the result

above. For simplicity, we set O := Õ \ A.

Definition 2.2: A hybrid feedback consists of
• a totally ordered set Q ⊂ Z

2,
• for each q ∈ Q,

– sets Cq ⊂ O and Dq ⊂ O,
– a function kq : Cq → U ,
– a set-valued mapping gq : Dq →→ Q.

The set Q is the set where the discrete variable of the

hybrid system resulting from the application of the hybrid

feedback evolves. The sets Cq, respectively Dq, describe the

set in which the continuous variable of the hybrid system

can flow, respectively, the set which enables the jump of

the discrete variable. The function kq, in closed loop with

(1) determines how the continuous variable flows, while gq

describes how the discrete variable jumps.

The nonlinear system (1), with the state augmented to

include the discrete variable, and “in closed loop with the

hybrid feedback”, will result in the hybrid system which can

be informally described as

ẋ ∈ Fq(x), q̇ = 0 if x ∈ Cq,
q+ ∈ Gq(x), x+ = x if x ∈ Dq.

(2)

In particular, the continuous variable x only changes con-

tinuously and does not jump, while the discrete variable q
only changes value via jumps. To make the definition of a

solution to such a system precise, we recall some concepts

from [10]. A subset S ⊂ R≥0 ×N is a compact hybrid time
domain if S =

⋃J−1
j=0 ([tj , tj+1], j) for some finite sequence

of times 0 = t0 ≤ t1 ≤ t2 ... ≤ tJ . S is a hybrid time
domain if for all (T, J) ∈ S, S ∩ ([0, T ] × {0, 1, ...J}) is

a compact hybrid domain; equivalently, if S is a union of a

finite or infinite sequence of intervals [tj , tj+1] × {j}, with

the “last” interval possibly of the form [tj , T ) with T finite

or T = +∞. In what follows, we will write supt(S) for the

supremum of all t such that (t, j) ∈ S for some j.

A solution to the hybrid system (2) consists of: a nonempty

hybrid time domain S, a function x : S → O such that

x(t, j) is locally absolutely continuous in t for a fixed j
and (t, j) ∈ S, and a function q : S → Q such that q(t, j)
is constant in t for a fixed j and (t, j) ∈ S meeting the

following conditions: x(0, 0) ∈ Cq(0,0) ∪ Dq(0,0) and

(S1) For all j ∈ N and almost all t such that (t, j) ∈ S,

ẋ(t, j) ∈ Fq(t,j)(x(t, j)), x(t, j) ∈ Cq(t,j).

(S2) For all (t, j) ∈ S such that (t, j + 1) ∈ S,

q(t, j + 1) ∈ Gq(t,j)(x(t, j)), x(t, j) ∈ Dq(t,j).

Given a solution to (2) we will usually not mention the

hybrid time domain explicitly, but will identify the solution

by (x, q), and when needed, refer to the associated hybrid

time domain by dom(x, q).
As the state of the original nonlinear system (1) evolves

in Õ, while the continuous variable of the hybrid system

under discussion evolves in O = Õ \ A, in the definition

of asymptotic stability of the latter we need to allow for

solutions reaching A in finite time.

Definition 2.3: The set A is asymptotically stable on O
for the hybrid system (2) if:

• for any (x0, q0) ∈ O × Q there exists a solution to (2)
with x(0, 0) = x0, q(0, 0) = q0;

• for any maximal solution (x, q) to (2) we have
x(t, j) → A as t → supt(dom(x, q));

• for any ε > 0 there exists δ > 0 such that any solution
(x, q) to (2) with ‖x(0, 0)‖A ≤ δ satisfies ‖x(t, j)‖A ≤
ε for all (t, j) ∈ dom(x, q).

Consequently, we say that the hybrid feedback as in

Definition 2.2 renders A asymptotically stable on Õ for (1)
if setting Fq(x) = f(x, kq(x)) and Gq(x) = gq(x) yields a

hybrid system for which A is asymptotically stable on O.

In what follows, admissible measurement noise and admis-
sible external disturbance are functions ξ and ζ in L∞

loc(O×
R≥0; Rn) that are continuous in x ∈ O for each t ∈ R≥0.

As noted in [17, Remark 1.4], with the presence of ζ and

the continuity of f in u, we can omit any explicit reference

to actuator errors. Furthermore, due to the discrete nature of

the set Q, we do not consider noise or disturbances “for the

discrete variable”. The presence of measurement noise and

external disturbances leads to a time-varying hybrid system,

which we will denote by Hξ,ζ .

Definition 2.4: A solution to Hξ,ζ consists of: a nonempty
hybrid time domain S, a function x : S → O such that
x(t, j) is locally absolutely continuous in t for a fixed j and
(t, j) ∈ S, and a function q : S → Q such that q(t, j)
is constant in t for a fixed j and (t, j) ∈ S meeting the
following conditions: x(0, 0) ∈ Cq(0,0) ∪ Dq(0,0) and

(Sp1) For all j ∈ N and almost all t with (t, j) ∈ S,

ẋ(t, j) ∈ f
(
x(t), kq(t,j)(x(t, j) + ξ(t, j), t

)
+ ζ(x(t), t),

x(t, j) + ξ(x(t, j), t) ∈ Cq(t,j).
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(Sp2) For all (t, j) ∈ S such that (t, j + 1) ∈ S,

q(t, j + 1) ∈ gq(t,j) (x(t, j) + ξ(x(t, j), t)) ,

x(t, j) + ξ(x(t, j), t) ∈ Dq(t,j).

Let us compare this definition with the solution notion

from [24] (which, essentially, is taken from [3]). The defini-

tion of the hybrid time domain implies that, in the standard

terminology, the set of jump times is of measure zero; this

was also the case in [24]. When a jump occurs, the continu-

ous variable must be in Dq. This was the case of [24], where

the discrete-component of a trajectory was right-continuous

on a subset of O × Q (this set is denoted RC in [24]). The

main difference between the notions is the interpretation of

the memory in a hybrid system. In [24] it is seen as the left-

limit of the discrete component of the solution. Here it is

seen as kq(t,j) (x(t, j) + ξ(x(t, j), t)) only, which requires

a priori less information to be computed. This discrete

evolution and the notion of hybrid time domain imply that

Zeno-solutions are included in the class of solution under

study, which is not the case in [24].

Naturally, given ξ and ζ, we will say that A is asymptoti-

cally stable on O for the hybrid system Hξ,ζ if Definition 2.3

is satisfied, when solutions to Hξ,ζ are considered in place

of those to (2). By an admissible perturbation radius we will

understand any continuous function ρ : O → R>0 such that

x + ρ(x)B ⊂ O for all x ∈ O. (Here and in what follows, B

is the closed unit ball in R
n.)

Definition 2.5: A hybrid feedback on Õ \ A renders A
asymptotically stable on Õ for (1), robustly to measurement
noise, actuator errors, and external disturbances if there
exists an admissible perturbation radius δ : O → R>0 such
that for all admissible measurement noise ξ and admissible
external disturbance ζ such that

‖ξ(x, t)‖ ≤ δ(x),
‖ζ(x, t)‖ ≤ δ(x) for all x ∈ O, t ∈ R≥0, (3)

A is asymptotically stable on O for the hybrid system Hξ,ζ .

III. PATCHY VECTOR FIELDS AND HYBRID SYSTEMS

Definition 3.1: ([1]) A mapping φ : Ω → R
n is a patchy

vector field on Ω if there exist a set Q, and for each α ∈ Q,
sets Ωα ⊂ Ω, Oα ⊂ Ω and a function fα such that
(a) for each α ∈ Q, the triple Ωα, Oα, fα forms a patch,

that is:
(a1) Ωα, Oα are open, Ωα ⊂ Oα, and the boundary of

Ωα is smooth;
(a2) fα : Oα → R

n is smooth;
(a3) for any point ξ ∈ bdry Ωα

〈fα(ξ), nα(ξ)〉 < 0,

where nα(ξ) is the outer normal to Ωα at ξ;
(b) Q is a totally ordered set;
(c) the sets Ωα form a locally finite covering of Ω;

and φ can be written in the form

φ(ξ) = fα(ξ) if ξ ∈ Ωα \
⋃

β�α

Ωβ ,

where � is the ordering of Q.

Solutions to a patchy vector field are understood in the

Caratheodory sense, i.e. as locally absolutely continuous

functions that satisfy ẋ(t) = φ(x(t)) almost everywhere. In

Lemma 3.6, we will relate the solutions of the patchy vector

field to those of a corresponding hybrid system.

Definition 3.2: ([1]) A mapping u : Ω → U is a patchy
feedback if there exists a patchy vector field φ : Ω → R

n on
Ω (given by the index set Q, and sets Ωα, Oα and a function
fα for each α ∈ Q) and control values uα ∈ U such that

u(ξ) = uα if ξ ∈ Ωα \
⋃

β�α

Ωβ

and φ can be written in the form

φ(ξ) = f(ξ, u(ξ)) if ξ ∈ Ωα \
⋃

β�α

Ωβ .

We will be interested in patchy feedbacks that, for the

system (1), render the set A globally asymptotically stable on

O (for a precise definition of this see [1]). The result below

extends Theorem 1 of [1] to compact attractors A and a

general open domain O. In contrast to [1], we do not require

the patchy feedback to have any robustness properties, those

will come from reformulating the patchy feedback as hybrid

feedback. By a proper indicator of A with respect to Õ
we understand a continuous function ω : Õ → R≥0 such

that ω(ξ) = 0 if and only if ξ ∈ A, and ω(ξ) → ∞ if

ξ → (bdry Õ) \ A or ‖ξ‖ → ∞.

Theorem 3.3: For any asymptotically controllable on Õ
to A nonlinear system (1) there exists a patchy feedback on
O that renders A asymptotically stable on O for (1). The
patchy feedback can be chosen so that

(a) the index set Q is a subset of N
2;

(b) for each α ∈ A, Ωα is a compact subset of O;
(c) for some proper indicator ω of A with respect to Õ, we

have the following: for each α ∈ Q there exist δ, ∆ > 0
so that sup ω(Ωβ) ≤ δ implies β � α, and β � α
implies sup ω(Ωβ).

From now on, let PVF denote a patchy vector field re-

sulting from the application of a stabilizing patchy feedback

as in Theorem 3.3 to (1).

Lemma 3.4: Let Ωα, Oα, and fα form a patch, and
suppose that Ωα is bounded. Then, there exist an open set Ω′

α

so that Ωα ⊂ Ω′
α ⊂ Ω′

α ⊂ Oα and a constant Tα > 0 so that
any maximal solution to ẋ(t) = fα(x(t)) with x(0) ∈ Ω′

α is
complete and such that x(t) ∈ Ωα for all t > Tα.

We add that, in Lemma 3.4, the set Ω′
α and the constant

Tα can be picked arbitrarily small. For the former, this

means that Ω′
α can be picked as a subset of an arbitrary

neighborhood of Ωα.

Given a PVF , let Q := Q, and for each q ∈ Q, use

Lemma 3.4 to find Ω′
q and Tq > 0 so that, for some proper

indicator ω of A with respect to Õ and all q ∈ Q,

inf ω(Ωq)/2 ≤ ω(x) ≤ 2 supω(Ωq)
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for all x ∈ Ω′
q. Note that this entails {Ω′

q}q∈Q being a locally

finite covering of O. Now, let HPVF be the hybrid system

defined on O × Q as follows: for each q ∈ Q, let

Cq = Ω′
q \

⋃
β�q

Ωβ

Fq(x) = fq(x)

Dq =
⋃
β�q

Ωβ ∪ (
O \ Ω′

q

)

Gq(x) =

⎧⎨
⎩
{β ∈ Q |x ∈ Ωβ , β � q} x ∈

⋃
β�q

Ωβ

{β ∈ Q |x ∈ Ωβ} x ∈ O \ Ω′
q

(4)

Lemma 3.5: The sets and mappings defined in (4) are
such that, for all q ∈ Q,

(Aq1) Cq and Dq are relatively closed subsets of O.
(Aq2) Fq : O →→ R

n is outer semicontinuous and locally
bounded, and Fq(x) is nonempty and convex for all
x ∈ Cq.

(Aq3) Gq : O →→ Q is outer semicontinuous and locally
bounded, and Gq(x) is nonempty for all x ∈ Dq.

This means that HPVF has similar continuity and closed-

ness properties to the systems analyzed by [10]; such prop-

erties are the key to showing the robustness result we give in

subsection IV-A. Furthermore, for each q ∈ Q, Cq∪Dq = O.

This implies that solutions to HPVF exist for any initial point

in O × Q.
We now compare solutions of PVF to those of HPVF .

Lemma 3.6:
(a) Let x : [0, T ] → O be a solution to PVF . Let t1 <

t2 < · · · < tJ−1 be the sequence of discontinuities of
t → α∗(x(t)) where

q∗(ξ) = max{β ∈ Q | ξ ∈ Cβ},
let t0 = 0, tJ = T . Then (x, q) given on the hybrid
time domain

J⋃
j=1

[tj−1, tj ] × {j}

by (x, q)(t, j) = (x(t), q∗(x(tj))) for t ∈ [tj−1, tj ] is a
solution to HPVF .

(b) Let (x, q) be a solution to HPVF with compact
dom(x, q). Let [tj−1, tj ], j = 1, 2, . . . , J be the se-
quence of all nontrivial (i.e. with tj−1 < tj) intervals
such that for all j, [tj−1, tj ] × {ij} ∈ dom y for some
ij . (It may happen that this sequence is empty.) Then
the function x′ : [t1, tJ ] → O given by x′(t) = x(t, ij)
for t ∈ [tj−1, tj ] is a solution to PVF .

In particular, (b) above says that after the first jump, the

continuous part of the solution to HPVF is (essentially) also

a solution to PVF . Note also that by the construction, and

by Lemma 3.4, each maximal solution to HPVF does jump

at least once (in fact infinitely many times). This, and the

properties of sets Cq, yield the following.

Corollary 3.7: For the hybrid system HPVF defined on
Q × O by (4), A is asymptotically stable on O.

IV. PROOF OF THE MAIN RESULT

This section proves Theorem 2.1, by exploiting the generic

robustness of stability in hybrid systems possessing some

basic growth and closedness properties. We want to point

out that a more direct approach is possible. Through a more

careful and more explicit, in comparison to that following

Lemma 3.4, construction of the hybrid system from a patchy

vector field, one can build a hybrid feedback stabilizing (1),
for which robustness can be verified by directly calculating

the admissible error bounds. Details will be given in the

forthcoming work [26].

A. Generic robustness of hybrid systems

As outlined in [9], much of the motivation for insisting on

some closedness and outer semicontinuity properties of the

data of hybrid systems (similar to those in Lemma 3.5) is that

in presence of such properties, asymptotic stability of com-

pact attractors is robust. Results outlined in [9] and shown

in [10], [11] do not apply directly to the hybrid systems

discussed in the current paper, partly because we consider

convergence of the continuous variable only (which in a

bigger framework corresponds to a noncompact attractor),

and partly because the attractor is not in the state space.

However, for a broad class of systems including HPVF ,

generic robustness of stability can be shown.

Theorem 4.1: Consider the hybrid system (2) and as-
sume that:

(A0) For all q ∈ Q, Cq ∪ Dq = O;
(•) For all q ∈ Q, (Aq1), (Aq2), (Aq3) of Lemma 3.5 hold;

(A4) The family {Cq}q∈Q forms a locally finite covering of
O;

(A5) The mappings Gq : O → Q are locally bounded in x
uniformly in q.

If A is asymptotically stable on O for (2), then it is robustly
asymptotically stable. That is, there exists an admissible
perturbation radius ρ such that the system Hρ given by

F ρ
q (ξ) := con Fq(ξ + ρ(ξ)B) + ρ(ξ)B,

Gρ
q(ξ) := Gq(ξ + ρ(ξ)B),

Cρ
q := {ξ ∈ O | (ξ + ρ(ξ)B) ∩ Cq 
= ∅},

Dρ
q := {ξ ∈ O | (ξ + ρ(ξ)B) ∩ Dq 
= ∅},

(5)

is asymptotically stable on O to A.

B. Robustness to time varying perturbations

Consider the hybrid system (2) under the assumptions of

Theorem 4.1. Let ρ be an admissible perturbation radius so

that the system Hρ is asymptotically stable on O to A, and

suppose that ξ and ζ are admissible measurement noise and

external disturbance, such that (3) hold. Then, any solution

to the (time-varying) system Hξ,ζ is also a solution to Hρ.

However, the very existence of solutions to Hξ,ζ can be

problematic. For example, consider a hybrid system (2) on

O = R and Q = {0} given by C = (−∞, 0], D = [0,∞),
F (x) = 0, G(x) = 0, measurement noise ξ(x, t) = ξ(t)
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with ξ(0) = −1, ξ(t) = 1 for all t > 0 (similar, but

arbitrarily small noise could be used here) and any external

disturbance. Then, there does not exist a solution to Hξ,ζ

with x(0, 0) = 0. Indeed, the solution can not jump at the

hybrid time (0, 0) (i.e. (0, 0), (0, 1) ∈ dom(x, q) can not

happen) since x(0, 0) + ξ(x(0, 0), 0) = −1 
∈ D. Similarly,

the solution can not flow at the hybrid time (0, 0) (i.e.

[0, ε)×{0} ∈ dom(x, q) can not happen for ε > 0) because

x(t, 0) + ξ(x(t, 0), t) = 1 
∈ C for any t > 0.

It turns out that if the sets Cq and Dq “overlap”, the

existence can be guaranteed. Below, by intS we mean the

interior of a set S.

Lemma 4.2: Consider the hybrid system (2) and assume
that (A4) of Theorem 4.1, and for all q ∈ Q, Aq1, Aq2, Aq3
of Lemma 3.5 hold. Suppose that, for all q ∈ Q, each x ∈ O
is such that either x ∈ int Cq or x ∈ intDq. Then there
exists an admissible perturbation radius ρe such that for any
admissible measurement noise and external disturbance ξ
and ζ for which (3) holds, solutions to Hξ,ζ exist for any
initial point (x0, q0) ∈ O × Q.

C. Proof of the main result

Let u : O → U be a patchy feedback that asymptotically

stabilizes (1), as guaranteed by Theorem 3.3. Let the associ-

ated patchy vector field PVF be given by the index set Q,

sets Ωα, Oα and control values uα ∈ U (leading to function

fα for each α ∈ A); recall Definition 3.2. Set Q := Q, and

for q ∈ Q, let Ω′
q be as constructed below Lemma 3.4. Then

define the sets

C ′
q = Ω′

q \
⋃
β�q

Ωβ

D′
q =

⋃
β�q

Ωβ ∪ (
O \ Ω′

q

) (6)

and mappings kq : O → U , gq : O → Q by

kq(x) = uq

gq(x) =

⎧⎨
⎩
{β ∈ Q |x ∈ Ωβ , β � q} x ∈

⋃
β�q

Ωβ

{β ∈ Q |x ∈ Ωβ} x ∈ O \ Ω′
q

(7)

Let H stand for the hybrid system (2) given by sets C ′
q,

D′
q, Fq(x) := f(x, kq(x)), Gq(x) = gq(x). Let ρ be an

admissible perturbation radius resulting from the application

of Theorem 4.1 to H; in particular, we thus have that A is

asymptotically stable on O for Hρ.

Lemma 4.3: Given sets C ′
q, D′

q and the admissible per-
turbation ρ as above, there exists an admissible perturbation
radius ρ′ bounded above by ρ such that, for all q ∈ Q,(

C ′ρ′
q

)ρ′

⊂ (
C ′

q

)ρ
,

(
D′ρ′

q

)ρ′

⊂ (
D′

q

)ρ
.

Above,
(
C ′

q

)ρ
is the “inflation” of the set C ′

q as in (5),

while
(
C ′ρ′

q

)ρ′

is the “inflation” of
(
C ′

q

)ρ′
. Similarly for

D′
q. Now, for each q ∈ Q, define

Cq =
(
C ′

q

)ρ′
, Dq =

(
D′

q

)ρ′
. (8)

These sets are such that for each q ∈ Q, each x ∈ Q is

either in intCq or intDq (or both). Note that as kq and gq

are defined on O (and are nonempty etc. there), not just on

C ′
q and D′

q, they are certainly well-defined on Cq and Dq.

Let ρe be the admissible perturbation radius as guaranteed

by Lemma 4.2, and let δ(x) := min{ρ′(x), ρe(x)}.

Consider the hybrid feedback given Q, the sets Cq, Dq

as in (8) and the mappings kq, gq as in (7). Let ξ and ζ
be admissible measurement noise and admissible external

disturbance such that (3) holds. By Lemma 4.2, solutions to

Hξ,ζ exist for any initial point in O × Q. By construction,

and since δ(x) ≤ ρ′(x), any solution to Hξ,ζ is a solution to

Hρ. As for the latter system, A is asymptotically stable on

O, so is the case for Hξ,ζ . This finishes the proof.
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