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Abstract— Recently, Wang and Ray introduced a signed real
measure for formal languages, called a language measure, to
evaluate performance of strings generated by discrete event
systems. They proposed a synthesis method of an optimal
supervisor based on the language measure. If exact descrip-
tion of a discrete event system and the specification is not
available, a learning-based approach is useful. In this paper,
first, we clarify the relationship between the Bellman equation
and a performance index of the languages generated by the
controlled discrete event systems. Next, using the relationship,
we propose a learning method of the optimal supervisor based
on reinforcement learning where costs of disabling of events and
the evaluation of reaching states are taken into consideration.
Finally, by computer simulation, we illustrate an efficiency of
the proposed method.

I. INTRODUCTION

The supervisory control initiated by Ramadge and Won-
ham is a logical control method for discrete event systems
(DESs) [1]–[3]. DESs are widely found in various man-made
systems, such as transportation systems, communication sys-
tems, and operating systems [4]. In the supervisory control, a
controller, called a supervisor, assigns the occurrence of con-
trollable events so as to satisfy logical control specifications.
They proposed a synthesis method of the optimal supervisor
in the sense that the language generated by the controlled
system is maximized within given specifications. In the
supervisory control, precise descriptions of the specifications
and the DESs are required. From the practical point of view,
it is not always possible to know the information a priori.

Several researchers have studied optimal control problems
of DESs which take into account the cost of events. Kumar
and Garg [5] proposed a synthesis method of an optimal
supervisor based on network flow techniques. They consid-
ered costs of disabling of events and rewards for reaching
desired or undesired states. Sengupta and Lafortune [6] show
an algorithm to compute an optimal supervisor based on
dynamic programming. They considered costs of occurrence
and disabling of events, and adopted a worst-case cost as
a condition of optimality. Marchand et al. [7] extended the
framework of [6] to a partial observation case.

Recently, Wang and Ray introduced a signed real measure,
called a language measure, for formal languages [8] [9]
[12]. A language measure is a performance index given for
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the languages generated by DESs. It is possible to evaluate
the performance of the DESs quantitatively based on the
language measure. Ray et al. proposed a synthesis method
of the optimal supervisor which maximizes the performance
index of the language generated by the controlled DES [10]
[11]. Phoha et al. applied the supervisory control to model
the execution of a software application and quantify the
performance based on the language measure [13]. Wang et
al. applied the language measure for simulation of behavioral
selections of robots in the case that the probability of the
occurrence of the events is unknown [14].

Reinforcement learning has been attracted as a learning
method [15] [16]. In reinforcement learning, a policy of
control is updated based on rewards given from an envi-
ronment through trial and error. Q-learning [17] is one of
the reinforcement learning methods and applied to various
problems because of the simplicity of the algorithm and ease
of use. It is based on the Bellman equation and a learner
obtains the optimal policy in the sense the expected total
reward is maximized.

This paper considers a synthesis method of an optimal su-
pervisor with respect to a language measure. In our previous
work, we proposed a synthesis method of a supervisor based
on reinforcement learning [18] [19]. However, it was not
clear the relationship of the optimality between the reinforce-
ment learning and the formal language theory. In this paper,
we clarify the relationship between the Bellman equation
and a performance index by a language measure. Then, we
propose a synthesis method of the supervisor based on the Q-
learning where costs of disabling of events and the evaluation
of reaching desirable or undesirable states are taken into
consideration. Reinforcement learning is used so that implicit
specifications are considered and the supervisor can adapt
to changing environments. Rewards from the DES represent
control specifications and a detail of the specifications is
obtained through learning. The proposed method synthesizes
the optimal supervisor which maximizes the performance
index of the controlled system by the language measure.

This paper is organized as follows. Section II reviews
the reinforcement learning and the language measure briefly.
Section III shows the relationship between a language mea-
sure and the Bellman equation. Section IV proposes a
synthesis method of the supervisor based on reinforcement
learning. Section V demonstrates the efficiency of the pro-
posed method. Section VI provides the conclusion.
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II. PRELIMINARIES

A. Reinforcement learning

Reinforcement learning is a learning method such that
a learner obtains numerical rewards from an environment
and learns a desirable behavior policy. Learning through
trial and error is effective in the case of an uncertain
environment. Moreover, a learner can adapt the policy to
changing environment based on rewards autonomously [16].

Q-learning is one of the reinforcement learning algorithms
[17]. It updates Q value which is evaluation for state-action
pairs. When a learner makes a transition from a current state
x to a new state x′ by an action a and obtains a reward
r(x, a), Q value is updated as follows:

Q(x, a) ← Q(x, a) + α
[
r(x, a)

+ γ max
a′

Q(x′, a′) − Q(x, a)
]
, (1)

where Q(x, a) is an estimation of the expected discounted
total rewards when a learner takes an action a at a state x,
α ∈ [0, 1] is a learning rate, and γ ∈ [0, 1] is a discounted
rate of rewards. The Q value converges with probability 1
to a true value if α decays appropriately and the number
of updates of the Q value goes to the infinity. Q-learning
is applicable if the environment is modeled by a Markov
Decision Process (MDP).

B. Supervisory control and language measure

In the supervisory control, the supervisor controls the oc-
currence of controllable events so as to satisfy logical control
specifications of the DES [1]–[3]. A DES G controlled by a
supervisor S is illustrated as Fig. 1.

The DES G is modeled by a 5-tuple (X, Σ, δ, x1, Xm),
where X is a set of states, Σ is a finite set of events, δ :
Σ × X → X is a state transition function, x1 ∈ X is an
initial state, and Xm ⊆ X is a set of marked states. Σ∗ is a
set of all finite strings over Σ including the empty string ε.
δ is extended into a function δ : X × Σ∗ → X as follows:

δ(x, ε) = x, (2)

∀s ∈ Σ∗, ∀σ ∈ Σ

δ(x, sσ) = δ(δ(x, s), σ). (3)

Σ is partitioned into a set of controllable events Σc and a set
of uncontrollable events Σuc, that is, Σ = Σc ∪ Σuc, Σc ∩
Σuc = ∅. We use the notation | · | to indicate the cardinality

Fig. 1. Discrete event system controlled by the supervisor

of a set. In the DES G, Let |X| = n and |Σ| = m. Denoted
by σk

i is the index set of events by which a transition from
state xi to xk occurs, i.e., σk

i = { j | δ(xi, σj) = xk }.
Denoted by σ̂i is the index set of active events at state xi,
i.e., σ̂i = { j | δ(xi, σj) is defined}. I = {1, 2, . . . , n} is
an index set. The language L(G, xi) generated by the DES
G starting from the state xi ∈ X is defined by

L(G, xi) = {s ∈ Σ∗|δ(xi, s) ∈ X}. (4)

The set of all strings which start from the state xi and
terminate at the state xj is defined by

L(xi, xj) = {s ∈ Σ∗ | δ(xi, s) = xj ∈ X}. (5)

The marked state set Xm is partitioned into a set of desired
states X+

m and that of undesired states X−

m, that is, Xm =
X+

m ∪ X−

m, X+
m ∩ X−

m = ∅.
For the purpose of evaluation of each state, a characteristic

function y : X → [1, 1] is introduced for all i ∈ I as follows:

y(xi) = yi ∈

⎧⎨
⎩

{ 0 } if xi 	∈ Xm,
( 0, 1 ] if xi ∈ X+

m,
[ −1, 0 ) if xi ∈ X−

m.
(6)

Y = [y1, y2, . . . , yn]T is called a state weighting vector.
An event cost function of the DES G is defined by π̃ :

Σ∗ × X → [ 0, 1 ]. π̃ satisfies the following conditions for
all xi ∈ X , σj ∈ Σ, and s ∈ Σ∗:

(1) π̃[σj |xi] = π̃ij ∈ [ 0, 1 ),
∑

j π̃ij < 1,
(2) π̃[σj |xi] = 0 if δ(xi, σj) is undefined, π̃[ε |xi] = 1,
(3) π̃[σjs |xi] = π̃[σj |xi] π̃[s | δ(xi, σj)].

A signed real measure is given for the language generated
by the DES G [8]–[12]. The signed real measure of L(xi, xj)
is defined by:

µ(L(xi, xj)) =
∑

s∈L(xi,xj)

π̃[s |xi]y(xj). (7)

Moreover, the signed real measure of the language L(G, xi)
is defined by:

µ(L(G, xi)) =
∑

xj∈X

µ(L(xi, xj)). (8)

A control action by which a supervisor S determines the
disabling of controllable events σj ∈ Σc at state xi is defined
as follows:

dS
ij =

{
1 if σj is disabled at state xi,
0 otherwise.

(9)

Denoted by dS
i is the index set of disabling of events at state

xi, i.e., dS
i = { j | dS

ij = 1 }, and is called a control pattern.
DS(xi) denotes a set of control patterns at state xi.

A state transition cost πS : X × X → [0, 1) of the
controlled system S/G is defined as follows:

πS [xk|xi] = πS
ik

=

⎧⎨
⎩

∑
j∈σk

i
−dS

i

π̃[σj |xi] if σk
i − dS

i 	= ∅,

0 otherwise.
(10)
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ΠS denotes a state transition cost matrix whose (i, k)-th
element is πS

ik and is called a ΠS-matrix.
Let ck

ij be a cost by disabling of the controllable event
σj ∈ Σc which causes a transition from state xi to xk. We
abbreviate it to cij if xk is obvious from the context. An
n × m matrix C = [ cij ] is called a disabling cost matrix.

A disabling cost characteristic when a supervisor S dis-
ables the occurrence of controllable events at state xi is
defined as follows:

ξS
i = ξ(xi, d

S
i ) =

∑
j∈dS

i

cij . (11)

ξS = [ ξS
1 , ξS

2 , . . . , ξS
n ]T is called a disabling cost

characteristic vector of a supervisor S.
The characteristic vector of the controlled DES depends

on control patterns given by the supervisor S. A modified
characteristic vector by a supervisor S is defined by

Y S = [ yS
1 , yS

2 , . . . , yS
n ]T = Y − ξS , (12)

where yS
i = yi − ξS

i . Then, a performance vector µS of the
controlled system S/G is given as follows [10]:

µS = [µS
1 , µS

2 , . . . , µS
n ]T

= [ I − ΠS ]−1Y S , (13)

where µS
i is a language measure of L(G, xi) under the

supervisor S and represents a performance index at state xi.
It is possible to evaluate the performance of the supervisor
quantitatively by the language measure.

III. LANGUAGE MEASURE AND BELLMAN
EQUATION

For the controlled system S/G, the following Bellman
equation holds:

V d(xi) =
∑

xk∈X

P (xi, d
S
i , xk)

×
[
r∗(xi, d

S
i , xk) + γV d(xk)

]
, (14)

where V d(xi) is a discounted expected total reward at state
xi ∈ X under a policy d and called a value function,
P (xi, d

S
i , xk) is a probability of a transition from state

xi to xk when a supervisor S assigns a control pattern
dS

i ∈ DS(xi), r∗(xi, d
S
i , xk) is an expected reward when a

state transition from xi to xk occurs by assigning the control
pattern dS

i , and γ is a discount rate of rewards. In (14), a
policy d is deterministic, and represented by a mapping from
each state xi to a control pattern dS

i .
An event which is not included in the assigned control

pattern occurs in the DES G. Therefore, the following
equation holds:

P (xi, d
S
i , xk) =

∑
j∈σ̂i−dS

i

P1(xi, d
S
i , σj)P2(xi, σj , xk), (15)

where P1(xi, d
S
i , σj) is a probability that an event σj (j ∈

σ̂i) occurs in the DES G when the supervisor S assigns
the control pattern dS

i at state xi and P2(xi, σj , xk) is a

probability that the DES G makes a transition from the state
xi to xk when an event σj (j ∈ σk

i ) occurs.
We assume that the DES G has a (hidden) parameter

π̃∗(xi, σ) for each state xi and event σ ∈ Σ ∪ σ̄ which
represents an weight of occurrence of the event and the
following equations hold:

P1(xi, d
S
i , σ) =

π̃∗(xi, σ)∑
l∈σ̂i−dS

i

π̃∗(xi, σl) + π̃∗(xi, σ̄)
, (16)

π̃∗(xi, σj) ∈ [0, 1), π̃∗(xi, σ̄) > 0, (17)

π̃∗(xi, σj) = 0 if δ(xi, σj) is undefined, (18)∑
j∈σ̂i

π̃∗(xi, σj)+ π̃∗(xi, σ̄) = 1. (19)

We interpret the special event σ̄ as 1-step passage of
time without any occurrence of events in the DES G and
acquisition of rewards. It is uncontrollable for the supervisor
S and occurs with probability P1(xi, d

S
i , σ̄) at each state

xi. Therefore, if π̃∗(xi, σ̄) is large, the DES stays at the
current state with the high possibility. Moreover, we consider
a discount rate γ is a function of a state xi and a control
pattern dS

i . Thus, we have

γ = γ(xi, d
S
i )

=
∑

l∈σ̂i−dS
i

π̃∗(xi, σl) + π̃∗(xi, σ̄), (20)

which implies γ ∈ (0, 1] by (19).
We define a function π∗S : X × X → [0, 1) as follows:

π∗S(xk | xi) = π∗S
ik

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
j∈σk

i
−dS

i

P1(xi, d
S
i , σj)γ(xi, d

S
i )

if σk
i − dS

i 	= ∅,

0 otherwise.

(21)

From (16) and (20), we have the following equation:

π∗S
ik =

⎧⎨
⎩

∑
j∈σk

i
−dS

i

π̃∗(xi, σj) if σk
i − dS

i 	= ∅,

0 otherwise.
(22)

Let Π∗S be a matrix whose (i, k)-th element is π∗S
ik and call

it a Π∗S-matrix.
We define the reward r∗(xi, d

S
i , xk) as follows:

r∗(xi, d
S
i , xk) = r∗(xi, d

S
i ) = y(xi) − ξ(xi, d

S
i ), (23)

which means r∗ is based on the evaluation of the current
state xi and the cost by assigning the control pattern dS

i .
Next, we show a performance vector is derived from a

value function in the Bellman equation.
We define a vector R as follows:

R =
[
r∗(x1, d

S
1 ), r∗(x2, d

S
2 ), . . . , r∗(xn, dS

n)
]T

. (24)
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If a state transition is deterministic, (14) is transformed into

V d(xi) = r∗(xi, d
S
i , xk) +

∑
xk∈X

∑
j∈σ̂i−dS

i

P1(xi, d
S
i , σj)

×P2(xi, σj , xk)γ(xi, d
S
i )V d(xk)

= r∗(xi, d
S
i )

+
∑

xk∈X

∑
j∈σk

i
−dS

i

π̃∗(xi, σj)V
d(xk) (25)

= r∗(xi, d
S
i ) +

∑
xk∈X

π∗S
ik V d(xk). (26)

We define a vector V as

V =
[
V d(x1), V

d(x2), . . . , V
d(xn)

]T
. (27)

Then, the following equation holds:

V = R + Π∗SV, (28)

and (28) is transformed as follows:

(I − Π∗S)V = R (29)

⇐⇒ V = (I − Π∗S)−1R. (30)

By considering Π∗S = ΠS and R = Y , the value function
V of the Bellman equation corresponds to the performance
vector µS defined by (13). It shows that a language measure,
which is quantitative evaluation based on the language gen-
erated by the controlled system, is derived from the value
function of the Bellman equation if the parameters in the
value function can be selected in an appropriate way.

.

IV. LEARNING ALGORITHM OF THE
SUPERVISOR

From the result of section III, we will propose the learning
method based on the Bellman equation for calculation of
the performance vector. If some parameters are unknown,
a synthesis of the supervisor by learning is required. In
this paper, the supervisor learns a control pattern so as to
maximize a performance vector by a method based on Q-
learning.

The Bellman optimal equation with regard to Q values is
described as follows [18]:

Q∗(xi, d
S
i ) =

∑
xk∈X

P (xi, d
S
i , xk)

×

[
r∗(xi, d

S
i , xk) + γ max

dS
k

Q∗(xk, dS
k )

]
, (31)

where Q∗(xi, d
S
i ) is a discounted expected total reward when

the supervisor S assigns dS
i ∈ DS(xi) at state xi ∈ X

and continues to assign the optimal control patterns until
the controlled behavior reaches a terminal state. If a state
transition is deterministic, the Bellman optimal equation is
rewritten as follows:

Q∗(xi, d
S
i ) = r∗(xi, d

S
i )

+
∑

j∈σ̂i−dS
i

π̃∗(xi, σj)V
∗(δ(xi, σj)), (32)

where for the state xk = δ(xi, σj) ∈ X ,

V ∗(xk) = max
dS

k
∈DS(xk)

Q∗(xk, dS
k ). (33)

In the DES G, an event σ occurs with the probability given
by (16). If the event is included in the active event set at
xi and enabled by the assigned control pattern dS

i , that is,
σ = σj(j ∈ σ̂i − dS

i ), then the DES G makes a transition
from state xi to xk by the occurrence of the event and the
supervisor S acquires a reward r. If the special event σ = σ̄
occurs, the DES stays at the current state without acquisition
of rewards.

By (32) and (33), Q∗ is updated by Q∗, r∗, and π̃∗. We
update r′ and π̃′ by the following equations:

r′(xi, d
S
i ) ← r′(xi, d

S
i ) + α[r − r′(xi, d

S
i )], (34)

and, for all σ′ = σl (l ∈ σ̂i − dS
i ) and σ′ = σ̄,

π̃′(xi, σ
′) ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − β)π̃′(xi, σ
′)

if σ′ 	= σ,

π̃′(xi, σ
′) + β

[ ∑
m∈σ̂i−dS

i

π̃′(xi, σm)

+π̃′(xi, σ̄) − π̃′(xi, σ
′)

]

if σ′ = σ,

(35)

where r′ and π̃′ are estimated values of r∗ and π̃∗, respec-
tively, and both α ∈ [0, 1] and β ∈ [0, 1] are learning rates.
If the special event σ̄ occurs, (34) is not applied since it does
not affect the expected reward. By using r∗ and π̃∗, we can
update several Q values of all control patterns which do not
disable all events permitted by the assigned control pattern
dS

i . In other words, for all dS′

i ∈ DS(xi) which satisfies
(σ̂i −dS′

i )∩ (σ̂i −dS
i ) 	= ∅, Q values are updated as follows:

Q(xi, d
S′

i ) ← r′(xi, d
S′

i )

+
∑

j∈σ̂i−dS′

i

π̃′(xi, σj)V
′(δ(xi, σj)), (36)

where Q(xi, d
S
i ) is the estimated value of Q∗(xi, d

S
i ) and

for the state xk = δ(xi, σj) ∈ X ,

V ′(xk) = max
dS

k
∈DS(xk)

Q∗(xk, dS
k ). (37)

Let d̃ij ∈ [0, 1] be a probability that the supervisor S
disables the event σj at state xi. The supervisor S assigns a
control pattern according to d̃ij . Let d̂S

i be a control pattern
which maximizes the Q value at state xi defined by

d̂S
i = arg max

dS
i
∈DS(xi)

Q(xi, d
S
i ) ∈ DS(xi). (38)

By using d̂S
i , d̃ij is updated as follows:

d̃ij ←

{
d̃ij + λ(1 − d̃ij) if j ∈ d̂S

i ,

d̃ij + λ(0 − d̃ij) if j 	∈ d̂S
i ,

(39)

where λ ∈ [0, 1] is a learning rate. The above equation
means that the supervisor S increases (resp. decreases) the
probability of disabling of events if the event is (resp. is
not) included in d̂S

i . We summarize the learning algorithm
in Fig. 2.
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1) Initialize r′(xi, d
S
i ) and π̃′(xi, σ) at each state.

2) Calculate the initial Q value at each state by (36).
3) Repeat (for each episode):

a) xi ← initial state x1.
b) Repeat until xi is a terminal state

(for each step of episode) :

i) Assign a control pattern dS
i ∈ DS(xi)

based on d̃ij .
ii) Observe the occurrence of event σ and

state transition xi
σ
→ xk in the DES G.

iii) Acquire a reward r and update r′(xi, d
S
i )

by (34) if σ 	= σ̄.
iv) Update π̃′(xi, σ) by (35).
v) Update the Q values for all dS′

i ∈
DS(xi) s.t. (σ̂i − dS′

i ) ∩ (σ̂i − dS
i ) 	= ∅

by (36).
vi) Calculate d̂S

i by (38) and update the
probability d̃ij by (39).

vii) xi ← xk.

Fig. 2. Proposed algorithm

V. EXAMPLE

We consider a dining philosopher problem used in [8]. The
DES G of the problem is represented by the automaton in
Fig. 3. There are two philosophers denoted by P1 and P2, and
two forks denoted by F1 and F2. Table I shows the definition
of each event σ1, σ2, . . . , and σ6, where σ1, . . . , and σ4 are
controllable events and σ5 and σ6 are uncontrollable events.

The initial state 1 means both P1 and P2 are thinking, and
marked state 10 (resp. 11) means P1 (resp. P2) is thinking
after eating and the other is thinking. State 8 (resp. 9), which
is a deadlock state, means P1 (resp. P2) has 1 fork. In
the proposed algorithm, the supervisor S acquires a reward

Fig. 3. Automaton of dining philosophers

TABLE I

EVENT DEFINITION FOR THE DINING PHILOSOPHERS

Event Description

σ1 P1 picks up F1 from the table
σ2 P1 picks up F2 from the table
σ3 P2 picks up F1 from the table
σ4 P2 picks up F2 from the table
σ5 P1 places F1 and F2 on the table
σ6 P2 places F1 and F2 on the table

Fig. 4. Automaton of the controlled system

after transition and can’t acquire it at the deadlock state.
Therefore, we add a dummy state 12 in simulation so as to
avoid such a situation. By the occurrence of uncontrollable
event σ7, the supervisor S makes a transition from state 8
or 9 to the dummy state 12.

We set the state weighting vector Y = [1 0 0 0 0 0 0
−0.5 −0.5 1 ]T . In this example, the disabling cost is not
considered. Therefore, a reward r is decided by y(xi). For
states which do not have a transition to the dummy state,
we set π̃∗(xi, σ̄) = 0.04 and π̃∗(xi, σj) = 0.96/|σ̂i| for all
j ∈ σ̂i. Event σ7 occurs with probability 1. Such information
is unknown for the supervisor S and the supervisor S obtains
them through learning. Learning rates are set as follows: α =
0.7, β = 0.01, and λ = 0.2. Each d̃ij is initialized by
0.5 and all Q values are initialized by 0. Each π̃′(xi, σ)
is initialized by 1/(|σ̂i| + 1) for all σ = σj(j ∈ σ̂i) and
σ = σ̄. We adopt the ε-greedy selection with ε = 0.1 when
the supervisor S assigns a control pattern. The supervisor S
assigns the control pattern based on d̃ij with probability 1−ε
and assigns another control pattern randomly with probability
ε so that the supervisor can explore various control patterns.
The supervisor S proceeds learning by repetition of episodes.
One episode ends by 20-steps or reaching a deadlock state.

The control objective is as follows:

1) Increase a possibility that philosophers reach state 10
or 11.

2) Decrease a possibility that philosophers reach state 8
or 9.

Fig. 4 shows a result of learning of the controlled system
S/G by computer simulation. Dashed lines show the disabled
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Fig. 5. Relationship between the number of episodes and the fraction what
the supervisor selects the optimal control pattern

events by the supervisor S. The supervisor S prevents
transitions to state 8 and 9 from occurring. The supervisor S
is an optimal supervisor theoretically obtained by [8]. Thus,
the supervisor S learned the optimal control pattern.

Next, we show the learning curve of the proposed method.
Fig. 5 shows the relationship between the number of episodes
and the fraction that the supervisor found the optimal control
pattern given by Fig. 4. The supervisor learns the optimal
control pattern by experience of many episodes.

In [8], a theoretical value of the performance vector at the
initial state is µS

1 = 1.7933. In our simulation, the Q value
at state 1, which is corresponding to µS

1 , converged to the
value after about 8000 episodes.

VI. CONCLUSION

We showed a value function in the Bellman equation
corresponds to a performance vector obtained by the lan-
guage measure. We proposed a learning method of control
patterns based on reinforcement learning, which synthesizes
the optimal supervisor with regard to the language measure.
The language measure provides the quantitative evaluation
of the supervisor based on the language generated by the
controlled system. The proposed method is applicable for
design of the supervisor under implicit specifications and
changing environment by using reinforcement learning. We
applied the proposed method to a dining philosopher problem
and showed that the optimal supervisor with regard to the
language measure is obtained.

The number of control patterns increases exponentially as
the number of events increases. Therefore, the improvement
of computational cost is future work. An extension to a
partial observation case is also future work.
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