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Abstract— Limited delay lossy coding schemes are considered
for individual sequences. We address the problem of tracking
the best code (from a given reference class) which is adap-
tively matched to the source sequence with piecewise different
behavior. A general randomized algorithm is presented which
can perform, on any source sequence, asymptotically as well
as the best combined coding scheme matched to the sequence
that is allowed to change the employed code (from a finite
reference class of limited delay codes) several times during the
coding procedure. In particular, a low complexity algorithm is
presented for the special case where the reference class is the
set of scalar quantizers.

I. INTRODUCTION

In this paper we consider limited-delay lossy coding
schemes for individual sequences. Such schemes are of
obvious interest in many applications; in particular, limited-
delay lossy compression schemes are of importance in real-
time feedback control problems, where the feedback infor-
mation has to be transmitted under strict delay requirements
over a low-rate channel. More generally, the analysis and
construction of limited (or zero) delay source codes is of
interest in distributed control problems under communication
constraint, a recent challenge in control theory that has
been receiving increasing attention; see, e.g., [1] and the
references therein.

Our goal is to provide a universal coding method which
can dynamically adapt to the changes of the feedback data,
providing the controller with as much information as possi-
ble. We concentrate on methods that perform uniformly well
with respect to a given reference coder class on every indi-
vidual (deterministic) sequence. In this individual-sequence
setting no probabilistic assumptions are made on the source
sequence, which provides a natural model for situations when
very little is known about the source to be encoded.

Consider the widely used model for fixed-rate lossy source
coding at rate R where an infinite sequence of real-valued
source symbols x1, x2, . . . is transformed into a sequence
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of channel symbols b1, b2, . . . taking values from the finite
channel alphabet {1, 2, . . . , M}, M = 2R, and these channel
symbols are then used to produce the reproduction sequence
x̂1, x̂2, . . .. The scheme is said to have delay δ if the
reproduction symbol x̂n can be decoded at most δ time
instants after xn was available at the encoder. A general
model for this situation is that each channel symbol bn

depends only on the source symbols x1, . . . , xn+δ , and the
reproduction x̂n for the source symbol xn depends only on
the channel symbols b1, . . . , bn. Thus, the encoder produces
bn as soon as xn+δ is available, and the decoder can produce
x̂n when bn is received. (Note that this setup can also be used
to model the situation where there is limited delay both at
the encoder and at the decoder.)

The performance of a scheme is measured with respect to a
reference class of coding schemes, and the goal is to perform,
on any source sequence, asymptotically as well as the best
scheme in the reference class. Thus, the performance is mea-
sured by the distortion redundancy defined as the maximum
of the difference of the normalized cumulative distortion of
the applied scheme and the normalized cumulative distortion
of the best scheme in the reference class over all source
sequences of length n.

Limited delay lossy sequential coding of individual se-
quences was studied first in [2] for the special case of zero-
delay coding with the reference class of scalar quantizers.
The coding scheme of [2] is based on a generalization
of exponentially weighted average prediction of individual
sequences (see, e.g., Littlestone and Warmuth [3]), and
achieves a distortion redundancy of order n−1/5 log n, with
common randomization at the encoder and the decoder. This
result was improved and generalized by Weissman and Mer-
hav [4]. They considered the construction of schemes that
can compete with any finite set of limited-delay and finite-
memory coding schemes without requiring that the decoder
have access to the randomization sequence. The resulting
scheme has distortion redundancy O(n−1/3 log2/3 N), where
N is the size of the reference class. To our knowledge, this
is the best known redundancy bound for this problem. In the
special case where the reference class is the (infinite) set of
scalar quantizers, an O(n−1/3 log n) distortion redundancy
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can be achieved by approximating the reference class by an
appropriately chosen finite set of quantizers.

Although both schemes have the attractive property of
performing uniformly well on individual sequences, they are
computationally inefficient: in their straightforward imple-
mentation, they require a computational time of order nc 2R

,
where R is the rate of the coding scheme, and c = 1/5
for the scheme in [2] and c = 1/3 for the scheme in
[4]. This prohibitive complexity comes from the fact that,
in order to approximate the performance of the best scalar
quantizer, these methods have to calculate and store the
cumulative distortion of about nc 2R

quantizers. Clearly, even
for moderate values of the encoding rate, this complexity
makes the implementation of both methods infeasible.

For more general finite reference classes, the method of [4]
has to maintain a weight for each of the N reference codes.
This results in a computational complexity of order nN ,
which allows the use of only small reference classes. When
the reference class is an infinite set of codes, the method
is applied to a finite approximation of the reference class,
which, as we have seen above, results in a prohibitively large
N even when we want to compete with scalar quantizers.

Recently, using the special structure of scalar quantizers,
we provided an efficient implementation of the algorithm
of [4] (for the reference class of scalar quantizers) with
encoding complexity O(n4/3) and distortion redundancy
O(n−1/3 log n) [5]. The complexity can be made linear in
the sequence length at the price of increasing the distortion
redundancy to O(n−1/4

√
log n). A different method was

introduced in [6], where, based on the “follow-the-perturbed-
leader” prediction method of Hannan [7], a conceptually sim-
pler algorithm was provided with linear encoding complexity
and slightly increased distortion redundancy O(n−1/4 log n).

It was identified as an interesting open problem in [4]
to find an algorithm of low complexity that is able to
approximate the performance of the best scheme from a
larger reference class. In this paper we consider a more
general reference class in which each scheme partitions the
input sequence into contiguous segments and may employ
a different delay-δ code in each segment from a finite base
reference class F . (In the probabilistic setting, Shamir and
Merhav [8] and Shamir and Costello [9] considered the
similar problem of low-complexity sequential lossless coding
for piecewise-stationary memoryless sources.) If a combined
scheme can change the applied code m times, then the
number of such schemes is

∑m
j=0

(
n
j

)|F|(|F|−1)j . As in the
algorithm of Weissman and Merhav [4] one has to maintain
a weight for each reference code, the implementation of that
method is infeasible even for a very small F . In this paper
we overcome this problem by utilizing the special structure
of the reference class via the combination of the “tracking-
the-best-expert” prediction method of Herbster and Warmuth
[10] with the algorithm of [4]. As it will be shown later,
the resulting algorithm requires only the maintenance of
|F| weights. However, for rich base reference classes, this
method may still prove to be too complex. In the special
case when F is the set of scalar quantizers, we can combine

our recent efficient implementation of the “tracking-the-best-
expert” prediction method [11] with the efficient implemen-
tation in [5] to obtain low-complexity coding schemes (these
methods were presented in a less general context in [15]).

The rest of the paper is organized as follows. First, in
Section II, the “tracking-the-best-expert” prediction method
is revisited and slightly modified to suit our intended ap-
plication. Section III formalizes the problem of sequential
lossy source coding with delay constraints and introduces
a class of combined reference coding schemes where each
scheme is allowed to change the employed code (from a
given base reference class) a given number of times during
the coding procedure. In Section IV we use the prediction
framework of Section II to construct a limited-delay on-
line coding algorithm. We analyze the complexity and per-
formance of the algorithm, and show that it has relatively
modest complexity and performs nearly as well as the best of
the reference schemes matched to the entire input sequence.
Finally, in Section V, for the special case when the reference
coding schemes are combinations of scalar quantizers, a low-
complexity zero-delay scheme is provided which performs
essentially as well as the best scalar quantization scheme
which can change the employed quantizer from time to time
(the complexity of this scheme can be made linear in the
sequence length).

II. A VARIATION OF THE TRACKING-THE-BEST-EXPERT

PREDICTION METHOD

In this section we consider the following sequential deci-
sion problem. Suppose we want to perform a sequence of
decisions from a set D without the knowledge of the future.
The state of the system is described by a sequence y1, y2, . . .
taking values in some set Y . We assume that the predictor
has access to a sequence U1, U2, . . . of independent random
variables distributed uniformly over the interval [0, 1]. At
each time instant t = 1, 2, . . ., the predictor observes Ut,
and based on Ut and the past states yt−1 = (y1, . . . , yt−1)
makes a decision ŷt ∈ D. Then the predictor can observe the
next state yt, and suffers a loss �(yt, ŷt) for some bounded
loss function � : Y ×D → [0, B] (B > 0).

The predictor is supported by N experts: At each time
instant t expert i forms its decision ŷi,t ∈ D, and the
predictor can observe the decisions of all experts before
producing its own decision.

Formally, at each time instant t = 1, 2, . . ., first the
decision ŷi,t ∈ D, i = 1, . . . , N, of each expert is revealed,
then the predictor observes the random variable Ut and
makes a decision ŷt ∈ D, and finally the state of the system
is revealed and the predictor suffers loss �(yt, ŷt).

The expected cumulative loss of the sequential scheme at
time T is given by

ELT (f) = E

[
T∑

t=1

�(yt, ŷt)

]

where the expectation is taken with respect to the random-
izing sequence UT = (U1, . . . , UT ).
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The goal of the predictor is to achieve a cumulative loss
(almost) as small as the best “tracking” of the N (base)
experts. More precisely, to describe the loss the predictor is
compared to, consider the following “m-partition” decision
making scheme: the sequence of examples is partitioned
into m + 1 contiguous segments, and on each segment the
scheme assigns exactly one of the N experts. Formally, an
m-partition P(T, m, t, e) of the first T samples is given by
an m-tuple t = (t1, . . . , tm) such that t0 = 1 < t1 < · · · <
tm < T +1 = tm+1, and an (m+1)-vector e = (e0, . . . , em)
where ei ∈ {1, . . . , N}. At each time instant t, ti ≤ t < ti+1

expert ei is used to perform the decision ŷt. The cumulative
loss of a partition PT,m,t,e is

L(P(T, m, t, e)) =
m∑

i=0

ti+1−1∑
t=ti

�(yt, ŷi,t) =
m∑

i=0

L([ti, ti+1), ei)

where, for any time interval I , L(I, ei) =
∑

t∈I �(yt, ŷi,t)
denotes the cumulative loss of expert i in I .

The goal of the predictor is to perform as well as the best
partition, that is, to keep the normalized expected redundancy

1
T

(
E[LT (f)] − min

t,e
L(P(T, m, t, e))

)
as small as possible for all possible outcome sequences.

As the number of “m-partition” schemes is∑m
k=0

(
T
k

)
N(N − 1)k, it is computationally infeasible

to apply the exponentially weighted average prediction
method to the above problem, as there it is required to
store and update a weight for each of the “m-partition”
schemes. However, exploiting certain structural properties
of the problem, Herbster and Warmuth [10] provided an
efficient solution which only requires to store the weights
of the (base) experts.

Here we present a slightly modified version of the “fixed-
share” share update algorithm of [10]. While this modifica-
tion also appeared in [12], the performance bounds provided
there are insufficient for our purposes.

Algorithm 1: Fix the positive numbers η and 0 < α < 1,
and initialize weights ws

1,i = 1/N for i = 1, . . . , N . At

time instants t = 1, 2, . . . , T let v
(i)
t = ws

t,i/Wt where
Wt =

∑N
i=1 ws

t,i, and decide ŷt randomly according to the
distribution

P{ŷt = ŷi,t} = v
(i)
t . (1)

After receiving yt, for all i = 1, . . . , N let

wm
t,i = ws

t,ie
−η�(yt,ŷi,t)

and
ws

t+1,i =
αWt+1

N
+ (1 − α)wm

t,i

where Wt+1 =
∑N

i=1 wm
t,i.

Note that
∑N

i=1 ws
t+1,i =

∑N
i=1 wm

t,i = Wt+1, thus Wt+1

is uniquely defined.
Next we present a bound on the loss of the algorithm. The

proof is almost identical to that in [10] with some necessary

modifications introduced by the random choice (1), which
can be treated using standard methods (see, e.g., [13]).

Theorem 1: For all positive integers m < T , real numbers
0 < α < 1 and η > 0, and for any sequence y1, . . . , yT

taking values in [0, B] with some B > 0, the expected
redundancy ELT (f) of Algorithm 1 can be bounded as

E[LT (f)] − min
t,e

L(P(T, m, t, e))

≤ 1
η

ln
(

Nm+1

αm(1 − α)T−m−1

)
+

TηB2

8
.

In particular, if α = m
T−1 and η is chosen to minimize the

above bound, we have

E[LT (f)] − min
t,e

L(P(T, m, t, e))

≤ T 1/2 B√
2

√
(m + 1) lnN + m ln

T − 1
m

+ m. (2)

III. FINITE-DELAY FINITE-MEMORY SEQUENTIAL

SOURCE CODES

A fixed-rate delay-δ sequential source code of rate R =
log M is defined by an encoder-decoder pair connected via
a discrete noiseless channel of capacity R. (Here δ is a
nonnegative integer, M is a positive integer and log denotes
base-2 logarithm.) We assume that the encoder has access to
a sequence U1, U2, . . . of independent random variables dis-
tributed uniformly over the interval [0, 1]. The input to the en-
coder is a sequence of real numbers x1, x2, . . . taking values
in some source alphabet X . At each time instant i = 1, 2, . . .,
the encoder observes xi. At each time instant i + δ, i =
1, 2, . . ., the encoder also observes the random number Ui,
and based on the source sequence xi+δ = (x1, . . . , xi+δ) and
the randomizing sequence U i = (U1, . . . , Ui) received so far,
the encoder produces a channel symbol bi ∈ {1, 2, . . . , M}
which is then transmitted to the decoder. After receiving bi,
the decoder outputs the reconstruction value x̂i ∈ X̂ based
on the channel symbols bi = (b1, . . . , bi) received so far,
where X̂ is the reconstruction alphabet.

Formally, the code is given by a sequence of encoder-
decoder functions (f, g) = {fi, gi}∞i=1, where

fi : X i+δ × [0, 1]i → {1, 2, . . . , M}
and

gi : {1, 2, . . . , M}i → X̂
so that bi = fi(xi+δ, U i) and x̂i = gi(bi), i = 1, 2, . . .. Note
that the total delay of the encoding and decoding process
is δ. Although we require the decoder to operate with zero
delay, this requirement introduces no loss in generality, as
any finite-delay coding system with δ1 encoding and δ2

decoding delay can be equivalently represented in this way
with δ1 + δ2 encoding and zero decoding delay.

The expected normalized cumulative distortion of the
sequential scheme after reproducing the first n symbols is
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given by

E

[
1
n

n∑
i=1

d(xi, x̂i)

]

where d : X × X̂ → [0, 1] is some distortion measure,
and the expectation is taken with respect to the randomizing
sequence Un = (U1, . . . , Un). (All results may be extended
trivially for arbitrary bounded distortion measures.)

The decoder {gi} is said to be of finite memory s ≥ 0
if gi(bi) = gi(b̂i) for all i and bi, b̂i ∈ {0, . . . , M}i such
that bi

i−s = b̂i
i−s, where bi

i−s = (bi−s, bi−s+1, . . . , bi)
and b̂i

i−s = (b̂i−s, b̂i−s+1, . . . , b̂i). To simplify the notation
sometimes we will write gi(bi

i−s) instead of gi(bi) for such
decoders. Let Fδ denote the collection of all (randomized)
delay-δ sequential source codes of rate R, and let Fδ

s denote
the class of codes in Fδ with memory s.

Let F ⊂ Fδ
s be a finite class of base reference codes.

Our goal is to construct a coding scheme that performs,
for every sequence xn, asymptotically as well as the best
coding scheme which employs codes from F and is allowed
to change the code m times. Formally, a code in this class
Fm,n is given by integers 1 ≤ i1 < i2 < . . . < im < n and
codes {(f (j)

i , g
(j)
i }∞i=1, j = 0, . . . , m such that xi is encoded

to bi = f
(j)
i (xi+δ) if ij < i ≤ ij+1, where i0 = 0 and

im+1 = n. The “idealized” minimum normalized cumulative
distortion achievable by such schemes for n reproduction
values is

D∗
F,m,n(x) =

1
n

min
1≤i1<i2<...<im<n

m∑
j=0

min
(f,g)∈F

{

ij+1∑
i=ij+1

d
(
xi, gi

(
fi−s(xi+δ−s), . . . , fi(xi+δ)

))}
(3)

where x = (x1, x2, . . .) denotes the entire sequence. Note
that to find the best scheme achieving this minimum one
has to know the sequence xn+δ in advance. The minimum
above is idealized (and so optimistic). This is because when
the code is changed, any real coding system has to wait s
symbols to be able to fully utilize the decoder’s memory, but
in the formula above we assume that the decoder can operate
correctly immediately after the change.

IV. TRACKING THE BEST FINITE-DELAY FINITE-MEMORY

SOURCE CODE

In this section a low-complexity coding scheme is pro-
vided to track the best code from Fm,n. The scheme is a
combination of the coding scheme of [4] and the decision
scheme of [10] discussed in Section II.

The scheme works as follows. Divide the source sequence
xn into non-overlapping blocks of length l (for simplicity
assume that l divides n). At the beginning of the kth block,
that is, at time instants t = kl + 1, k = 0, . . . , n/l − 1,
a coding scheme (f (k), g(k)) = {f (k)

i , g
(k)
i }∞i=1 is chosen

randomly from the reference class F . The exact distribution
of (f (k), g(k)) will be specified later based on the results in

Section II. Then the encoder uses the first � 1
R log |F|� time

instants of the block to describe the selected coding scheme
(f (k), g(k)) to the receiver (�x� denotes the smallest integer
not less than x), that is, for time instants

i = (k − 1)l + 1, . . . , (k − 1)l +
⌈

1
R

log |F|
⌉

an index identifying (f (k), g(k)) is transmitted. In the rest of
the block, that is, for time instants

i = (k − 1)l +
⌈

1
R

log |F|
⌉

+ 1, . . . , kl

the encoder uses f
(k)
i to produce and transmit bi =

f
(k)
i (xi+δ, U i) to the receiver. In the first

h =
⌈

1
R

log |F|
⌉

+ s

time instants of the kth block, that is, while the index of the
coding scheme (f (k), g(k)) is communicated and the first s
correct channel symbols are received, the decoder emits an
arbitrary reproduction symbol x̂i = x̂ with distortion upper
bounded by

d̂ = sup
x∈X

d(x, x̂) ≤ 1.

In the remainder of the block, the decoder uses g
(k)
i to decode

the transmitted channel symbols as

x̂i = g
(k)
i (bi) = g

(k)
i (bi

i−s)

where bi
i−s = (bi−s, bi−s+1, . . . , bi) (recall that the decoder

g(k) has finite memory s).
Now except for the distortion induced by communicating

the quantizer index and the first s correct code symbols at
the beginning of each block, the above scheme can easily
be fitted in the sequential decision framework. We want
to make a sequence of decisions concerning the sequence
{yk} with yk = (x(k−1)l+h+1, . . . , xkl) for k = 1, . . . , n/l.
We consider any (f, g) ∈ F an expert whose prediction is
ŷ
(f,g)
k = (x̂(f,g)

(k−1)l+h+1, . . . , x̂
(f,g)
kl ), where x̂

(f,g)
i = gi(b̄i)

and b̄i = fi(xi+δ), incurring loss

�(y, ŷ) =
l−h∑
j=1

d(x(j), x̂(j))

where y = (x(1), . . . , x(l−h)) and ŷ = (x̂(1), . . . , x̂(l−h)).
Then

n∑
i=1

d(xi, x̂i) ≤
n/l∑
i=1

�(yi, ŷi) +
nhd̂

l

where the second term comes from the fact that in each block
the distortion of each of the first h symbols is at most d̂.

Choosing {f (k), g(k)} according to Algorithm 1 for the
above model, the following performance bound can be
proved based on Theorem 1.

Theorem 2: Let F ⊂ Fδ
s be a subclass of codes with delay

δ and memory s. Assume that m, n, l, M and s are positive
integers such that m < n/l, h = �log |F|/ log M� + s ≤ l,

8188



and l divides n, and let η > 0 and 0 < α < 1. Then the
normalized cumulative distortion of the above coding scheme
can be bounded for any sequence x and n ≥ 0 as

E

[
1
n

n∑
i=1

d(xi, x̂i)

]
− D∗

F,m,n(x)

≤ hd̂

l
+

1
ηn

ln
( |F|m+1

αm(1 − α)n/l−m−1

)

+
η(l − h)2

8l
+

m(l − 1)
n

.

Letting α = m/(n/l − 1), choosing η to
minimize the above bound, and setting l =
c1(n/m)1/3 log2/3 |F|/ log(n|F|/m), similarly to (2),
we obtain the following corollary.

Corollary 1: Assume that n/m > (�log |F|/R� + s)3.
Then there is a zero-delay sequential coding scheme with
normalized distortion redundancy

E

[
1
n

n∑
i=1

d(xi, x̂i)

]
− D∗

F,m,n(x)

≤ O

(
m

n
log |F| log

n|F|
m

)1/3

.

As mentioned in the introduction, the straightforward
implementation of this algorithm requires the maintenance
of only |F| weights. In contrast, the straightforward imple-
mentation of the algorithm of [4] for the combined reference
class Fm,n would require

∑m
j=0

(
n
j

)|F|(|F| − 1)j weights.
Thus, the proposed algorithm results in a drastic reduction
of both the space and time complexity, while keeping the
performance bound essentially the same. On the other hand,
if the base class F is too complex, the algorithm may still
be computationally too expensive to implement. However,
if F has some special structure, then it may be utilized to
obtain more efficient implementations. In the next section we
provide an example when F is the set of scalar quantizers.

V. TRACKING THE BEST SCALAR QUANTIZER

In this section we consider the special situation where the
base reference class F is the class of scalar quantizers. Note
that scalar quantization is a zero delay coding scheme. To
be able to utilize the special structure of scalar quantizers,
we introduce an alternative implementation of the on-line
decision algorithm of Section II. In a recent work [11], we
have shown that the random choice of the decision according
to (1) can be performed in two steps. First we choose a
random time τt, which specifies how many most recent
samples we are going to use for the prediction, then we
choose the decision according to the exponentially weighted
average prediction for these samples.

Algorithm 2: For t = 1, choose ŷ1 uniformly from the set
{ŷ1,1, . . . , ŷN,1}. For t ≥ 2, choose τt randomly according

to the distribution

P{τt = t′} =

⎧⎨
⎩

(1−α)t−1Z1,t−1
NWt

for t′ = 1
α(1−α)t−t′Wt′Zt′,t−1

NWt
for t′ = 2, . . . , t

where Zt′,t−1 =
∑N

i=1 e−ηL([t′,t−1],i) for 1 ≤ t′ ≤ t − 1,
and Zt,t−1 = N ; W1 = 1 and

Wt =
α

N

t−1∑
t′=2

(1− α)t−1−t′Wt′Zt′,t−1 +
(1 − α)t−2

N
Z1,t−1.

Given τt = t′, choose ŷt randomly according to the proba-
bilities

P{ŷt = ŷi,t|τt = t′} =

{
e−ηL([t′,t−1],i)

Zt′,t−1
for t′ = 1, . . . , t−1

1
N for t′ = t.

It can be shown that Algorithm 2 provides an alternative
implementation of Algorithm 1.

Theorem 3 ([11]): Algorithm 1 and Algorithm 2 are
equivalent in the sense that the generated decision sequences
have the same distribution. In particular, the sequence
(ŷ1, . . . , ŷT ) generated by Algorithm 2 satisfies

P{ŷt = ŷi,t} = v
(i)
t

for all t and i, where v
(i)
t are the normalized weights

generated by Algorithm 1.

The implementation of Algorithm 2 is useful if efficient
algorithms are available to compute the constants Zk′,k. Note
that Zk′,k is the total weight assigned to the problem by
the exponentially weighted average prediction method in the
interval [k′, k]. We will use the fact that these constants can
be efficiently computed for the related scalar quantization
problem [5].

An M -level scalar quantizer Q is a measurable mapping
R → C, where the codebook C is a finite subset of R with
cardinality |C| = M . The elements of C are called the code
points. The instantaneous squared distortion of Q for input
x is (x − Q(x))2. Without loss of generality we will only
consider nearest neighbor quantizers Q satisfying (Q(x) −
x)2 = minx̂∈C(x − x̂)2. Also, since we consider sequences
with components in [0, 1], we can assume without loss of
generality that the domain of definition of Q is [0, 1] and
that all its code points are in [0, 1].

Let Q denote the collection of all M -level nearest neigh-
bor quantizers. Our goal is to design a coding scheme that
performs, for any sequence xn, asymptotically as well as the
best coding scheme which employs M -level scalar quantizers
and is allowed to change quantizer m times. Formally, a
code in this class Qm,n is given by integers 1 ≤ i1 < i2 <
. . . < im < n and M -level scalar quantizers q0, . . . , qm ∈ Q
such that xi is encoded to qj(xi) if ij < i ≤ ij+1, where
i0 = 0 and im+1 = n. The minimum normalized cumulative
distortion achievable by such schemes is

D∗
m,n(xn) =

1
n

min
1≤i1<...<im<n

m∑
j=0

min
q∈Q

ij+1∑
i=ij+1

(xi − q(xi))2.
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Note that to find the best scheme achieving this minimum,
one has to know the entire sequence xn in advance.

The expected normalized distortion redundancy of a
scheme (with respect to the class Qm,n) is the quantity

sup
xn

(
E

[
1
n

n∑
i=1

(xi − x̂i)2
]
− D∗

m,n(xn)

)

where the supremum is over all individual sequences of
length n with components in [0, 1] (recall that the expectation
is taken over the randomizing sequence).

In order to be able to apply the coding procedure
of Section III, we need to find a finite class of codes
that is sufficiently close to Q. Let QK denote the class
of nearest-neighbor scalar quantizers whose code points
all belong to the finite grid {1/(2K), 3/(2K), . . . , (2K −
1)/(2K)}. It is easy to see that for any quantizer
Q ∈ Q there is a quantizer Q∗ ∈ QK such that
supx∈[0,1]

∣∣(x − Q(x))2 − (x − Q∗(x))2
∣∣ ≤ 1/K, thus the

best quantizers in Qk have essentially the same performance
as the best quantizers in Q. Thus, when applying the coding
scheme of Section III, at time instances t = kl + 1, k =
0. . . . , n/l − 1, we will choose a code (quantizer) Qk =
(f (k), g(k)) from QK .

Moreover, to reduce complexity, Algorithm 2 is used to
compute Qk instead of Algorithm 1. The efficient computa-
tion of the constants

Zk′,k =
∑

Q∈QK

e−η
∑ kl

i=(k′−1)l+1(xi−Q(xi))
2

for all k′ ≤ k is possible by a recent efficient implementation
of the scheme of [4] given in [5]. The method is very
similar to the weight pushing algorithm (see, e.g., [14]),
and relies on a correspondence between optimal quantizer
design and shortest path search in weighted digraphs. Instead
of randomly choosing the quantizer Qk at once, its code
points are chosen in an increasing order, one at a time; this
approach provides a substantial reduction in the complexity.
The complexity of the algorithm can be further reduced if
one uses the finely quantized version x̄i = qK(xi) of the
input, where qK is a K level uniform quantizer on [0, 1],
instead of the original values. While this modification results
in a slightly deteriorated performance, it makes possible to
implement the algorithm in linear time.

Using different choices of K and l, the following bounds
can be given on the performance and computational com-
plexity of the algorithm.

Corollary 2: Assume that n > m and n/m >⌈
M log(n/m)/(3R)

⌉3
. Then there is a zero-delay sequential

coding scheme with normalized distortion redundancy

E

{
1
n

n∑
i=1

(xi − x̂i)2
}

− D∗
m,n(xn) ≤ O

((m

n

) 1
3

log
n

m

)

and computational complexity O((M +m)n2). On the other
hand, if m = o(n1/3/ log n), then there is a zero-delay

sequential scheme with computational complexity O(Mn)
(i.e., linear in time), and normalized distortion redundancy

E

{
1
n

n∑
i=1

(xi − x̂i)2
}
−D∗

m,n(xn) ≤ O

(
m1/2 log1/2 n

n1/6

)
.

VI. CONCLUSION

We provided low-complexity randomized limited-delay
lossy source coding schemes which can perform, on any
source sequence, asymptotically as well as the best combined
coding scheme which is allowed to change the employed
code from a finite class of limited-delay finite memory
coding schemes from time to time. When the reference
codes are combinations of scalar quantizers, even further
complexity reduction was achieved, and a coding scheme
with linear complexity was presented. Extensions to other
special reference classes, as well as the proofs of the results
of this paper can be found in [16]. These include the case
of multiple description scalar quantization that can be used
in situations where the feedback information has to be
transmitted over a non-reliable lossy packet network.
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