
On Sensor Fusion in the Presence of Packet-dropping
Communication Channels

Vijay Gupta, Babak Hassibi, Richard M Murray

Abstract— In this paper we look at the problem of multi-
sensor data fusion when data is being communicated over
channels that drop packets randomly. We are motivated by
the use of wireless links for communication among nodes in
upcoming sensor networks. We wish to identify the informa-
tion that should be communicated by each node to others given
that some of the information it had transmitted earlier might
have been lost. We solve the problem exactly for the case
of two sensors and study the performance of the algorithm
when more sensors are present. For the two-sensor case, the
performance of our algorithm is optimal in the sense that if
a packet is received from the other sensor, it is equivalent to
receiving all previous measurements, irrespective of the packet
drop pattern.

I. INTRODUCTION

In recent years, there has been a lot of interest in sensor
networks and sensor webs. Originally motivated by military
surveillance applications, they are now being employed in
a wide variety of applications (e.g., see [11], [23] and
the references therein). Compared to using one big sensor,
typical advantages of using sensor networks include rela-
tively lower costs, inherent robustness and greater mobility.
Moreover greater accuracy is possible not only due to
more observations being taken for the same source but
also since multiple types of sensors can potentially be used
that generate observations related to different facets of the
source. However, the price to be paid for these advantages
is the need for communication and greater complexity in
the estimation algorithms.

A basic problem in sensor networks is how to fuse the
observation data from many nodes. The classical Kalman
filter is a centralized filter that assumes all observations
coming to a central computing facility. Over the years
techniques have been proposed to decentralize the filter
computations and to minimize the amount of information
that needs to be transmitted among the nodes. An early
contribution was [24] where information obtained from the
local sensors is combined to generate the global estimate.
However it required that data about the global estimate be
sent from the fusion node to the local sensors. A similar re-
quirement was imposed in the ‘successive orthogonalization
of measurement subspaces’ algorithm proposed in [13]. This
difficulty was first overcome in [22], [7] in which each local
node sends its own local estimate based on its own data
and communicates this estimate and the error covariance
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data to the fusion center. Similar results for continuous time
systems were presented in [25]. These results were further
extended in [12] where both the measurement and time
update steps of the Kalman filter were decentralized. An
alternative approach for data fusion from many nodes using
the Federated filter was proposed in [5]. A Bayesian method
was used and some algorithms presented in [14], [4] which
are optimal when there is no process noise. A scattering
framework [17] and algorithms based on decomposition of
the information form of the Kalman filter [19], [3] have
also been proposed for data fusion. A scheme based on the
concept of dynamic consensus is proposed in [21], but it
assumes multiple communication rounds per time step of
the system evolution. For some other approaches proposed
in the literature (e.g. those based on tracklets [9]), see [8],
[18].

However these approaches assume a fixed communication
topology among the nodes with a link, if present, being per-
fect. With wireless channels being used for communication
between sensor nodes that are mobile, this assumption needs
to be questioned. In such a case, packets of information
from one node to another will be dropped randomly by the
communication channel present between them. This random
loss of information reintroduces the problem of correlation
between the estimation errors of various nodes [1] and
renders the approaches proposed in the literature as sub-
optimal. We wish to address this problem of finding the
optimal global estimate for each node in the case when there
are communication channels present between the nodes and
packets of information are being randomly dropped. We
disallow approaches such as sending all the measurements
taken by each node across the entire network each time
communication is possible because they can potentially
entail transmitting arbitrarily large amounts of data. An
approach to solve this problem was proposed in [2] in the
context of track-to-track fusion through exchange of state
estimates based on each sensor’s own local measurements
but the specific scheme that was used was not proven to
be optimal. Moreover, as was found in [20], the algorithm
for fusing the local state estimates that was proposed is
not optimal in the mean square sense. It was subsequently
proved in [6], [18] that the technique was based on an
assumption that was not met in general. The main con-
tribution of this paper is to pose the problem of optimal
coding for estimation in the presence of packet dropping
channels and to propose an alternative algorithm which is
optimal in the mean square sense for the case of two sensors
being present. For more than two sensors, the algorithm no
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longer remains optimal, but we present simulations to study
the performance.

This paper is organized as follows. We begin with the
problem formulation where we also define our notations and
assumptions. Then we solve the problem for the case of two
sensors. In the next section we present simulation results
to study the performance of the protocol as the number of
sensors is increased. We finish with conclusions and outline
some avenues for future work.

II. PROBLEM FORMULATION

Process

Sensor 1

Sensor 2

Channel

Fig. 1. Problem block diagram. Only two sensors are shown, but in
general there can be N sensors.

The basic set-up of the problem is illustrated in Figure 1.
Consider the discrete-time process that evolves according to

xk+1 = Fkxk + Gkuk, (1)

where xk ∈ R
n is the process state and uk ∈ R

m is
zero-mean white noise process. The initial condition x0 is
assumed to be a zero mean random variable with covariance
matrix Π0. The process is being observed by N sensors
(N = 2 in the figure) of the form

yi
k = Hi

kxk + vi
k, i = 1, · · · , N, (2)

with vi
k ∈ R

pi being zero-mean white noise processes as
well. Further

〈

⎡
⎢⎢⎢⎣

uk

v1
k
...

vN
k

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

uj

v1
j

...
vN

j

⎤
⎥⎥⎥⎦〉 =

⎡
⎢⎢⎢⎣

Qk 0 · · · 0
0 R1

k · · · 0
...

. . .
0 0 · · · RN

k

⎤
⎥⎥⎥⎦ δkj ,

where the inner product 〈x, y〉 is defined in the usual way
(see, e.g., [15])

〈x, y〉 = E
[
xyT

]
.

The sensor models and the noise statistics are known
to all sensors. From now on, we use the words sensor,
sensor-estimator and node interchangeably. The sensors are
allowed to communicate through communication channels.
The communication channels are modeled as switches with
an associated drop probability. In other words, for every
transmission, the channel either transmits the input to the
output with a certain probability or does not produce any
output. Such a channel model is a natural way to model
situations where error detection coding is done for each
packet of information. We assume that there is no inter-
transmission coding present. Further we assume that a
sufficient number of bits are allotted for each transmission
so that quantization effects can be ignored.

At every time instant, each sensor-estimator thus has a
pool of knowledge available to it about its own and other
sensors’ measurements. On the basis of this knowledge, it
constructs an estimate of the process (1). The estimate of
sensor i at time step k is denoted by x̂i

k. We assume that to
generate the estimate of xk the measurements till time step
k can be used. Thus we are interested in causal estimators
only. We further restrict our attention to linear estimators.
The goal of each sensor-estimator i is to minimize the
covariance matrix of the error defined by

ei
k = xk − x̂i

k.

In other words, we are interested in the linear least mean
square (llms) estimator of xk. If there are no communication
channel related constraints present, each sensor can transmit
the latest measurement it has observed to other sensors
and at time step k, every sensor will thus have access
to all the measurements

[
{y1

j }
k
j=0, {y

2
j }

k
j=0, · · · , {yN

j }k
j=0

]
taken so far by the N sensors. It can then calculate the
best estimate through a Kalman filter (see, e.g., [16]).
Further, to reduce computation at every node, the Kalman
filter can be decentralized through any of the techniques
already mentioned. The key thing to note in these techniques
is that all nodes are alike in the sense that they have
access to an identical set of information from which to
construct estimates. Thus every node can function as a
central node which processes the information sent by other
nodes. Further since the latest information is transmitted at
every time instant, the estimation process can be recursive.

The introduction of communication channels, breaks this
symmetry and introduces several interesting issues into the
problem.

1) It is no longer clear what information the nodes
should transmit to each other. Transmission of mea-
surements alone might not be optimal. Consider two
nodes i and j joined by a communication channel
that has just dropped a packet at time step k. If the
node i is sending its latest measurement alone, at
time step k + 1 the node j will have no access to
the measurement yi

k. Thus its estimate will not be
optimal. On the other hand, the node i does not know
that a packet has been dropped at time step k. Thus
it cannot retransmit the information. If it transmits
all the measurements it has taken so far, the amount
of information needed to be transmitted will grow
without bound as time k increases.

2) The conventional sensor fusion algorithms are no
longer applicable. This is so since the fusion algo-
rithms are usually recursive in either the measure-
ments or the local estimates. It is not clear what to
do in the case when the information is not delivered at
a particular time step, but can potentially be delivered
at some future time when the communication channel
allows information to be transmitted.

3) It may be possible to use some routing algorithms to
improve performance. Consider three nodes i, j and
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k. If the communication channel between j and k

drops a lot of packets, it might be useful for j to rout
information to k through the node i.

We propose to look at these issues. We begin with the case
of two sensors where we have tight results and then study
the performance for the case of N sensors being present. We
assume a broadcast medium in which each sensor can talk
to every other sensor, except for packet drops. The packet
dropping pattern is assumed to be independent from one
time step to the next, although as we shall see, for the case
of 2 sensors, our algorithm is optimal irrespective of the
packet drop statistics or model.

III. TWO SENSORS PRESENT

Let the measurements of the sensors at time step k be
given by y1

k and y2
k. Let the estimates be denoted as x̂1

k and
x̂2

k respectively. Moreover, let âk|S denote the best possible
estimate of random variable a given the information in the
set S. Note that if there are two information sets S1 and
S2 such that S1 ⊂ S2, then the error in the estimate âk|S2

is less than or equal to the error in the estimate âk|S1
in

the mean square sense. This is so since while forming the
estimate âk, we can simply not use the information from
S2.

Keeping this fact in mind, we first write down the
biggest set of information which can possibly be available
to a sensor on which it bases its estimate. To understand
the situation a little better, we view it from the position
of sensor 1. For sensor 1, we are looking to optimize
the estimate x̂1

k+1|S , where S can be no bigger than the
following

• If a packet has been received from sensor 2 at time
step k, then S =

[
{y1

j }
k
j=0, {y

2
j }

k
j=0

]
.

• If the last packet was received from sensor 2 at time
step k − t, then S =

[
{y1

j }
k
j=0, {y

2
j }

k−t
j=0

]
.

Similar statements can be written about sensor 2. The error
covariances of these estimates will be a lower bound on all
schemes that transmit different information from one sensor
to the other. As an example, for a scheme that only sends the
latest measurements, the information set would not contain
those measurements that are dropped by the channel and
would thus be a subset of S mentioned above. Thus its
error covariance will be more than the one implied by this
upper bound.

In the following, we propose an algorithm that achieves
the upper bound. We will adopt the view-point of sensor
1 in the presentation. Consider a hypothetical centralized
estimator, that has access to all the measurements from both
the sensors. For this optimal centralized filter define the
following quantities:

• x̂k|l : estimate of xk based on all the measurements of
both the sensors up to time step l.

• Pk|l: covariance matrix of the error corresponding to
the estimate x̂k|l.

Equivalently, we can say that the optimal centralized filter
is obtaining measurements from a filter of the form

yk = Hkxk + vk,

where

Hk =

[
H1

k

H2
k

]

while vk is white Gaussian noise with zero mean and
covariance

Rk =

[
R1

k 0
0 R2

k

]
.

Thus we can write the following equations for the time and
measurement updates of the Kalman filter:(

Pk|k

)−1
=

(
Pk|k−1

)−1
+ HT

k (Rk)
−1

Hk(
Pk|k

)−1
x̂k|k =

(
Pk|k−1

)−1
x̂k|k−1 + HT

k (Rk)
−1

yk

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 + GT

k−1Qk−1Gk−1

x̂k|k−1 = Fk−1x̂k−1|k−1.

Now we utilize the fact that Rk is a block diagonal matrix.
Thus

HT
k (Rk)

−1
Hk =

∑
i

[(
Hi

k

)T (
Ri

k

)−1
Hi

k

]

HT
k (Rk)

−1
yk =

∑
i

[(
Hi

k

)T (
Ri

k

)−1
yi

k

]
.

Thus we can rewrite the equations for the optimal filter as(
Pk|k

)−1
=

(
Pk|k−1

)−1

+
∑

i

[(
P i

k|k

)−1

−
(
P i

k|k−1

)−1
]

(
Pk|k

)−1
x̂k|k =

(
Pk|k−1

)−1
x̂k|k−1

+
∑

i

[(
P i

k|k

)−1

x̂i
k|k −

(
P i

k|k−1

)−1

x̂i
k|k−1

]
Pk|k−1 = Fk−1Pk−1|k−1F

T
k−1 + GT

k−1Qk−1Gk−1

x̂k|k−1 = Fk−1x̂k−1|k−1

The first two equations form a measurement update step and
the last two a time update step. Note that the communication
requirement at time step k from sensor i is as follows:

• For the covariance matrices, no communication is
required. They can be calculated by either sensor, even
off-line.

• For the estimates, the contribution from i-th sensor is(
P i

k|k

)−1

x̂i
k|k −

(
P i

k|k−1

)−1

x̂i
k|k−1

.

We can use this observation to obtain the information that
sensor i should transmit to the other sensor that is used to
calculate the optimal estimate. Denote

Λi
k =

(
P i

k|k

)−1

x̂i
k|k −

(
P i

k|k−1

)−1

x̂i
k|k−1.
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Thus Λi
k is the contribution from sensor i corresponding to

measurement at time step k. Thus, we can write(
Pk|k

)−1
x̂k|k =

(
Pk|k−1

)−1
x̂k|k−1 +

∑
i

Λi
k

=
(
Pk|k−1

)−1
Ax̂k−1|k−1 +

∑
i

Λi
k

= Γk

[(
Pk−1|k−2

)−1
x̂k−1|k−2 +

∑
i

Λi
k−1

]

+
∑

i

Λi
k

where
Γk =

(
Pk|k−1

)−1
APk−1|k−1.

Continuing this way, we obtain(
Pk|k

)−1
x̂k|k = ΓkΓk−1 · · ·Γ1P

−1

0|−1
x̂0|−1 +

∑
i

Ii
k,

where

Ii
k = Λi

k + ΓkΛi
k−1 + ΓkΓk−1Λ

i
k−2 + · · ·

+ (ΓkΓk−1 · · ·Γ1) Λi
0

Thus, the information needed from sensor i at time step k

is precisely Ii
k given in the above equation.Note that the

computation required for calculating I i
k does not grow with

time since
Ii
k = Λi

k + ΓkIi
k−1.

This information vector ‘washes away’ the effect of any pre-
vious packet losses and leads to the calculation of optimal
estimate at time step k as if all the measurements from both
sensors were available, ie, it calculates the estimate x̂i

k|S if
the last communication from sensor j was possible at time
step k. No knowledge about packet drop probabilities is
required.

Thus we have obtained a way for sensor i to obtain the
lowest possible error achievable when communication from
sensor j is possible at time step k. If the last communication
was possible at time step k − t, clearly, the best estimate
will be obtained by finding the estimate at time step k − t

and then propagating it with sensor i’s measurements only.
Thus we obtain the following algorithm that achieves the
estimate based on the set S outlined above. We summarize
the algorithm in the following proposition.

Proposition 1: The algorithm outlined below achieves
the optimal causal llms estimate based on all of the sensor’s
own measurements till time step k and the other sensor’s
measurements till time step k − t where the last communi-
cation from the other sensor was possible at time k − t.

Algorithm : At each time step k,

• Each sensor takes its own measurement and runs a
local Kalman filter. At time step k, it calculates

– x̂i
k|k and P i

k|k from its local Kalman filter.

– Λi
k =

(
P i

k|k

)−1

x̂i
k|k −

(
P i

k|k−1

)−1

x̂i
k|k−1

.

– Global error covariance matrices Pk|k and Pk|k−1.

– Γk =
(
Pk|k−1

)−1
Fk−1Pk−1|k−1.

– Ii
k = Λi

k + ΓkIi
k−1

.

• It transmits Ii
k and waits for the corresponding infor-

mation from the other sensor.

– If it receives I
j
k from the other sensor, it obtains

the global estimate as

(
Pk|k

)−1
x̂k|k

= ΓkΓk−1 · · ·Γ1P
−1

0|−1
x̂0|−1 + Ii

k + I
j
k.

– If it does not receive information from the other
sensor, it uses the last global estimate it has and
propagates it with its own measurements.

Note that we have made no assumptions about the statistics
of the packet dropping process or even the knowledge of
such statistics to the two sensors. Thus this algorithm is
optimal for any packet drop pattern. We have proposed a
way to encode the information to be sent for estimation
purpose that is optimal under any channel packet drop
model. In this sense, the scheme is similar in spirit to the
work in [10].

IV. MANY SENSORS PRESENT

When more than 2 sensors are present, the scheme no
longer remains optimal. The reason for this is the following.
The problem is in calculation of the global error covariance
matrix Pk|k. The equation to be used is

(
Pk|k

)−1
=

(
Pk|k−1

)−1
+

∑
i

(
Hi

k

)T (
Ri

k

)−1
Hi

k.

The observation terms H i
k to be included are those whose

information is being fused. For the 2 sensor case, thus terms
of both sensors are to be included. For the n-sensor case
information from all n sensors might not be fused at all time
steps, depending on the particular links which drop packets
at any time. Thus the proposed method is only sub-optimal
in this case. However, if all nodes are communicating with
each other fairly regularly, the performance loss will be lim-
ited. While it will be nice to characterize this performance
loss and/or come up with other algorithms that are optimal
for particular packet drop patterns in (say) an expected
sense, we have not been able to do that so far. Simulation
results seem to suggest that the performance loss is not huge
for the case of multiple sensors. In the simulation results
shown below, in case a sensor fails to receive packets from
all the sensors, it assumes that the contribution from that
sensor is 0 and adds up the vectors Ij from the sensors that
it has been succesful in communicating to. This is clearly a
sub-optimal thing to do; a slightly better scheme would be to
try to project the vector I

j
k based on I

j
k−1

if communication
with sensor j was not possible at time step k. However we
do not look into such schemes for the present.
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V. NUMERICAL EXAMPLES

We now consider some numerical examples to see the
performance of the algorithm. The system that we consider
is a simple scalar system, with dynamics given by

xk+1 = −1.25xk + wk,

where wk is zero mean white Gaussian noise with variance
1. Consider initially that the system is observed by 2 sensors
of the form

yi
k = xk + vi

k, (3)

where vi
k is zero mean white and Gaussian with variance

1. Further the noises vi
k and wk are all independent of each

other. The sensors are trying to obtain the best possible
estimate of the state of the system xk, while communicat-
ing over a channel which drops packets randomly with a
probability p = 0.3. All the plots that we show below are
from the viewpoint of sensor 1. Figure 2 shows the evolution
of the estimate error covariance as a function of time. The
packets from sensor 2 to sensor 1 are lost at times k = 3 and
8. The solid line represents the covariance for a hypothetical
sensor that has access to all the measurements taken so far.
The circles correspond to the performance of our scheme
while the remaining curve shows the performance of sensor
1 taking into account its own measurements alone. It can
be seen that as packets are lost, the error covariance with
our scheme increases; however as soon as a single packet
is received, the performance is the same as that of the hy-
pothetical sensor which has received all the measurements
so far.
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Fig. 2. Performance of estimators under three situations in presence of
a packet-dropping link: 2 sensor case

We now consider the same system with measurements
being taken by 4 sensors of the same form as (3). The
measurement noises are still independent with each having
variance 1. Figure 3 shows the estimates at sensor 1 for
three schemes when the probability of packet drop in
each channel is 0.2. The solid line shows the estimate if
the sensor relied on its own measurements. The circles
correspond to our scheme while the third curve is that of a
hyptothetical sensor that has access to all the measurements.
It can be seen that our scheme improves the estimates by a

huge amount, though it does not approach the performance
of the hypothetical ideal sensor anymore. Note that the plot
shows the estimate error and not the covariance; hence the
performance of our sensor can be momentarily better than
the hypothetical sensor. However in a mean squared sense,
the hypothetical sensor, of course, performs the best.
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Fig. 3. Performance of estimators under three situations in presence of
packet-dropping link: 4 sensor case

To compare the performance of our scheme with other
schemes proposed in the literature, we use two sensors with
noise variances equal to 10. We compared our scheme with
a scheme in which only measurements are being exchanged
and another in which local estimates are being fused ac-
cording to the scheme proposed in [2]. The results are
shown in Figure 4. The circles correspond to the estimate
given by our scheme, the solid line from the measurement
exchange scheme while the asterisk curve from the estimate
fusion scheme. The remaining curve is the estimate from
the hypothetical ideal sensor as discussed above. Again our
scheme performs better than other schemes proposed in the
literature.
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Fig. 4. Performance of estimators using different schemes in the presence
of packet-dropping link: 2 sensor case
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VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper we looked at the problem of optimal sensor
fusion in the presence of communication channels. We
modeled the communication channel as a random switch
and posed the following problem: Given that the channel is
dropping packets, what should the sensors communicate to
each other so that the best estimate is obtained. For the case
of two sensors, we solved the problem and the solution was
independent of the packet drop pattern. The performance
was much better than the schemes proposed in the literature.
However, the scheme can not be generalized to an arbitrary
number of sensors.

B. Future Work

This work can be extended in many ways. We have
simply posed an interesting and relevant problem and solved
it for a special case. The general solution for n sensors
is still to be worked out. We can also look at more
complicated channel models or coding schemes which allow
some part of the information to pass through sometimes.
Also we have assumed perfect knowledge about all the
sensor models. It will be interesting to relax this assumption
as well. Another perplexing avenue is to look at information
theoretic bounds on the quality of estimate as a function of
rate of communication.
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