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Abstract— Multi-modal control is a commonly used design
tool for breaking up complex control tasks into sequences
of simpler tasks. It has previously been shown that rapidly-
exploring randomized trees (as well as other viable approaches)
can be used for reachability computations given a set of
modes, and reinforcement learning can be performed over the
reachable set to obtain the optimal control sequence. In this
paper, we investigate the problem of adding new modes to
a motion description language in a structured manner. We
formalize an approach for augmenting the motion alphabet
by adding new modes to reduce the complexity of the control
program. In particular, we show a general technique for
combining recurring mode sequences into one smooth ”meta-
mode”. This problem is solved using a variational approach and
numerical examples illustrate the feasibility of the proposed
method.

I. INTRODUCTION

In order to manage the rapidly growing complexity asso-
ciated with many modern control applications, multi-modal
control has emerged as a viable option. The main idea is to
design a collection of modes, or control laws, defined with
respect to a particular task, data source, or operating point,
and then concatenate these control laws in order to produce
the desired overall behavior. Given that such a mode string is
the design objective, the control task thus involves mapping
symbols (tokenized mode descriptions) to signals rather than
signals (control values) to signals. A number of modelling
paradigms facilitating this construction have been proposed
from Hybrid Automata [1] to Motion Description Languages
[2], [3].

The expressiveness of a given set of control modes (to-
gether with rules for their concatenation) can be character-
ized through the set of trajectories producible by the mode
set, and hence the computation of the reachable set is one of
the key topics in the hybrid systems literature. To name a few,
[4], [5], [6], [7] proposed analytical methods for achieving
this, while [8], [9] concerned the development of numerical
algorithms for computing the reachable set. In this paper
we follow the work in [10], [11], where rapidly-exploring
randomized trees (RRTs) [12], [13] were put to work for
reachability computations, and reinforcement learning was
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performed over the reachable set in order to obtain the
optimal modal sequence. An example of using this approach
to estimate the reachable set and learn the optimal control
program is shown in Figure 1. Here we find the optimal path
to drive a unicycle from x0 to xg while avoiding obstacles
and minimizing the length of the control sequence along with
the total distance travelled.

Fig. 1. Estimated reachable set along with the optimal learned path (thick)
to drive a unicycle from x0 to xg given a set of modes.

In this paper we continue the development begun in [11],
where it was shown how reinforcement learning over motion
description languages transformed learning in continuous
time over smooth manifolds to learning in discrete time over
finite sets. The question under consideration in this paper is:
”Given a set of modes and a corresponding characterization
of the reachable set, what new modes, if any, should be added
in order to improve the performance?” Moreover, this ques-
tion should be answered without too much computational
overhead.

The outline of this paper is as follows: In Section 2
we will formulate the problem and show how calculus of
variations provides the tools needed for this solution. In
Section 3 we will investigate a number of particular example
problems, followed by a brief discussion about extensions,
generalizations, and applications in Section 4.

II. MOTION ALPHABET AUGMENTATION

Formally, we define a mode σ as a pair (κ,ξ ), where
κ : X → U corresponds to a particular feedback law, and
the interrupt ξ : X → {0,1} encodes conditions for its ter-
mination. Note here that X , U denote the state and input
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space respectively. Given a finite set of feedback mappings
K and interrupts Ξ, we let Σ = K × Ξ denote the set of
all modes, or control-interrupt pairs. Moreover, by Σ� we
understand the set of all finite length strings over Σ, while
ΣN is the set of strings with length less than or equal to
N. Now let XΣ�

R ⊂ X denote the reachable subset of X
induced by Σ�. As mentioned earlier, the calculation of the
reachable subset has been thoroughly studied and there is an
abundance of literature pertaining to the estimation of XΣ�

R .
In particular, in [11] RRT’s were employed to estimate the
reachable set. Now, if we bound the length of the control
program (i.e. |σ̄ | ≤ N, where σ̄ = σ1σ2 · · ·σk (k ≤ N) is the
control sequence that transfers the system from x0 to a state
x ∈ XΣN

R ) and fix x0, then the set XΣN

R is finite and we can
use reinforcement learning over the reachable set to find the
optimal mode string σ̄∗ ∈ ΣN to transition the system from
x0 to an open ball

B(x f ,ε) = {x ∈ X | ‖ x− x f ‖< ε}.

Note above that σ̄∗ is the optimal control program learned
with respect to minimizing some predefined cost J(x, σ̄).

Once we have obtained σ̄∗ (i.e. using reinforcement learn-
ing), what new modes, if any, should be added in order to
improve the performance? For this question to be well-posed,
we first need to quantify performance: Say that we want to
increase the expressiveness while reducing the complexity of
the control program. The complexity of a control program
(see [2], [3] for more details) σ̄ can be represented by
|σ̄ | log2(card(Σ)), hence there is a tradeoff between expres-
siveness and complexity (Note here that card(·) denotes the
cardinality). Observe that the length of the control string is
directly proportional to the complexity, while the cardinality
of Σ is only logarithmically proportional to the complexity.
Hence decreasing the string length at the cost of increasing
the card(Σ) may result in a reduction of the specification
complexity.

So, in light of this discussion, we propose to add new
modes in a highly structured manner by merging or com-
bining recurring mode sequences into one smooth mode, if
possible. Suppose for example there are multiple occurrences
of σ1 = (κ1,ξ1) followed by σ2 = (κ2,ξ2) in our control
program σ̄ (i.e. σ̄ = σ1σ2σ3σ1σ2σ4σ1σ2), we would like to
replace this mode pair (σ1σ2) with one single mode σnew =
(κnew,ξ2) that produces the combined behavior of σ1σ2, to
some degree of accuracy. Hence, defining this new mode is
equivalent to defining a new feedback law κnew. In order to
manage the complexity, we constrain κnew to be a function of
the existing feedback laws, i.e. κnew = δ (κ1,κ2, . . . ,κcard(K))
for some δ : Kcard(K) → (X →U). This problem can in fact
be posed as a general optimization problem and solved using
calculus of variations. This will be the topic of the next
section assuming, without loss of generality, that we are
merging two modes and that the interrupts are time-based
(i.e. they trigger after a mode has been executing for certain
time).

A. General Problem Formulation

Consider the following system:

ẋ(t) =
{

f1(x(t)) if t ∈ [0,τ]
f2(x(t)) if t ∈ [τ,T ] , (1)

where x ∈ R
n and x(0) = x0 is given. Here fi : R

n → R
n

for i = 1,2, are continuously differentiable functions. Now
assume we have a set of continuously differentiable functions
gi : R

n → R
n for i = 1,2, . . . ,N, and let

ż(t) =
N

∑
i=1

αigi(z(t)),where α ∈ R, z ∈ R
n, and z(0) = x0.

(2)
We want to choose �α = [α1, . . . ,αN ]T so that the cost function

J(�α) =
∫ T

0
L(x(t),z(t))dt +ψ(x(T ),z(T )) (3)

is minimized, where L and ψ are continuously differentiable
in their second argument. Note that for our problem, gi =
δi( f1, f2), and that L(x(t),z(t)) may be 0 for all t if we are
only concerned with the final position, but we will derive the
solution to this more general problem formulation.

By adding the constraint with a co-state λ (t) to (3), we
obtain

J̃(�α) =
∫ T

0

[
L(x(t),z(t))+

+λ (t)
( N

∑
i=1

αigi(z(t))− ż(t)
)]

dt +ψ(x(T ),z(T )). (4)

Note above that J̃(�α) denotes the unperturbed cost. Now
we perturb (4) in such a way that �α → �α + ε�θk, where
�θk = [0, . . . ,θk, . . . ,0]T (note the kth entry is θk and all other
entries are 0’s), and ε << 1, then z → z+εη is the resulting
variation in z(t). Note that above, we dropped the argument
t when referring to z(t) and will continue this convention in
the following development for compactness with the implicit
understanding that x, z and λ are functions of t. Now the
perturbed cost is given by

J̃(�α + ε�θk) =
∫ T

0

[
L(x,z+ εη))+

+λ
(

α1g1(z+ εη)+α2g2(z+ εη)+ . . .+

+(αk + εθk)gk(z+ εη)+ . . .+αNgN(z+ εη)

−ż(t)− εη̇
)]

dt +ψ(x(T ),(z+ εη)(T )). (5)

Hence the Gateaux (also referred to as directional) derivative
of J̃ in the direction of �θk is

∇�θk
J̃(�α) = lim

ε→0

J̃(�α + ε�θk)− J̃(�α)
ε

=
∫ T

0

[∂L
∂ z

η +
N

∑
i=1

λαi
∂gi

∂ z
η +λθkgk(z)

−λη̇
]
dt +

∂ψ
∂ z

η(T ) (6)
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Now by integrating λη̇ in (6) by parts and rearranging terms,
we obtain

∇�θk
J̃(�α) =

∫ T

0

[∂L
∂ z

+λ
N

∑
i=1

αi
∂gi

∂ z
+ λ̇

]
ηdt +

+θk

∫ T

0
λgk(z)dt −

[
λη

]T

0
+

∂ψ
∂ z

η(T ) (7)

Note that η(0) = 0 since z(0) = x(0) = x0. Now choose

λ (T ) =
∂ψ
∂ z

(8)

λ̇ (t) = −∂L
∂ z

(x,z)−λ (t)
N

∑
i=1

αi
∂gi

∂ z
(z) (9)

With this choice of the co-state λ (t), which can be solved
by integrating (9) backwards with initial condition (8), we
obtain

∇�θk
J̃(�α) =

[∫ T

0
λgk(z(t))dt

]
θk (10)

Finally, note that (10) gives access to the partial derivative
∂ J̃

∂αk
since we know that

∇�θ J̃(�α) =
∂ J̃

∂α1
θ1 + · · ·+ ∂ J̃

∂αN
θN , (11)

where �θ = [θ1, . . . ,θN ]T . Hence using (10) , (11), and the
fact that αk’s are independent of each other, we deduce that

dJ
dαk

=
∫ T

0
λ (t)gk(z(t))dt. (12)

The motivation for obtaining an expression for the
gradient (12) is that we can now employ a gradient descent
method. The following numerical algorithm is proposed:

At each iteration n, where �α(n) is the current vector
of control variables, we follow these steps :

1) Compute the approximation function z(t) forward in
time from 0 to T using (2).

2) Compute the co-state λ (t) backward in time from T
to 0 using (8) and (9).

3) Compute the gradient ∇J̃(�α(n)) =
[

∂ J̃

∂α(n)
1

, . . . , ∂ J̃

∂α(n)
N

]T

using (12).

4) Update the control variables as follow :

�α(n+1) = �α(n) − γ(n)∇J̃(�α(n))

Note that the choice of the stepsize γ(n) can be critical for
the method to converge. An efficient method among others
is the use of Armijo’s algorithm presented in [14]. Because
of the non-convex nature of the cost function J, this gradient
descent algorithm will only converge to a local minimum.
Hence the attainment of a ”good” local minimum can be
quite dependent on the choice of a ”good” initial guess for
the control variables. However, the method presented here

still offers significant reductions in the cost function. The
association of such a local method with heuristic strategies
in order to find a global minimum is not investigated here.

III. EXAMPLES

A. Linear System

Consider the following autonomous linear system:

ẋ(t) =
{

A1x(t) if t ∈ [0, T
2 ]

A2x(t) if t ∈ [T
2 ,T ]

. (13)

Again x ∈ R
n and x(0) = x0 is given, then the evolution of x

is given as follows:

x(0) = x0

x(T
2 ) = eA1

T
2 x0

x(T ) = eA2
T
2 x(T

2 ) = eA2
T
2 eA1

T
2 x0

Now suppose we want to find a new A such that

x(T ) = eA2
T
2 eA1

T
2 x0 ≈ eAT x0. (14)

Hence we need to find �α that ensures (14) holds when
A = ∑N

i=1 αiGi, where we let Gi belong to the P. Hall basis
L(A1,A2), where L is the Lie algebra. This approach of
using Lie brackets from the P. Hall basis to obtain a control
for solving the Motion Planning Problem was explored in
[15]. For the definition of P. Hall basis, see [16] and [17],
here we just present an example.

Example: The P. Hall basis of L(X ,Y ) up to degree
four is X , Y , [X ,Y ], [X , [X ,Y ]], [Y, [X ,Y ]], [X , [X , [X ,Y ]]],
[Y, [X , [X ,Y ]]], [Y, [Y, [X ,Y ]]], [X , [X , [X , [X ,Y ]]]], [Y, [X , [X ,
[X ,Y ]]]], [Y, [Y, [X , [X ,Y ]]]], and [Y, [Y, [Y, [X ,Y ]]]].

One way of obtaining A is through the use of the
well known Campbell-Baker-Hausdorff (CBH) formula,
which can be stated as follows:

Campbell-Baker-Hausdorff (CBH) Formula For any
two matrices X , Y sufficiently close to 0 , there exists
a matrix Z ∈ L(X ,Y ) such that eZ = eX eY . Moreover,
Z can be explicitly expressed in the Dynkin form as:
Z = X + Y + 1

2 [X ,Y ] + 1
12 [X , [X ,Y ]] + 1

12 [Y, [Y,X ]] + . . . ,
where [X ,Y ] = XY −Y X is the matrix commutator.

Since CBH formula gives an infinite series, we have
to be concerned about the convergence when applying the
formula. The convergence of the CBF formula has been
well studied [18], [19], and it is shown that the Dynkin
series converges for matrices X , Y if there is a Lie norm
for which

‖ X ‖Lie + ‖ Y ‖Lie≤ log(2). (15)

Here ‖ · ‖Lie denotes the Lie norm, which is a norm on
matrices compatible with Lie multiplication, i.e.

‖ [X ,Y ] ‖Lie≤‖ X ‖Lie‖ Y ‖Lie .
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Clearly if T is sufficiently small, then ‖ Ai
T
2 ‖Lie will meet

the bound above (15) for i = 1,2. In this case we should
be able to approximate this result by using finite number
elements from the Lie algebra.

Using CBH formula it is clear that,

A = 1
2 A1 + 1

2 A2 + T
4 [A1,A2]+ T 2

8 [A1, [A1,A2]]+ . . .

≡ 1
2 A1 + 1

2 A2 + T
4 [A1,A2]+∆(T 2), (16)

where ∆(T 2) is the remaining part of the series which is
polynomial in T of degree greater than T 2. Now let us denote
Ã = 1

2 A1 + 1
2 A2 + T

4 [A1,A2], we will show that ‖ eÃ+∆(T 2) −
eÃ ‖ is bounded by o(T 2). Hence x(T ) ≈ eÃT for a small
enough T . First, note the following expression derived in
[20],

eA+∆ − eA =
∫ 1

0
e(1−τ)A∆eτAdτ +o(‖ ∆ ‖). (17)

Hence, by manipulating (17) we obtain

‖ eA+∆ − eA ‖ ≤ ‖
∫ 1

0
e(1−τ)A∆eτAdτ ‖ +o(‖ ∆ ‖)

≤
∫ 1

0
‖ e(1−τ)A∆eτA ‖ dτ +o(‖ ∆ ‖)

≤
∫ 1

0
e‖A‖ ‖ ∆ ‖ e‖A‖dτ +o(‖ ∆ ‖)

= e2‖A‖ ‖ ∆ ‖ +o(‖ ∆ ‖) (18)

So in our case (18) is reduced to

‖ eÃ+∆(T 2) − eÃ ‖≤ e2‖Ã‖o(T 2). (19)

We have thus shown that A given by the CBH formula can be
approximated by Ã for a small enough T . Of course we can
approximate A by using higher-order Lie brackets to obtain
a better approximation if desired.

Alternatively, we can also use the calculus of variations
solution derived earlier to approximate A. Consequently,
let g1(x) = A1x, g2(x) = A2x, g3(x) = [A1,A2]x, g4(x) =
[A1, [A1,A2]]x, and so on. Now we can calculate the coef-
ficients �α∗ = [α1,α2, . . .]T as outlined earlier. So let us take
a specific example and compare the two methods described
here. Let

ẋ(t) =

⎧⎪⎪⎨
⎪⎪⎩

(
1 0.3
0 −1

)
x(t) if t ∈ [0, T

2 ]( −1.2 0.1
−0.3 1

)
x(t) if t ∈ [T

2 ,T ]
. (20)

Suppose x0 =
(

1
1

)
, and let’s derive a new matrix Anew that

tranfers the system from x0 to x(T )≈ eA2
T
2 eA1

T
2 x0 in time T

without the switch at time T
2 . Figure 2 shows the trajectories

obtained using the first-order approximation of the CBH for-
mula and the corresponding calculus of variation approxima-
tion using Ânew = α1A1 +α2A2 +α2[A1,A2] with T = 2. Note
that the calculus of variations approach obtained a virtually
perfect match, while the CBH approximation was not very
accurate. In this case �α∗ = (0.8763,0.8112,0.4134)T , hence
Ânew = 0.8763A1 + 0.8112A2 + 0.4134[A1,A2] as opposed

to Ãnew = 0.5A1 + 0.5A2 + 0.5[A1,A2], given by the CBF
formula. The CBF formula expectedly provides a better
approximation when T = 1 (i.e. for a smaller T ) as shown
in Figure 3. The evolution of �α in the steepest descent
algorithm for both cases (T = 2,1) is shown in Figure 4. Here
γ(n) = 0.05 is the step size at iteration n, and it should be
noted that the algorithm converges quickly. Observe that the
calculus of variations result depends on the initial condition
x0 and hence �α∗ will vary as x0 varies, however the CBH
formula provides global results that are independent of the
initial condition x0.
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Fig. 2. Comparison of the two methods described with T = 2. In this case
‖ x(T )− zCBH(T ) ‖= 0.3459, while ‖ x(T )− zCOV (T ) ‖= 1.81 ·10−5.
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Fig. 3. Comparison of the two methods described with T = 1. In this case
‖ x(T )− zCBH(T ) ‖= 0.0736, while ‖ x(T )− zCOV (T ) ‖= 5.84 ·10−4.
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Fig. 4. The evolution of �α for T = 2 and T = 1, note here that the step
size γ(n) = 0.05.

B. Robotics Example

Here we consider the problem of steering a unicycle. The
equations for this system are

ẋ = vcos(φ),
ẏ = vsin(φ),
φ̇ = ω.

(21)

In the system above (x,y) are the Cartesian coordinate of
the center of the unicycle and φ is its orientation with
respect to the x-axis. Assume that v is constant and ω
is the control variable. Given that the system initially has
two behaviors, namely ”go-to-goal” and ”avoid-obstacle”,
the feedback mappings associated with each behavior are
as follow:

κg(x,y,φ) = ωg = Cg(φg −φ),
κo(x,y,φ) = ωo = Co(π +φo −φ).

Note here that Cg and Co are the gains associated with each
behavior, and φg and φo are the angles to the goal and nearest
obstacle respectively. Both of these angles are measured with
respect to the x-axis and can be expressed as

φg = arctan(
yg − y

xg − x
) and

φo = arctan(
yobs − y
xobs − x

),

where (xg,yg) and (xobs,yobs) are the Cartesian coordinates of
the goal and the nearest obstacle respectively. We also have a
set of three interrupts, ξ1,2,3(x), that trigger at three different
distances away from the nearest obstacle (xobs,yobs), and all
three interrupts always trigger at the goal (xg,yg). Hence
the total number of available modes is six, i.e. card(Σ) = 6.
The problem then is to plan a path from an initial state
(x0,y0,φ0) to an open ball around (xg,yg) given the set
of modes above while minimizing the string length of the

control program (i.e. number of switches) along with the
total distance travelled.

Given this set of modes we begin by exploring the
reachable space using RRTs. The general algorithm for
accomplishing this is given by

χ := {x0}
for k = 1 to N

x := rand(χ)
σ := rand(Σ)
x′ := f (x,σ)
if x′ /∈ χ then

χ := χ ∪{x′}
end if

end for
XΣ�

R ≈ χ

The algorithm starts by exploring from x0, i.e. set χ = {x0}.
At each iteration, we select a state x randomly from χ (Note
we can also select a state x ∈ χ with the largest Voronoi
region instead of the random selection, see [12] for more
details and tradeoff considerations). Next, we select a mode
σ = (κ,ξ ) randomly from the set of available modes to drive
the unicycle from state x to x′, i.e. x′ = f (x,σ) where f
is the state transition function. If x′ /∈ χ , then augment χ
accordingly. We continue in this manner for a large number
of iterations N, and then denote XΣ�

R ≈ χ . Once XΣ�

R is
determined, we can use Q-learning to determine the optimal
mode sequence to reach xg starting from x0. Note more
detailed explanation of RRTs and Q-learning can be found
in [10],[11],[12],[13],[21],and [22].

The resulting path for our problem (obtained using the
technique briefly outlined here) is shown in Figure 5. The
optimal control sequence in this case is

σ̄∗ = (κg,ξ1)(κo,ξ3)(κg,ξ1)(κo,ξ3)(κg,ξ1)(κo,ξ3)
(κg,ξ1)(κo,ξ1)(κg,ξ1).

So clearly (κo,ξ3)(κg,ξ1) is repeated often in the optimal
control program, thus it would be beneficial to replace it
with a single mode (κn,ξ1), where κn = αgκg +αoκo. Using
the variational techniques given here, it is found that α∗

g =
0.211 and α∗

o = 0.801. Now we recalculate the optimal path
with the new feedback mapping κn(x) and again the three
existing interrupts for its termination added to the mode set.
The resulting path is shown in Figure 6 and the optimal
control sequence is given by σ̃∗ = (κg,ξ1)(κn,ξ1)(κg,ξ1).
The augmentation of the motion alphabet results in great
improvement in terms of the optimal mode sequence and the
resulting optimal trajectory. Although we only designed the
new feedback map to ”merge” two modes, the overall affect
of adding the new modes reduced the size of the control
program from |σ∗|= 9 to |σ̃∗|= 3. Moreover, the complexity
of the control program is reduced from 9 · log2(6) = 23.2647
to 3 · log2(9) = 9.5098.

IV. CONCLUSIONS

When humans acquire new motor skills, they are typically
obtained from a combination of previously established skills.
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Fig. 5. The estimated reachable set along with the optimal path (thick) to
drive a unicycle from x0 to xg using the available set of modes.

Fig. 6. The estimated reachable set along with the optimal path (thick) to
drive a unicycle from x0 to xg using the augmented set of modes.

This observation constituted the starting point for this work
that addressed the following question: ”Given a set of modes,
what new modes (if any) should be added to the mode set
in order to improve the overall system performance?” Our
solution was based on two main assumptions. First, we begin
with a characterization of the reachable set obtained from
the original mode set. The new modes should be added in
such a way so that frequently recurring mode combinations
can be combined into single ”meta-modes”. Secondly, this
combination is obtained through a linear combinations of the
known modes (or any generalizing functions, such as the P.
Hall basis). The solution was obtained using the calculus
of variations, and two different numerical examples clearly
illustrates the usefulness of the proposed method.
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