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Abstract— Computation in the analog domain is very ap-
pealing from a power-consumption perspective. To implement
a wavelet transform in an analog circuit, the wavelet function
can be approximated by a linear system. An approach based on
L2-approximation is presented, that enables largely automated
approximation of wavelet functions by impulse responses of
linear systems. Various continuous wavelet functions, such as
the Gaussian wavelet and Daubechies wavelets of several orders,
have been successfully approximated with this approach.

I. INTRODUCTION

Analog circuits have an advantage over digital circuits
due to power-consumption considerations. Particularly A/D
(analog to digital) converters, necessary to transform analog
sensor information to the digital domain, can be highly
power-demanding. Therefore analog circuits are still widely
used in applications for which power consumption is a
critical issue such as in implantable and portable devices,
for instance pacemakers.

In many signal processing applications the wavelet trans-
formation (WT) technique has shown to be extremely useful.
The wavelet transform of a signal f (t) over scales σ with a
real wavelet ψ(t) is defined as:

Wψ(t,σ) =
∫ ∞

−∞
f (τ)

1√
σ

ψ(
τ − t

σ
)dτ (1)

The scales σ allow to “zoom in” on interesting parts of
the signal. This transformation is usually computed digitally,
yielding a high power consumption and poor parallel com-
putational performance for different scales. In [1] however,
a method to perform WTs in the analog domain with the
technique of Dynamic Translinear (DTL) circuits [2], [3]
was introduced. In [1] the Laplace transforms of wavelet
functions were approximated by rational functions in the
Laplace domain with Padé-approximation. This analog im-
plementation of wavelets yields large power savings over
a digital implementation. In [4] it was argued that the
Padé-approximation of wavelet functions is not the most
suited approach and an alternative approach, based on L2-
approximation that works directly in the time domain, was
introduced. A drawback of this approach is that a starting
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point is required for the application of an iterative local
search algorithm to find an optimal approximation. The
results have been observed to depend markedly on the choice
of starting point due to the existence of local optima. In
the current paper the L2-approximation based approach is
discussed and a solution to the problem of finding a good
starting point is presented, involving high-order FIR approx-
imation and balance-and-truncate model reduction; see also
[5].

The hardware implementation of the wavelets will limit the
maximum obtainable accuracy of the wavelet approximation,
depending on issues such as the quality of the hardware
components and the accuracy of current sources. This con-
sideration will give an upper bound on the required accuracy
of the approximation.

II. IMPLEMENTING WAVELET TRANSFORMS IN
LINEAR SYSTEMS

Wavelet transforms can be implemented in analog circuits
by approximating the time reversed wavelet function ψ(−t)
with the impulse response h(t) of a linear system H(s),
since if a signal f (t) is passed through a linear system, it is
convoluted with the impulse response of the system:

f (t)∗h(t) =
∫ ∞

−∞
f (τ)h(t − τ)dτ ≈

∫ ∞

−∞
f (τ)ψ(τ − t)dτ (2)

The wavelet transform Wψ(t) at scale σ = 1 on the other
hand is defined as the L2-inner product of the input signal
f (τ) and the shifted wavelet ψ(τ − t):

Wψ(t) = 〈 f (τ),ψ(τ − t)〉 =
∫ ∞

−∞
f (τ)ψ(τ − t)dτ (3)

This shows that if the impulse response h(t) of the linear
system approximates the time-reversed wavelet function then
the wavelet transformation is approximated by the output of
that linear system.

For obvious physical reasons only the hardware imple-
mentation of (strictly) causal stable filters is feasible. The
effective support of wavelets however is generally located
around the origin. As a result the wavelet will have to be
time-shifted to avoid truncation of a large part of its energy
as illustrated in Fig. 1. The selection of the time-shift t0
can be a delicate process since shifting too much may make
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Fig. 1. The importance of time-shifting the Gaussian wavelet

TABLE I

EFFECT OF TIME-SHIFT ON REQUIRED ORDER, NORM OF MISFIT AND

ENERGY LOSS

order norm shift 2.0 shift 2.5 shift 3.0 shift 3.5

3 L1-norm 0.997 1.466 1.871 1.980

5 L1-norm 0.117 0.265 0.496 0.789

7 L1-norm 0.017 0.027 0.071 0.153

9 L1-norm 0.016 0.002 0.007 0.021

3 L2-norm 0.397 0.551 0.678 0.696

5 L2-norm 0.048 0.101 0.178 0.269

7 L2-norm 0.007 0.010 0.025 0.053

9 L2-norm 0.010 0.001 0.003 0.007

3 L∞-norm 0.490 0.539 0.485 0.430

5 L∞-norm 0.077 0.151 0.232 0.303

7 L∞-norm 0.005 0.017 0.041 0.076

9 L∞-norm 0.002 0.001 0.004 0.011

3 CPU time 0.630 0.820 1.380 1.700

5 CPU time 0.860 0.990 1.240 1.430

7 CPU time 17.010 2.340 1.980 1.820

9 CPU time 933.170 62.390 10.390 5.520

energy loss 5.5E−4 7.4E−6 3.5E−8 6.1E−11

the approximation of the wavelet hard, due to the existence
of a relatively flat slope in the beginning of the support of
the wavelet, and induce a large time-delay. Shifting too little
yields truncation of energy and may result in an integral that
is unequal to zero, thus not stopping the zero frequency. This
trade-off between truncation of energy and approximation
complexity is illustrated in Table I. In this table various
norms and the computation time in seconds from a starting
point to an approximation of a Gaussian wavelet for various
orders of systems and various time-shifts are listed. Not only
the L2-norm that has been used in the approximation, but also
the commonly used L1-norm and L∞-norm are shown as a
reference. The time-reversed and time-shifted wavelet ψ̃(t)
now becomes:

ψ̃(t) = ψ(t0 − t), (4)

and the impulse response h(t) will have to approximate
ψ̃(t). Note that Table I shows that for the time-shift t0 =
2.0 the approximation with a dynamical system of order 9
involves an L2-approximation error that is larger than for
the approximation of order 7. This is caused by (slower)
convergence to a different local optimum. Note also that the
CPU times for approximations of order 9 are substantially

larger than for lower order approximations. If the time-shift
t0 increases, higher order approximations are required to
achieve the same approximation accuracy.

III. L2-APPROXIMATION OF WAVELET
FUNCTIONS

In this section the choice for L2-approximation, the model
and wavelet related issues will be discussed.

A. Motivation

From a conceptual point of view, the L2-approximation
approach is very appropriate for the problem at hand:

• It is appropriate to use the L2-norm to measure the
quality of an approximation h(t) of the wavelet ψ̃(t)
since Wψ(t) involves an L2-inner product.

• It is desirable that the approximation h(t) of ψ̃(t)
behaves equally well for all time instances t since it
will be used as a convolution kernel.

• L2-approximation allows for a description in the time
domain as well as in the Laplace domain due to Parse-
val’s equality.

The first point emphasizes that the L2-norm is appropriate
since it encompasses the very definition of the wavelet
transform which is an L2-inner product. The second point
is based on the fact that a continuous wavelet transform
will be performed. The convolution kernel will thus be used
with an arbitrary shift which makes that the approximation
accuracy at each time instance is equally important. The third
point is that minimization of ‖ψ̃ − h‖ is, due to Parseval’s
equality, equivalent to the minimization of the L2-norm of
the difference between the Laplace transforms Ψ̃(s) and
H(s) of ψ̃(t) and h(t) respectively, over the imaginary axis
s = iω . Since wavelets are intended to gather information
about the signal f (t) both in the time domain and in the
frequency domain, it is important to have approximation
quality specifications in both domains.

There is one obvious disadvantage to the L2-
approximation approach that we already have come
across at the end of the previous section: the existence
of local optima. There generally cannot be given hard
guarantees that an optimum obtained by an iterative local
search optimization technique is a global optimum. The
local optimum at which the optimization terminates depends
on the choice of an initial starting point provided by the
user. A good initial point may help to avoid local optima.
An automated procedure that selects a starting point that
performs well, according to simulation, is described in
section IV.

B. Model

From the theory of linear systems (see, e.g. [6]) it is well
known that any strictly causal linear filter of finite order
n can be represented in the time domain as a state-space
system (A,B,C) described by a set of associated differential
equations of the form:

ẋ(t) = Ax(t)+ Bu(t), (5)

y(t) = Cx(t), (6)
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where u(t) is a scalar input1 and y(t) a scalar output. The
state vector at time t is denoted by x(t) ∈ R

n. Note that a
“direct feed-through” or dc-term is not required since strict
causality is assumed. The impulse response function h(t)
and its Laplace transform H(s), better known as the transfer
function of the system, are given by:

h(t) = CeAtB, (7)

H(s) = C(sIn −A)−1B. (8)

For the generic situation of stable systems with distinct poles,
the impulse response function h(t) is a linear combination of
damped exponentials and exponentially damped harmonics.
From this it is possible to propose an explicitly parameterized
class of impulse response functions that is suitable for
approximating a large number of continuous wavelets such
as the Gaussian wavelets as described in [4]. For instance, if
a 5th order approximation is attempted, this parameterized
class of functions hp(t), involving a real parameter vector
p = {p1, . . . , p10}, will typically have the following form:

hp(t) = p1ep6t + p2ep7t sin(p8t)+ p3ep7t cos(p8t)
+ p4ep9t sin(p10t)+ p5ep9t cos(p10t) (9)

The parameters p6, p7 and p9 must be strictly negative for
reasons of stability. A corresponding state-space representa-
tion is given by:

A =

⎛
⎜⎜⎜⎜⎝

p6 0 0 0 0
0 p7 p8 0 0
0 −p8 p7 0 0
0 0 0 p9 p10

0 0 0 −p10 p9

⎞
⎟⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎜⎝

1
0
1
0
1

⎞
⎟⎟⎟⎟⎠ ,

C =
(

p1 p2 p3 p4 p5
)
. (10)

To approximate a wavelet function ψ̃(t) the following min-
imization problem has to be solved:

min
p

(√∫ ∞

0
(hp(t)− ψ̃(t))2 dt

)
(11)

for which standard optimization techniques are widely avail-
able in the literature and in software packages such as Mat-
lab, Maple, Mathematica, and so on. In the current research
the tail of (11) was truncated due to the fast decay, but it
was left long enough to ensure that the oscillations damped
out. Then the integral was approximated with a Riemann
sum, which will give a reasonable good approximation since
the integral of the wavelet equals zero (as will be discussed
in the next paragraph), and finally the least-squares problem
was minimized. However if a higher accuracy is required,
another integration scheme can be employed.

C. Ensuring a zero wavelet integral

One common property of a wavelet function ψ(t) that was
not discussed so far is that its integral is equal to zero:∫ ∞

−∞
ψ(t)dt = 0. (12)

1The input was previously denoted by f (t), but for state-space systems
the usual convention u(t) will be used.

If this property is not shared by the approximation hp(t),
this will cause an unwanted bias in the approximation of
the wavelet transform. Due to truncation, the time-reversed
and time-shifted wavelet ψ̃(t) is likely not to have a zero
integral. Therefore, when ensuring that the approximation
hp(t) satisfies

∫ ∞
0 hp(t)dt = 0, a certain approximation error

becomes unavoidable. Experiments have shown however that
the wavelet transform Wh(t,σ) obtained with an approxi-
mated wavelet hp(t) having a zero integral is usually closer to
the true wavelet transform Wψ(t,σ) than when one uses the
truncated wavelet ψ̃ . The approximation hp(t) does not carry
the bias that is introduced by an integral that is unequal to
zero, and it obeys the admissibility conditions [7] that define
the wavelet framework and enforce desirable properties such
as completeness and energy preservation.

For linear filters, the property that the integral of the
impulse response function h(t) is zero is equivalent to the
property that the step response of the filter tends to zero for
large t. Keeping in mind that the impulse response is the
derivative of the step response, from the properties of the
Laplace transform it holds that

lim
t→∞

∫ t

0
h(τ)dτ = lim

s↓0
H(s) (13)

Therefore, the desired property comes down to H(0) = 0. In
terms of a state-space representation (A,B,C) we have that

H(0) = −CA−1B. (14)

For the parameterized class of 5th order approximations (9)
this yields the explicit condition:

p1

p6
+

−p2 p8 + p3 p7

p2
7 + p2

8

+
−p4 p10 + p5 p9

p2
9 + p2

10

= 0 (15)

If preferable this equation may be used to eliminate one of
the variables from the optimization problem, such that the
constraints are enforced.

The zero integral H(0) = 0 effectively introduces one
vanishing moment. Additional vanishing moments can be
enforced by requiring that additional derivatives at zero equal
zero. In the case of k vanishing moments the transfer function
will have the following form:

H(s) = sk P(s)
Q(s)

, (16)

which can be enforced with constrained L2-approximation.
In general the vanishing moments will be approximated to
some extend since the L2-norm is defined both in the time
domain and in the frequency domain.

IV. FINDING A GOOD STARTING POINT

It was mentioned earlier that the choice of the starting
point can have a considerable impact on the solution that is
found by the optimization routine.

To obtain a good starting point for the L2-approximation
approach, one can initially construct a high-order model
directly from the sampled wavelet function and reduce this
model to the required order. A number of intermediate steps
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Fig. 2. Obtaining a starting point

are required however, as illustrated in Fig. 2. The approach
consists of the following steps that will be further discussed
in the remainder of this section:

1) Sampling the wavelet ψ̃
The time-shifted and reversed wavelet function ψ̃ is
sampled with zero-order-hold, producing a discrete
signal g.

2) Construction of a high order discrete-time FIR-
model
Signal g is used to construct a high order discrete-time
FIR (or moving-average) model, which is represented
in state-space form. (typical order 500-2000)

3) Conversion to an intermediate order discrete-time
IIR-model
The state-space model is balanced and truncated to
yield an accurate reduced order discrete-time model,
referred to as an intermediate order model since yet
another model reduction step will later take place.
(typical order 20-50)

4) Conversion of the discrete-time IIR-model to a
continuous-time IIR-model
The discrete-time model is then converted back to
continuous-time. Until here, all steps in the procedure
have to be performed just once.

5) Reduction of the continuous-time IIR-model to the
desired lower order
The intermediate order continuous-time model is re-
duced to a specified lower order, to be used as a
starting point for the optimization technique in the next
step. Various reduced orders can be attempted until a
satisfactory result is obtained. (typical order 5-12)

6) L2-approximation of the wavelet function
The low order model obtained in the previous step is
used as a starting point for solving the minimization
problem (11) under the constraint (14) using an itera-
tive local search optimization technique.

The approach starts with a regularly sampled version of
the time-reversed time-shifted wavelet:

gk = ψ̃(k ·∆t), k = 0, . . . ,n−1 (17)

where the sampling time ∆t and the number of samples n
are chosen in accordance with the effective support of the

wavelet, keeping in mind that the horizon should be long
enough to ensure stability. The sequence g = {gk} is inter-
preted as a ZOH sampled version of the impulse response
of a continuous-time system. A corresponding discrete-time
moving-average system (or finite impulse response (FIR) fil-
ter) is constructed from it. It is designed to have the impulse
response: h[0] = 0, h[1] = g0, h[2] = g1, . . . , h[n] =
gn−1. The impulse response of a discrete-time state-space
system (A,B,C,D) is given by:

h[k] =
{

D k = 0
CAk−1B k > 0

(18)

A discrete-time state-space realization (Adh,Bdh,Cdh,Ddh)
in controllable companion form, which achieves the finite
impulse response h, attains the following form:

Adh =

⎛
⎜⎜⎜⎝

0 . . . 0 0
1 0 0

. . .
...

0 1 0

⎞
⎟⎟⎟⎠ (19)

Bdh =

⎛
⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎠

Cdh =
(

h[1] . . . h[n]
)

Ddh = 0 (20)

Note that the matrix Adh has all its poles at the origin, as
required for moving-average systems.

Eventually the model Mdh = (Adh,Bdh,Cdh,Ddh) has to
be transformed into a low-order continuous-time model. At
this stage, it may however not easily be converted into a
continuous-time model, because of the zeros on the diagonal
of the lower triangular matrix Adh, which make it impossible
to take a matrix logarithm. Therefore the model Mdh is first
reduced in discrete-time and then converted to continuous-
time, where at this point one has an accurate intermediate-
order approximation. This intermediate-order model is then
used to generate the (continuous-time) low-order starting
points required for the optimization algorithm.

The steps 2-3 in Fig. 2 are similar to the procedure dis-
cussed in [5], where it is proposed to reduce the model Mdh

by means of the popular balance and truncate procedure, first
introduced by [8] and [9]. See also [10] for an interpretation
of balancing in terms of energy passing from the input signal
into the states and from the states onto the output signal.

The high-order discrete-time model Mdh is balanced first.
A discrete-time state-space system (A,B,C,D) is balanced if
the solutions P and Q of the discrete-time Lyapunov-Stein
equations:

P−APAT = BBT (21)

Q−AT QA = CTC (22)

satisfy P = Q = diag{σ1, . . . ,σn} for some positive numbers
σk, called the Hankel singular values of the system. Balanced
realizations always exist and the Hankel singular values can
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be ordered in a decreasing fashion. Observe that for the
system Mdh the Lyapunov equation (21) only involves Adh

and Bdh and not the wavelet ψ̃(t) to which Mdh was fitted.
It is not difficult to see that the corresponding solution P,
called the controllability Grammian, is the identity matrix
In.

Any state-space transformation T which transforms
(A,B,C,D) into (TAT−1,T B,CT−1,D) takes the controlla-
bility Grammian P into T PT T . Therefore, P remains equal
to In if T is chosen to be an orthogonal matrix. The matrix Q,
called the observability Grammian, is transformed by T into
T−T QT−1. Since Q is symmetric and positive definite, it is
possible to choose an orthogonal matrix T which makes the
observability Grammian diagonal, e.g. by applying singular
value decomposition to Q. It then is straightforward to com-
pute an additional diagonal state-space transformation matrix
which produces a balanced realization (Ādh, B̄dh,C̄dh,D̄dh).
The procedure discussed in [5] arrives at the same balanced
realization in a slightly different way, by observing that for
the controllable companion form realization of a moving-
average system, the associated Hankel matrix H built from
the finite impulse response 0,h[1],h[2], . . . ,h[n] as

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

h[1] h[2] h[3] . . . h[n]
h[2] h[3] h[n] 0

h[3] 0
...

... h[n] 0
...

h[n] 0 . . . . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(23)

is diagonalized by the same matrix T . This avoids the
computation of Q, of which the condition number is the
square of the condition number of H .

The balanced model (with its Hankel singular values in
decreasing order) can now be reduced by truncating all the
state variables corresponding to singular values σk below a
certain threshold εσ , yielding a reduced (intermediate) order
discrete-time system Mdm = (Adm,Bdm,Cdm,0). The matrix
Adm will in general no longer have poles at the origin and
therefore the system Mdm can be converted to a continuous-
time system Mcm = (Acm,Bcm,Ccm,0) by making use of the
following relationships (see e.g. [11]):

Adm = eAcm∆t (24)

Bdm =
∫ ∆t

0
eAcmτ Bcmdτ (25)

Cdm = Ccm (26)

with Adm, Acm, Bdm and Bcm further conveniently related by
(see [12]):

N =
(

Acm Bcm

0 0

)
(27)

eN∆t =
(

Adm Bdm

0 1

)
(28)

The conversion from discrete-time to continuous-time starts
from the right-hand side of Eq. (28) and involves taking the
matrix logarithm.

The continuous-time model Mcm with intermediate order
nm must be designed to have an impulse response which
closely matches the (time-reversed, time-shifted) wavelet
function. It is subsequently used to generate low order
approximations for various orders that can be used as starting
points for the L2-approximation procedure.

This can again be achieved with a balance and truncate
procedure, but now in the continuous-time case, which
involves the solution of continuous-time Lyapunov equations
instead. The advantage of this layered set-up is that the
expensive model reduction step from the high-order discrete-
time moving-average approximation to the intermediate-
order continuous-time approximation is carried out only
once, while the cheaper model reduction to various low
orders is carried out several times.

Any low-order continuous-time model Mcr obtained in this
way, will in general not have a state-space form as displayed
in (10) and it will not obey the constraint described in (15).
To impose a step response which tends to zero, the constant
term in the numerator of the transfer function of Mcr is set
to zero. To bring the model into a form as displayed in (10),
the complex eigenvalues of Acr are ordered in complex pairs;
the states corresponding to the real eigenvalues follow last.
The new matrix A will have a block structure, from which
the parameters required to solve the parametric optimization
problem (11) can be easily read off. Note that Acr can be
used to fix the number of complex pairs of poles that is built
into the parameterized model class.

V. RESULTS

In order to evaluate the new approach it was compared,
with numerical simulations in Matlab, to the Padé-based ap-
proach in [1], where the Gaussian wavelet was approximated.
Both the L1 and the L2-norm of the misfit are calculated
(showing a lower value for a better fit), but only the L2-norm
was used as the optimization criterion. The performance is
also compared to the truncated wavelet ψ̃(t), keeping in mind
that this “wavelet” does not satisfy the requirement of a zero
integral. The L2-approximation was calculated for order 4
(L2O4) and order 5 (L2O5).

Furthermore the wavelet transform of an actual dataset was
computed. The dataset used is a 24 hour, 128Hz sampled
episode of a heart signal from PhysioNet’s MIT-BIH nsrdb
(normal sinus rhythm database); see [13]. The systems were
simulated for scales σ = 1,2,4,8,16,32. The dataset used
was lead 1 of episode 16539, which was split up into
15 batches, because of memory requirements, of which
the results were averaged. The wavelet transformed signal
Wψ(t,σ) at scales σ can be seen as a matrix with a row
for each scale and a column for each time sample. By sub-
stracting the wavelet transform matrix that was obtained with
the ideal wavelet from the matrix that was obtained by the
approximating linear system, an error matrix was obtained.
For this error matrix various norms can be computed, for
which a lower value implies a better fit:

1) The matrix 1-norm or column sum norm, defined as the
maximum of the 1-norms of the columns of a matrix
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TABLE II

EVALUATION OF APPROXIMATIONS OF THE GAUSSIAN WAVELET

Criterion Truncated PadeO5 L2O4 L2O5

L1 norm 0 0.2920 0.3675 0.1168

L2 norm 0 0.1660 0.1476 0.0475

Col. sum norm 2590 675 618 560

Row sum norm 8.43 ·107 1.00 ·107 9.06 ·106 6.99 ·106

Spectral norm 1.47 ·105 3.43 ·104 3.23 ·104 2.99 ·104

Frobenius norm 2.34 ·105 4.33 ·104 4.03 ·104 3.41 ·104

TABLE III

L2-ERRORS OF VARIOUS DAUBECHIES WAVELET APPROXIMATIONS

Order approx. db2 db3 db4 db5 db6

8 0.1167 0.0965 0.1581 0.2141 0.2482

10 0.1051 0.0909 0.0848 0.1304 0.2987

12 0.1050 0.0812 0.0497 0.0755 0.1093

16 0.0877 0.0395 0.0387 0.0373 0.0334

2) The matrix ∞-norm or row sum norm, defined as the
maximum of the 1-norms of the rows of a matrix

3) The matrix 2-norm or spectral norm, defined as the
largest singular value of a matrix

4) The Frobenius norm or Euclidean norm, defined as
the square root of the sum of squares of all the matrix
entries

The results are listed in Table II, from which the superiority
of the current approach is clearly visible.

The big practical advantage over the approach in [4]
is that a starting point is now automatically generated,
making it much easier to approximate wavelets. Previously
a lot of tweaking of the starting point was required to
obtain a satisfying approximation. With this approach also
Daubechies wavelets have been approximated in [14]. Here
the Daubechies wavelets were obtained from the filters with
an iteration scheme (see for example [15]). The results of the
approximation of various Daubechies wavelets are listed in
Table III. The low-order Daubechies wavelets (db2, db3, etc.)
are not very smooth (hard to fit), but have few oscillations
(few complex pairs needed). The high-order Daubechies
wavelets (db8, etc.) are smooth, but have more oscillations.
These properties make these wavelets a challenge to approx-
imate.

VI. CONCLUSION

In this paper a largely automated method to approximate
wavelet functions for implementation in analog circuits is
presented. The approach performs well in the sense that it
leads to relatively low order approximations with an accept-
able L2-norm of the misfit, especially when compared to the
wavelet approximations obtained with Padé-approximation.
The final performance of an analog circuit will depend on
more factors though, such as the quality of the components
and the peculiarities of the intended practical application
producing the signals to be analyzed. With this automated
approach, wavelets that could not be approximated well with

the approach in [1], such as the Daubechies wavelets, now
were relatively easy to approximate well to a satisfactory
degree.
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