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Smooth and Analytic Normal and Canonical Forms for
Strict Feedforward Systems

Issa A. Tall and Witold Respondek

Abstract— Recently we proved that any smooth (resp. ana-
lytic) strict feedforward system can be brought into its normal
form via a smooth (resp. analytic) feedback transformation.
This will allow us to identify a subclass of strict feedforward
systems, called systems in special strict feedforward form, shortly
(SSFF), possessing a canonical form which is an analytic coun-
terpart of the formal canonical form. For (SSFF)-systems, the
step-by-step normalization procedure of Kang and Krener leads
to smooth (resp. convergent analytic) normalizing feedback
transformations. We illustrate the class of (SSFF)-systems by a
model of an inverted pendulum on a cart.

I. INTRODUCTION

In this paper we study the problem of analytic normal
forms for analytic strict feedforward systems. A single-input
nonlinear control system of the form

II: = f(z,u),

where © € R™ and u € R, is in strict feedforward form if
we have

-fl — fl(x27...,l'n,u)
(SFF) i’n—l = fn—l(znau)

A basic structural property of systems in strict feedforward
form is that their solutions can be found by quadratures.
Indeed, knowing u(t) we integrate f,(u(t)) to get z,(t),
then we integrate f,,_1(x,(t),u(t)) to get z,_1(t), we keep
doing that, and finally we integrate f1(z2(t), ..., 2, (t), u(t))
to get x1(t).

In view of the above, systems in strict feedforward form
can be considered as duals of flat systems. In the single-input
case, flat systems are feedback linearizable and are defined
as systems for which we can find a function of the state
that, together with its derivatives, gives all the states and
the control of the system [5]. In a dual way, for systems in
strict feedforward form (SFF), we can find all states via a
successive integration starting from a function of the control.

Another property, crucial in applications, of systems in
(strict) feedforward form is that we can construct for them
a stabilizing feedback. This important result goes back to
Teel [37] and has been followed by a growing literature on
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stabilization and tracking for systems in (strict) feedforward
form (see e.g. [11], [19], [28], [38], [3], [20]).

The problem of transforming a system into a (strict)
feedforward form has recently been studied using various
techniques: in [18] only state transformations are applied, the
notion of (controlled) invariant distributions is used in [2],
a step-by-step constructive method to bring a system into a
feedforward form [35] and strict feedforward form [33], [34]
has been developed by the authors who also described in [25]
relations between strict feedforward forms and symmetries.

The general problem of transforming the nonlinear control
single-input system

Im: &= f(z,u), ze€R" uweR™
by an invertible feedback transformation of the form
Loz o= 6@
u = v(x,v)

to a simpler form has been extensively studied during the
last twenty years. The transformation I' brings II into the
system

0: 2= f(zv),
whose dynamics are given by

f(z,0) = dg(¢71(2)) - F(97(2):7(07 (2), 0)).

If the control u is not present, that is, the system II is
actually a dynamical system of the form

ZL':f(ZL'), r € R",

then the transformation I' consists solely of a change of
coordinates z = ¢(x). A classical problem addressed by
Poincaré is whether it is possible to find local coordinates
z = ¢(x) around an equilibrium point in which the dy-
namical system becomes linear. Poincaré has solved it by
applying, step by step, homogeneous changes of coordinates
in order to normalize the corresponding homogeneous parts
of the same degree of the system. If all homogenous parts
can be annihilated (no resonances), we formally linearize
the system. If not, the result of this normalization procedure
gives a formal normal form, which contains nonlinearizable
terms only (called resonant terms, (see e.g. [1]).

Similarly, for control systems, the natural question of
feedback equivalence of II to a linear system II has been
studied and solved in [6] and [9]. If the geometric lin-
earizability conditions are not satisfied, a natural problem is
to find normal forms for non linearizable systems. Various
approaches have been proposed, based on the singularity
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theory, Cartan equivalence method, hamiltonian formalism
etc (see, e.g. [26] for references). In this paper, we will use
a very fruitful approach of Kang and Krener [14], [12], [13]
who have proposed to analyze (following Poincaré), step
by step, the action of the Taylor series expansion of the
feedback transformation I' on the Taylor series expansion
of the system II and have obtained for single-input control
systems with controllable linearization normal forms for
the quadratic terms [14] and then for higher order terms
[12]. The results of Kang and Krener [14], [12] have been
completed by the authors who obtained canonical forms
and dual canonical forms for single-input nonlinear control
systems with controllable [31] and then with uncontrollable
linearization [32] (see also [17]). Recently those results have
been generalized by Tall [29], [30] to multi-input nonlinear
control systems.

Although these normal and canonical forms are formal,
they are very useful in studying bifurcations of nonlinear
systems [15], [17], in obtaining a complete description of
symmetries around equilibria [23], [24], and in characterizing
systems equivalent to feedforward forms [33], [35], [34].

Challenging questions are thus whether these normal
forms have their counterparts in the C'°°-smooth and real
analytic (C*) categories and what are conditions for the
normalizing procedure to be convergent. In other words, what
are obstructions for obtaining smooth and analytic normal
forms for control systems?

It is well known that the problems of convergence of the
normalizing transformations is difficult already for dynam-
ical systems. It was solved (in terms of locations of the
eigenvalues of the linearization) by Sternberg and Chen in
the C'*°-category and by Poincaré, Dulac, Siegel, and others
in the C“- category (see [1] for details and references).

For control systems, the eigenvalues of the linearization
are not invariant under feedback and the convergence prob-
lem seems to be even more involved. The only known results
relating formal and C“-normal forms are in Kang [12]: for
feedback linearizable systems (based on [16]) and for a class
of non linearizable 3-dimensional systems. Other normal
forms in the C'°°- and C“-categories have been obtained
in [4], [8], [10], [27], [40] via singularity theory methods.

Very recently we showed in [36] that any smooth (resp.
analytic) strict feedforward system can be brought to its
normal form via a smooth (resp. analytic) feedback trans-
formation. This allowed us to identify in [36] a subclass of
strict feedforward systems, called special strict feedforward
systems, possessing a smooth normal form. In this paper we
will show that an analytic special strict feedforward system
can be brought to an analytic canonical form. These normal
and canonical forms are, respectively, smooth and analytic
counterparts of the corresponding formal forms obtained,
respectively, by Kang [12] (normal form) and the authors
[31] (canonical form).

The paper is organized as follows. In Section II we will
recall the Kang normal form and the canonical form of the
authors for single-input systems. Our main results: smooth
and analytic normal and canonical forms for strict feedfor-

ward and special strict feedforward systems are given in
Section III and the proof of the canonical form in Section V.
Finally, in Section IV we illustrate our strict feedforward
normal forms by a model of inverted pendulum on a cart.

II. NOTATION AND DEFINITIONS

All objects, i.e., functions, maps, vector fields, control
systems, etc., are considered in a neighborhood of 0 € R"
and assumed to be either smooth (which will always mean
C*°-smooth) or real analytic (denoted by C*). Let h be a
smooth function. By

h(z) = BO(z) + i (z) + nPl(z) + - = i Al ()
m=0

we denote its Taylor expansion around zero, where hl™l(x)
stands for a homogeneous polynomial of degree m.

Similarly, for a map ¢ of an open subset of R™ to R"
(resp. for a vector field f on an open subset of R™) we will
denote by ¢[™ (resp. by f[™l) the term of degree m of its
Taylor expansion at zero, i.e., each component gbg?”} of ¢l
(resp. f][m] of fI]) is a homogeneous polynomial of degree
m in x.

Together with the system II, we will also consider its
infinite Taylor series expansion, given by

o0
f(z,u) = Fx + Gu+ Y fIml(z,u),
m=2
(IL.1)

where F' = %(0) and G = %(O). We will assume
throughout the paper that f(0,0) = 0.

Consider also the Taylor series expansion I'>° of the
feedback transformation I' given by

I~ .z =

b(z) =Tz + 3 ¢Im(x)

m=2

Y(z,v) = Kx+ Lo+ ) 'y[m](x,v),

m (I1.2)
where the matrix 7" is invertible and L # 0. The action of
I"*® on the system II*® step by step leads to formal normal
forms. The following normal form was obtained by Kang
[12] (see also [14], [31]) and then completed by the authors
who obtained the canonical forms (see [31] for details):

z =

I'ee:

Theorem II.1 Consider the system 11°°, defined by (II.1).
(1) II*® is feedback equivalent, by a formal transformation
I1'°® of the form (11.2), to the formal normal form

I¥p :2=Az+ Bv+ Z Fml(z,0),

m=mg

where for any m > mg > 2, we have

n+1 [m—2]
) S 2P ), 1<j<n-1,
=]
07 ] =n,
(IL3)
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with P][ZL_Z] (z;) being homogeneous polynomials of degree
m—2of z; = (z1,...,2), and zp41 = v.

(i) The system 11> given by (II.1) is equivalent by a
formal feedback T'*° to its canonical form

gy : 2=Az+Bv+ Z fm(2),
m=myo

where, for any m > myg, the components ij[m] (2) of fIml(2)
are given by (I11.3); additionally, we have

omo 7[_’2”0]
# =+1 (IL.4)
Ozy' -+ 0z, 2
and, moreover, for any m > mg + 1,
amo _[T]
#(2170, ...,0)=0. (IL5)
Ozt - 0z,

(iii) Two systems 113° and IIS° are formally feedback
equivalent if and only if their canonical forms 117 and
I3 R coincide.

In (IL.4) and (IL.5), mg is the degree of the first nonlin-
earizable term and the integers j* and tuple (i1,...,%,—_s)
are defined in [31]. The form Iy satisfying (I1.3), (IL.4)
and (IL.5) is called the canonical form of II>° because of its
uniqueness property (iii).

The problem whether an analogous result holds in the
smooth (resp. analytic) category is actually a challenging
question, which can be formulated as whether for a smooth
(resp. analytic) system II the normalizing feedback transfor-
mation ' gives rise to a smooth (resp. convergent) I' and
thus leads to a smooth (resp. analytic) normal form Ilyf
and/or canonical form IIo . One of the difficulties resides
in the fact that it is not clear at all how to express, in terms
of the original system, homogeneous invariants transformed
via an infinite composition of homogeneous feedback trans-
formations. We will study in this paper a special class of
analytic control systems, namely strict feedforward systems,
that can be brought to their canonical (thus normal) forms
by analytic transformations.

III. MAIN RESULTS

Consider the class of smooth or analytic single-input
control systems
II: &= f(z,u),

in strict feedforward form (SFF), that is, such that
fi(@,u) = fi(xj41, -

Notice that for any 1 < ¢ < n, the subsystem II;, defined
as the projection of I onto R"~% via m(xy,...,1,) =
(Tit1,...,2n), is a well defined system whose dynamics
are given by

'7'1:"’,“’)’ 1§j§n-

iy = fi(zj41,- -, on,u), fori<j<n.

Define the linearizability index of the (SFF)-system to be the
largest integer p such that the subsystem II,., where p+r = n,

is feedback linearizable. Clearly, the linearizability index is
feedback invariant and hence the linearizability indices of
two feedback equivalent systems coincide. In this paper we
will assume that the linear approximation around the origin
is controllable. In this case p > 2. The general case of
uncontrollable linearization will be considered elsewhere.

Each component of a strict feedforward system (SFF)
decomposes uniquely, locally or globally, as:

fj(x,u) :hj($j+1)—|—Fj(l‘j+1,...,.’1,‘n,u), (IIL.1)
for 1 < j < n (we put F,, = 0), where
Fj(z;41,0,...,0) =0. (111.2)
A strict feedforward form for which
hj($j+1) = kjl‘j+1, 1 S] <r-— 1, (IH3)

for some non zero real numbers k1, ..., k,._1, will be called
a special strict feedforward form (SSFF).
The main result of this paper is as follows.

Theorem IIL.1 Consider an analytic special strict feed-
forward form (SSFF) given by (II1.1)-(111.2)-(II1.3), locally
around (o, ug) € R™ xR (resp. globally on R™ x R). There
exists a local around (xg,ug) (resp. global on R™ x R)
analytic feedback transformation that maps (xo,ug) into
(0,0) and brings the system (IIL1)-(IIL2)-(IIL.3) into the
canonical form

n+1
: 2
21 =29+ E 2Py i(z2,. .., %)
1=3
n+1
3 2
Zj = Zj+1 + E Z; Pj7i(zj+1,...,zi)
=42
Hssrer : "
n
3 2
Zr = Zr41 T+ § Z; Pr,i(zr+17~~~7zi)
1=r+2
2}r+1 = Zr42
Zn_1=2n
Zn =0,
(ITL.4)

where P;i(zj+1,...,2;) are analytic functions of the indi-
cated variables, z,.1 = v and

mo 2
00z Py

D1

7%(2:170’ PR
Dzt - 92

,0) = +1. (IIL5)

The meaning of the integers mg > 2, £ > 0, s and of the
tuple (4,41, ...,is) will be made precise in the proof.

The main observation is that the canonical form [lggspcp
given by (II1.4)-(IIL.5) is itself a (SSFF)-system. Recall that,
by Theorem II.1, any system (not necessarily (SSFF)) can

be brought to its formal canonical form IIZ¥, via a formal
feedback transformation I'°. If the system is in special strict

4215



feedforward form (SSFF), then its formal canonical form
IIg, is actually the formal power series of the analytic
canonical form Ilggror (Whose existence is assured by
Theorem III.1), which is, moreover, strict feedforward. In
other words, for a (SSFF)-system put into its canonical form,

the formal series expansions Y °_ f [m](2,v) (with the

components f][m} of fl™ given by (I1.3)) can be replaced
by analytic functions of (III.4), exhibiting additionally a
strict feedforward form. A counterpart of Theorem III.1 for
C*°-smooth systems was proved in [36] for normal forms
Ilssror satisfying (I11.4) only.

To justify the name canonical form, consider another
analytic system R

O:iz=f (z,a),

in strict feedforward form, that is, such that

o hi(&j41) + Fj(Fja1, ooy Ty @), 1<j<F
fj(x,u) = B .
07 r+1 S J S n
(111.6)
where
Fj(#41,0,...,0) =0, and  dEj(0) =0. (IIL7)

It is in the special strict feedforward form (SSFF) if

hi(#j41) = kB, 1<j<7—1, (II1.8)

for some non zero real numbers l~€1, ..., kz_1. We then have
the following result justifying the name of canonical form:

Theorem IIL2 Two analytic special strict feedforward sys-
tems (SSFF) given, respectively by, (II.1)-(111.2)-(1I1.3)
and (I11.6)-(I11.7)-(111.8) are analytic feedback equivalent if
and only if their canonical forms llgspor and ﬁsgpcp
coincide.

The proof of this theorem is given in Section V. A natural
question to ask is whether it is always possible to transform a
strict feedforward form, given by (III.1)-(IIL.2), into a special
strict feedforward form (III.1)-(I11.2)-(I11.3).

Theorem IIL3 If two analytic (SFF)-systems given by,
respectively, (IlII.1)-(IIL.2) and (II1.6)-(IIL.7) are feedback
equivalent, then r = 7 and

hj(lj1Z541) = Lihj(E541), 1<j<r-—1,

for some non zero real numbers ly, ..., 1. _1.

Corollary II1.4 An analytic strict feedforward system
(SFF), given by (Ill.1)-(IIL.2), is feedback equivalent to the
special strict feedforward form (SSFF), given by (IIL.6)-
(1I1.7)-(1IL.8), if and only if

hj(xj1) = kjzji1,

for 1 < 5 < r —1, that is, the nonlinearizable part of the
system is already in (SSFF) in its original coordinates.

Basically, Theorem III.3 or Corollary II1.4 imply that if the
nonlinearizable part of a (SFF)-system is not in a (SSFF),

then it cannot be brought to that form by any smooth (in
particular, analytic) feedback transformation. This means
that special strict feedforward forms (SSFF) define the only
subclass of strict feedforward systems that can be brought to
the Kang normal form Il (actually, canonical form Ilq g
) still being in the strict feedforward form. Whether it is
possible to bring a smooth (resp. analytic) (SFF)-system into
its normal form Il or canonical form Il by a smooth
(resp. analytic) transformation is unclear but if true, then
the normal form IInf (or canonical form Ilor) will loose
the structure of (SFF) (unless the system is (SSFF)). On the
other hand, any smooth (resp. analytic) strict feedforward
form (SFF) can be brought to a smooth (resp. analytic) form
IspnE, called strict feedforward normal form (introduced
by the authors in [33] in the formal category), which is close
as much as possible to the normal form IIyr. Indeed, we
have the following result proved in [36] (which, together
with Theorem III.3, implies Theorem III.1):

Theorem IILS Any smooth (resp. analytic) strict feedfor-
ward form (SFF), given by (IIl.1)-(1Il.2), is smooth (resp.
analytic) feedback equivalent to the strict feedforward nor-
mal form (SFNF):

n+1
4 =hi(z) + Y 2P
i=3
B n+1
IsrNr 4 =hi(zi) + > 5P (IIL.9)
i=j+2
2n—1 = }_Ln—l(zn) + Zi+1pn—1,n+1
Zn = hn(v)a
where zp11 = v, ﬁj(zjﬂ) = h;(zj41) and Pj; =
P;i(2j11,...,2;) are smooth (resp. analytic) functions of

the indicated variables.

Provided that the linear approximation is controllable, the
linearizability index of a general (SFF)-system on R? is
at least one while the linearizability index of a general
control-affine system on R? is at least two. It follows that in
those two cases the functions h; are not invariant (compare
Theorem II1.3), which implies the following:

Corollary IIL.6 (i) Any smooth (resp. analytic) strict feed-
forward form (SFF) on R?, given by (IIl.1)-(1I1.2), is special
and is feedback equivalent to the normal form

s 2
21 = 29 +0°P13(22,0)
22 = v,

where Py 3 is a smooth (resp. analytic) function of the
indicated variables.

(i) Any smooth (resp. analytic) control-affine strict feed-
forward system (SFF) on R® is special and is feedback
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equivalent to the normal form

. 2
21 = 2o+ 25P13(22,23)
22 = z3
2:’3 = 0,

where P; 3 is a smooth (resp. analytic) function of the
indicated variables.
IV. EXAMPLE

Example IV.1 Cart-Pole System. In this example we con-
sider a cart-pole system that is represented by a cart with an
inverted pendulum on it [21], [39]. The Lagrangian equations
of motion for the cart-pole system are

malsin(go)ds + F
g Sin(QQ)a

(m1 4+ ma)d1 + malcos(qz)ge =
cos(g2)gr + g =
where m1 and ¢; are the mass and position of the cart, mo,
l, g2 € (—m/2,7/2) are the mass, length of the link, and
angle of the pole, respectively.
Taking ¢G> = u and applying the feedback law (see [21])
F = —ul(m; + maysin®(ga))/ cos(go)
+ (m1 + moa)g tan(gz) — molsin(g2)d3
the dynamics of the cart-pole system are transformed into

Zo = gtan(xs) — lu/cos(x3)

x'4:u,

jf‘l = T2,
T3 = T4,

where we take x1 = q1, 2 = ¢1, T3 = @2, and x4 = Go.

This system is in special strict feedforward form (SSFF)
with the linearizability index p = 2. The feedback transfor-
mation defined by

- T4
1 =x1+1 Tog=x2+1
COSS COS T3
Ty
379tanfﬂ3, Ty =9—
COS“ I3

and 7 = gu/ cos?(x3) +2gx3w4 sin(xs)/ cos®(x3), takes the
system into the normal form

2 ~ z Fa 4 li'B ~92
T = T2, T =1I3 7;U
. (g +$2)d/2
Ty = T4, T4=1.

Taking a linear transformation z = Az, followed by a linear
feedback v = A4, with A\ = é 1/g, we obtain the canonical
form HSSFCF:

21 =29, 2o =23+ #Zi
(14 (g/1)23)3/2

23:,24, 24:1).

V. PROOFS

Theorems III.5 and III.3 are proved in details in [36], so
we will show Theorems III.1 and III.2.

Proof of Theorem IIl.1 Consider the system (III.1)-(I1L.2)-
(II1.3). Since this system is in strict feedforward form, it
follows (because of Theorem III.5 and Lemma 1(ii) of [36]
and the fact that the linearizability index is invariant) that
there exists an analytic feedback transformation (local or

global) that takes the system into the strict feedforward
normal form

_ n+1 9
xr1 = hl(.flig)—l- inpl}i
i=3
_ n+1 5
& = hjlwi)+ > 2P
i=j+2
IIspnF - B el
Ly = hr(£r+1)+ Z xip'r,i
i=r+2
Tri1 = Trq2
Tp1 = Tn
Tn = U,
where z,41 = u, Pj; = Pji(xj41,...,2;) are smooth
(resp. analytic) functions of the indicated variables, and
hj(zj+1) = kjxzj41 for some non zero real numbers

ki,..., kr_1.

Taking 21 = x1, z; = A\jz; for 2 < j < r+ 1, with
Aj =ky---kj_1, completed by 2,19 = A\rp1%rq2, ...
)\r+1$n and v = )\T+1u, we obtain hj ($j+1) =Tjt1-

Choose s to be the largest integer, r +2 < s < n+ 1,
such that P, s(zy41,...,2s) # 0.

Let mo denote the degree of the first homogeneous
nonzero terms in the Taylor series expansion of

az’ﬂ:

Fr,s(xr-i-lv s 7$s) = 3?§Pr,s($r+1, cee axs)'

Define (iy41,...,4s) With 4,49 + -+ +1is = mg and i5 > 2
to be the largest (s —r)-tuple , in the lexicography ordering,
such that

mOFT‘
IR (g)—c 2.
Ox'ri2 - Oul

By a linear transformation z; = Az;,v = Au we transform
Artl s
.-zl of degree mgy of Fy o(xry1,...,Ts)

the term cz,’ .
Il Zis with @ = ¢A"™0. We then choose A so

into ¢z} -
that ¢ = £1. It follows that

O™ F,

ir42 is
oz, [y - 0xy

((El,...

that is, the system is in canonical form. O
Proof of Theorem II1.2 Consider two analytic special strict
feedforward forms (SSFF) given, respectively by, (III.1)-
(II1.2)-(111.3) and (I11.6)-(I11.7)-(I1L.8).
Sufficiency. It is clear (using Theorem III.1) that the two
systems are analytic feedback equivalent if their canonical
forms Ilssrcr and f[ggpcp coincide.
Necessity. Suppose that the two systems are analytic feed-
back equivalent. Theorem III.1 implies that their canonical
forms Ilsspcr and ﬁsspcp are also analytic feedback
equivalent, say, by Z = ¢(z),0 = v(z,v). Because of the
(SFF)-structure © = Av and ¢;(z) = ¢;(z,...,2,) for
1 < j < n. We claim that ¢ = Id. Indeed, let k£ be the
smallest integer such that for £ +1 < j < n, we have
¢j(2) = A;z; for some nonzero real numbers. The integer
k is well-defined because ¢,(z) = Apzn. If & > 1, the
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transformation ¢ will then modify the k-component of the
canonical form IIgsrpcor according to

zZ

k:TZkszr...Jra—lel+Fr(zk+1,...,zn,v),
. n+1 97
where F(2pt+1,..-,%n,0) = > 2P i(Zr41,...,2;) for
1=r+2

some analytic functions PM», and [ is the largest integer such
that ¢ (z) = ¢r(zk,...,2). The transformed system is a
(SFF)-system but NOT a (SSFNF) because of the terms

%Z :8¢k(zk,...,zl)z
8251 1+1 azl 1+1

that invert as ©(Z,...,%)Z41. Thus & = 0 and hence
qﬁj(z) = Ajzj, for 1 < j < n. Since llgspcr and llssror
satisfy, respectively

gmo22 P,
8147‘-}—178[7;5(2170’..-70) == il

2y 825

omEP,, .
W(zl,o,...ﬁ) = il,

Z’r’Jrl s 02Zg

it follows that A; = 1 and A = 1, and completes the proof. [
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