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Abstract— We study discrete-event systems prone to such
faults which can occur repeatedly. For the diagnosis of re-
peatable faults, [5] introduced the notion of �-diagnosability
requiring the diagnosis of the �th occurrence of a fault within
a bounded delay. The present paper studies the identifica-
tion of the set of all indices � for which the system is �-
diagnosable. (These are precisely the occurrence indices for
which a repeatable-fault can be diagnosed.) We first present a
test to verify whether a fault is diagnosable for each occurrence
index, i.e., whether it is “∀�-diagnosable”. For systems that fail
this test, we further present a method to compute the set of all
indices � for which the system is not �-diagnosable.
Keywords: Discrete event systems, failure diagnosis, repeated
failures.

I. INTRODUCTION

Failure diagnosis of discrete event systems (DESs) has

been extensively studied (see for example [9], [8], [1], [4])

to determine whether a fault occurred sometimes in past.

Certain faults can occur repeatedly, such as the intermittent

or non-persistent faults. For example in a discrete flow net-

work, such as a manufacturing facility or a communication

network, the same routing violation may occur repeatedly. It

is possible that certain occurrences of a repeatable fault are

diagnosable, whereas other occurrences are not diagnosable.

In order to study the diagnosis of various occurrences of a

fault, the notion of repeated failure diagnosis was introduced

by Jiang-Kumar-Garcia [5]. Specifically, they introduced

the notions of �-diagnosability (�th failure diagnosability),

[1, �]-diagnosability (1 through � failures diagnosability), and

[1,∞]-diagnosability (1 through ∞ failures diagnosability).

They provided polynomial algorithms for checking these

various notions of repeated diagnosability, and also presented

a method to construct a diagnoser for the on-line diagnosis of

repeated failures. Algorithms of an order better complexity

were later reported in [11]. A temporal logic based approach

for diagnosing the occurrences of a repeatable-fault is pro-

posed in [3].

The property of [1,∞]-diagnosability guarantees that each

occurrence of a repeatable-fault be detected within a bounded

delay of its occurrence, and the bound is uniform in the

sense that it does not depend on the fault-occurrence number.

While this is the most desirable property to have, it is

possible that certain systems don’t possess this property.
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So it is desirable to know the set of those fault-occurrence

indices � for which a system is �-diagnosable. These are

precisely the fault-occurrence indices for which a repeatable-

fault can be diagnosed. We first provide an algorithm to

check whether the set of all indices for which a system is

�-diagnosable spans the set of all numbers, i.e., whether a

system is �-diagnosable for every � ≥ 1, which we refer

to as “∀�-diagnosable”. ∀�-diagnosability is weaker than

[1,∞]-diagnosability as it does not require the diagnosis

delay bound to be uniform with respect to �, i.e., it is

possible that each occurrence of a fault is detectable within a

bounded delay but the delay bound grows larger as the fault-

occurrence index � grows higher. For the class of systems

that are not ∀�-diagnosable, we next present an algorithm to

determine the set of indices � for which the system is not

�-diagnosable. This algorithm examines the conditions of ∀�-

diagnosability we have obtained, and identifies all possible

ways in which the paths of the underlying testing automaton

can violate those conditions.

The notion of ∀�-diagnosability considered here is not

the same as the notion of non-uniform [1,∞]-diagnosability

considered in [11] since the “non-uniformity” in the latter

refers to the diagnosis delay bound being a function of the

failure-traces. In other words, the diagnosis delay bound for

the �th occurrence of a fault can be different for different

traces. In contrast in the case of ∀�-diagnosability, the

diagnosis delay bound for the �th occurrence of a fault is the

same across all failure-trace, but it does depend on the fault-

occurrence index �. In other words, in order for the detection

of the �th occurrence of a fault, the diagnosis system needs to

wait the same amount regardless of the failure-trace executed

by the system. This is a convenient feature to have since due

to the partial observation of events it is generally not known

what trace the system has executed, and how long need a

diagnoser wait before it can arrive at a diagnosis decision.

This paper adopts a “state-based” approach (i.e., the oc-

currence of a failure is specified as the visit of a faulty state).

(An “event-based approach” can be transformed to a “state-

based” approach [5].) Also, without loss of generality, we

assume that there is only one fault, for it is the case that a

system is diagnosable with respect to a given set of faults

if and only if it is diagnosable with respect to each of the

faults individually [5]. For space consideration, all proofs are

omitted.
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II. NOTATION AND PRELIMINARIES

A discrete event system G is modeled by a four tuple:

G = (X, Σ, α, x0), where X is its set of states, Σ is its set of

events, α : X×Σ∪{ε} → 2X is its state transition function,

and x0 ∈ X is its initial state. For an event set Σ, we use Σ
to denote Σ∪{ε}. A triple (x, σ, x′) ∈ X ×Σ×X is called

a transition if x′ ∈ α(x, σ); if σ = ε, the transition is called

an ε-transition.

A finite state-trace π = (x1, · · · , xn) is a path contained
in G if for all 1 ≤ i < n there exists σi ∈ Σ such that

the transition (xi, σi, xi+1) is in G. In this case we say that

a transition on σi is contained in π, and the state xi is
contained in π (denoted xi ∈ π). The length of π is the

number of states contained in π, denoted |π|. A path π is
generated by G if π is contained in G and it starts from

the initial state of G. A cycle is a path cl = (x1, · · · , xn)
such that the begin state x1 is a successor of the end state

xn. An elementary path is a path with no repeated states,

and an elementary cycle is an elementary path that is a

cycle. We use Cl(x) to denote the set of all elementary

cycles containing state x, and Tr(x) to denote the set of

all elementary paths containing state x. For a cycle cl, we

define Cl(cl) := ∪x∈clCl(x).
For the failure diagnosis purposes, the state set of G

is partitioned into faulty and non-faulty states, which are

identified by a fault-assignment function Ψ : X → {0, 1}
with the implication that Ψ(x) = 1 if and only if state x is

a faulty state. For a path π in G, NF
π denotes the number of

states in π that are faulty, in which case π is said to contain

NF
π faults. We assume without loss of any generality that the

system G to be diagnosed is non-terminating, i.e., G does

not contain states where no transition is defined. Otherwise,

we can add self-loops on ε on every terminating state of G
without altering its diagnosability properties [5].

The events executed by a discrete-event system to be diag-

nosed are observed using sensors, which can be represented

as an observation map, M : Σ ∪ {ε} → ∆ ∪ {ε} satisfying

M(ε) = ε, and where ∆ is the set of observed symbols.

The observation mask can be extended from events to traces:

M(ε) = ε and ∀s ∈ Σ∗, σ ∈ Σ, M(sσ) = M(s)M(σ).
A pair of paths πi = (xi0, · · · , xiki), (i = 1, 2) in G are

said to be indistinguishable if they can generate a common

event-trace observation, i.e., Oπ1 ∩ Oπ2 	= ∅, where Oπi =
{M(s) ∈ ∆∗ | s = (σi1 · · ·σiki

), xij ∈ α(xi(j−1), σij), 1 ≤
j ≤ ki} for i = 1, 2.

The following definition of �-diagnosability was intro-

duced in [5] to allow the diagnosis of the �th occurrence

of a fault within a bounded delay.

Definition 1: Given a system G along with a fault as-

signment function Ψ, and an observation mask M , G is �-
diagnosable with respect to M and Ψ if,

∃n� ∈ N,

[∀π generated by G with NF
π ≥ �,

∀π = ππ′ in G with |π′| ≥ n�,

∀π̂ generated by G with Oπ ∩ Oπ̂ 	= ∅

⇒ NF
π̂ ≥ �].

Further if a system is �-diagnosable for each � ≥ 1, then it is

called ∀�-diagnosable. Note for a ∀�-diagnosable system the

diagnosis delay bound can be a function of �, and although

the diagnosis delay bound will be finite for each �, the various

delay bounds may not be uniformly bounded.

III. INDISTINGUISHABLE-PAIRS AUTOMATON

Our algorithms are based on a testing automaton that

tracks all indistinguishable pairs of traces, and we refer to it

as an indistinguishable-pairs automaton.

Definition 2: Given a system G = (X, Σ, α, x0) with a

fault assignment function Ψ, and an observation mask M ,

an indistinguishable-pairs automaton I is defined as follows:

I = (Y, ΣT , β, y0), where Y := X × X is the set of states,

ΣT := Σ×Σ is the set of events, y0 = (x0, x0) is the initial

state, and β : Y × ΣT → 2Y is the transition function that

is defined as follows:

∀y = (x+, x−) ∈ Y , σT = (σ+, σ−) ∈ ΣT − {(ε, ε)},

β(y, σT ) :={
α(x+, σ+) × α(x−, σ−) if M(σ+) = M(σ−)
∅ otherwise

We write a state y ∈ Y as y = (x+(y), x−(y)). It follows

from the definition of I that each path π ∈ Y ∗ in I is a

pair (π+, π−) such that π+, π− ∈ X∗ are paths in G that

are indistinguishable to each other.

Associated with a state y = (x+(y), x−(y)) ∈ Y is the

fault-label pair, (Ψ(x+(y)), Ψ(x−(y))). Using this we define

the following notions of “weights” of a state/path in I .

Definition 3: Consider a state y ∈ Y and a path π =
(y1, · · · , yn) in I .

i) The +ve and −ve weights of y are defined as,

w+(y) := Ψ(x+(y)) and w−(y) := Ψ(x−(y)),
the vector-weight of y is defined as, −→w (y) :=
(w+(y), w−(y)), and the net weight of y is defined

as, w(y) := w+(y) − w−(y).
ii) The +ve and −ve weights of π are defined as,

w+(π) =
∑

y∈π w+(y) and w−(π) =
∑

y∈π w−(y),
the vector-weight of π is defined as, −→w (π) :=
(w+(π), w−(π)), and the net weight of π is defined

as, w(π) := w+(π) − w−(π).
We use the expression w±(·) = c to imply either w+(·) =

c or w−(·) = c.

Definition 4: Given a path π (can be a cycle) in I ,

i) π is a zero-path if w(π) = 0; otherwise, π is called a

non-zero path. A non-zero path is a +ve-path (resp.,

−ve-path) if w(π) > 0 (resp., w(π) < 0).

ii) π is fault-free if w+(π) = 0 and w−(π) = 0. π
is called 1-part fault-free if either w+(π) = 0 or

w−(π) = 0.

iii) π is +ve-vocal if exists a transition on (σ+, σ−) in π
with σ+ 	= ε. π is −ve-vocal if exists a transition on

(σ+, σ−) in π with σ− 	= ε.

Note that vocality signifies execution of at least one event.
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IV. TEST FOR ∀�-DIAGNOSABILITY

In this section, we present a test to verify whether a

repeatable-fault is diagnosable for every occurrence index,

i.e., whether it is “∀�-diagnosable”. By Definition 1, a system

is not �-diagnosable if and only if there exists a pair of

indistinguishable infinitely-long paths (π+, π−) generated by

G such that min{NF
π+

, NF
π−} < � and max{NF

π+
, NF

π−} ≥ �,

and the path with larger number of faults continues to

execute events. Since π = (π+, π−) is a path in I and since

NF
π+

= w+(π) and NF
π− = w−(π), it follows that G is not

�-diagnosable if and only if I contains an infinitely-long non-

zero path π, and if the path is +ve-path (resp., −ve-path),

then it is “+ve-vocal” (resp., “−ve-vocal”) infinitely-often.

(Recall that “vocal” implies execution of events.) Existence

of such a path in I and finiteness of I implies one of the

two cases mentioned in the following theorem.

Theorem 1: Consider system G with fault assignment

function Ψ, and an observation mask M . Then G is not ∀�-

diagnosable if and only if either one of the following holds

in I:

(a) Exists a non-zero cycle cl such that cl is 1-part fault-

free,

(b) Exists a fault-free cycle cl and a non-zero path π to cl
such that cl is sgn(w(π))-vocal.

Based on the result of Theorem 1, we next present an

algorithm for testing ∀�-diagnosability.

Algorithm 1: (For testing ∀�-diagnosability of system G
under observation mask M and fault assignment function Ψ.)

(i) (Following condition (a) of Theorem 1)

a) Delete those states y from I for which w+(y) =
1. Denote the resulting state machine I1.

b) Detect strongly connected components (SCCs) in

I1 to identify +ve-part fault-free cycles of I .

c) Check the existence of a SCC that contains a state

y for which w(y) = −1.

If the answer is yes, then G is not ∀�-diagnosable, and

stop; else go to step (ii).

(ii) (Following condition (b) of Theorem 1)

a) Delete those states y from I for which either

w+(y) = 1 or w−(y) = 1. Denote the resulting

state machine I2.

b) Detect SCCs in I2 to identify fault-free cycles of

I .

c) Compute in I shortest path to fault-free cycles

and check its negativity.

If the answer is yes, then G is not ∀�-diagnosable;

otherwise, G is ∀�-diagnosable.

Remark 1: “Delete states” in I takes O(|X|2|Σ|2) time.

“Detect SCCs” takes O(|X|2 + |X|2|Σ|2) time. Step (i)(c)

can be checked in O(|X|2). “Compute shortest paths” can

be performed in O(|X||X|2|Σ|2) time by the algorithm

given in [2]. Thus the overall complexity of Algorithm 1

is O(|X|3|Σ|2).
The following example illustrates Algorithm 1.

Example 1: Consider a system G shown in Figure 1.

Suppose the fault assignment function is given by, Ψ(1′) =

Ψ(2) = Ψ(3) = Ψ(4′) = Ψ(6′) = 1, and Ψ(·) = 0 for

other states, and suppose the observation mask is given by,

M(a1) = M(a2) 	= ε, M(a) = ε, and identity mask for

other events.
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Fig. 1. The system G

The corresponding indistinguishable-pairs automaton I is

drawn in Figure 2. Each state in Figure 2 is labeled by its

w(·) value. We apply Algorithm 1 to check ∀�-diagnosability

of G.

By step (i)(a) and (b), we obtain SCCs (44, 66, 77),
(44′, 66′, 77′), (99), (7′7) and (7′7′). By step (i)(c), there

exists a SCC (44′, 66′, 77′) containing states 44′ and 66′

with w(44′) = w(66′) = −1. Thus, G is not ∀�-

diagnosable. Indeed, one can verify that there exists a pair

of indistinguishable infinitely-long paths π = (π+, π−) =
(00, 11′, 22′, 33′, 44′, 66′, (77′, 44′, 66′)∗) generated by G.

This can be used to argue that G is not 3-diagnosable,

implying G is not ∀�-diagnosable.

V. INDICES VIOLATING �-DIAGNOSABILITY

For systems that fail the ∀�-diagnosability test, it is de-

sirable to know the set of fault-occurrence indices � for which

the system is not �-diagnosable, and we present a method

for doing so in this section. We examine the conditions of

∀�-diagnosability we have obtained, and identify all possible

ways in which paths of the underlying testing automaton can

violate those conditions. The weights associated with such

paths are then examined to determine the indices � for which

the system is not �-diagnosable.

A. Identifying Indices Violating �-diagnosability

Suppose condition (a) of Theorem 1 holds, i,e., exists a

non-zero cycle cl in I such that it is 1-part fault-free. Then by

executing this cycle multiple times a pair of indistinguishable

traces can be obtained for which the fault difference count is

arbitrarily large. Then given any path π in I ending at cycle

cl, the system is not �-diagnosable for all � ∈ [w+(π)+1,∞)
if w+(cl) = 0, and for all � ∈ [w−(π)+1,∞) if w−(cl) = 0.

On the other hand if condition (b) of Theorem 1 holds, i.e.,

exists a fault-free cycle cl and a non-zero path π to the cycle

cl, then a pair of indistinguishable traces can be obtained in

which the fault difference count persists at w(π) = w+(π)−
w−(π). As a result, the system is not �-diagnosable for all
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Fig. 2. Indistinguishable-pairs automaton I of G

� ∈ [min{w+(π), w−(π)} + 1, max{w+(π), w−(π)}]. This

is stated in the following theorem.

Theorem 2: Consider G with fault assignment function Ψ,

and an observation mask M . G is not �-diagnosable if and

only if,

(a) Exists cl satisfying Theorem 1 (a) and

� ∈
{ ∪{path π to cl}[w+(π) + 1,∞) if w+(cl) = 0

∪{path π to cl}[w−(π) + 1,∞) if w−(cl) = 0
or

(b) Exists cl and π satisfying Theorem 1 (b) and

� ∈ [min{w+(π), w−(π)} + 1, max{w+(π), w−(π)}].
Both the conditions of Theorem 2 require computation

of the weights of certain paths of I . Since there may exist

infinitely many such paths, it is not possible to first obtain

all such paths and then compute their weights. However,

since any path is a concatenation of elementary paths and

elementary cycles [6], which can be uniquely determined

(algorithms for finding elementary paths and elementary

cycles can be found in [7], [10]), we can break down each

path into its constituent elementary paths and elementary

cycles, so that the weight of a path can be computed as the

superposition of the weights of its constituent elementary

paths and elementary cycles (the order of appearance of ele-

mentary paths or cycles does not matter). Conversely, starting

from an elementary path π of a system, a feasible (non-

elementary) path can be obtained by inserting appropriate

closed paths (the begin state is same as the end state) into

π, where a closed path can be obtained by visiting a set of

elementary cycles certain times in certain orders. Thus, it is

possible to compute the weights of all paths, from feasible

superpositions of weights of elementary paths and cycles.

Since in a closed path elementary cycles may have to appear

in a certain order, we next introduce the notion of state-

relative ordering of elementary cycles and present a way to

compute it.

B. State-Relative Ordering of Cycles

The visiting of a set of elementary cycles in a closed

path can not be done in an arbitrary order, since in order

to reach an elementary cycle some other elementary cycles

may have to be reached first. To see this, consider state 44′

in Figure 2, elementary cycles (22′, 33′, 44′, 55′), (33′, 44′),
(44′, 66′, 77′) and (77′) form the strongly connected com-

ponent containing 44′. We are able to obtain a closed path

from 44′ that contains cycle (77′), but to reach this cycle, the

cycle (44′, 66′, 77′′) must be reached first. In contrast, cycles

(33′, 44′) and (44′, 66′, 77′′) can be reached independently

of each other.

Such dependency among cycles gives rise to a constraint

on the number of their execution times in a closed path

containing those cycles. For example, in any closed path

starting from state 44′, the execution time of cycle (77′) can

be non-zero only if the execution time of cycle (44′, 66′, 77′′)
is non-zero. To reflect such a dependency relation, we

introduce a notion of state-relative ordering relation over
cycles.

Definition 5: For a state y in I , the y-relative ordering

relation over cycles is denoted <y and is inductively defined

as follows.

1) Given two cycles cl0 and cl1, cl0 <y cl1 if

cl0 ∈ Cl(y) and cl1 ∈ Cl(cl0) − Cl(y).

2) Given a sequence of cycles {cli, 0 ≤ i ≤ n, n ≥ 2},

cl0 <y · · · <y cln if

cl0 <y · · · <y cln−1, and

∃y′ ∈ cln−1 s.t. cln−1 <y′ cln, and

cln ∈ Cl(cln−1) − Cl(∪n−2
i=0 cli).
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The y-relative ordering of cycles can be used to arrange

cycles in sequences which obey the ordering as captured in

the following definition..

Definition 6: For y ∈ Y , the set of sequences of cycles

obeying the y-relative ordering of cycles is given by,

ClSeq(y) := {〈cl0, · · · , cln〉 | n ≥ 0, cl0 ∈ Cl(y), and

cl0 <y · · · <y cln}.
ClSeq(y) can be computed using a depth-first search algo-

rithm, which is omitted here due to the space limitation.

The collection of all cycles reachable from y through

cycles is given by,

Cl∗(y) := {cl ∈ Cl(Y ) | ∃clseq ∈ ClSeq(y) containing cl}.
It is easy to see that cycles in Cl∗(y) are reachable from

each other, and Cl∗(y) is a maximal collection of cycles that

have such property. I.e., Cl∗(y) is a collection of cycles that

forms a SCC. This fact is stated in the following lemma.

Lemma 1: Cl∗(y) is a collection of cycles that forms

a strongly connected component containing state y, where

Cl∗(y) is defined in Definition 6.

C. Computing Weight of a Path
As discussed above, an arbitrary feasible path can

be obtained by inserting appropriate closed paths into an

elementary path, where the closed paths are composed of

elementary cycles. Thus, any path can be viewed as being

“generated” from an elementary path (via insertions of closed

paths composed of a set of elementary cycles). The set

of paths generated by an elementary path differ in their

constituent elementary cycles and corresponding execution

times.

The following example illustrates the concept of paths

generated by an elementary path.

Example 2: Consider the indistinguishable-pairs automa-

ton I shown in Figure 2, and consider the path π1 =
(00, 11′, 22′, 33′, 44′, 55′, 22′, 33′, 44′, 66′, 77′). Then π1 =
(00, 11′)·(22′, 33′, 44′, 55′)·(22′, 33′, 44′, 66′, 77′), i.e., path

π1 can be decomposed into elementary paths (00, 11′)
and (22′, 33′, 44′, 66′, 77′), and an elementary cycle cl1 =
(22′, 33′, 44′, 55′). Further, elementary paths (00, 11′) and

(22′, 33′, 44′, 66′, 77′) can be concatenated to yield a single

elementary path (00, 11′, 22′, 33′, 44′, 66′, 77′).
Similarly, consider another path π2 =

(00, 11′, 22′, 33′, 44′, 33′, 44′, 66′, 77′, 44′, 66′, 77′). Then

π2 can be decomposed into a single elementary path

(00, 11′, 22′, 33′, 44′, 66′, 77′) and elementary cycles

cl2 = (33′, 44′) and cl3 = (66′, 77′, 44′).
Thus, both π1 and π2 are generated by the elementary path

(00, 11′, 22′, 33′, 44′, 66′, 77′).
We say two paths π1 and π2 are related, denoted π1Rπ2

if they can be generated by a common elementary path tr ∈
Tr(Y ). The following lemma states that this relation is an

equivalence relation and implies that each path is generated

by a unique elementary path.

Lemma 2: The set of all paths in I can be partitioned in

such a way that each partition consists of paths generated by

a unique elementary path.

Using the facts that (i) any path can be generated by a

unique elementary path tr ∈ Tr(Y ) by inserting certain

closed paths, and (ii) each closed path is obtained by

executing certain elementary cycles certain times in certain

order, and (iii) all the elementary cycles that can be possibly

included in closed paths starting from y belong to the SCC

Cl∗(y), and (iv) elementary cycles in Cl∗(y) may only be

chosen according to the y-relative ordering, the set of weights

for the set of paths generated by tr, denoted �W (tr), can be

obtained as:

�W (tr) :=
{ ∑

yi∈tr

∑
cl

(i)
j

∈Cl∗(yi)

�w(tr) + m
(i)
j �w(cl(i)j ) |

m
(i)
j ≥ 0, and [m(i)

j > 0] ⇒ (1)

[∃〈cl(i)j0
, · · · , cl(i)jn

〉 ∈ ClSeq(yi) :

(cl(i)jn
= cl

(i)
j ) ∧ (m(i)

jk
> 0,∀0 ≤ k < n)]

}
.

Also for T̂ r ⊆ Tr(Y ), �W (T̂ r) := ∪
tr∈T̂ r

�W (tr).
Here yi represents ith state in the elementary path tr,

cl
(i)
j represents the jth elementary cycle appearing along a

closed path inserted at state yi, and m
(i)
j is the number of

times such a cycle is executed along such a closed path.

Clearly, m
(i)
j ≥ 0 for all i and j. Also if m

(i)
j is postive

(i.e., if cl
(i)
j is executed at least once), then all cycles along

a cycle-sequence ending at cl
(i)
j must also be executed at

least once.

D. Computing Indices Violating �-Diagnosability
Application of Theorem 2 for computation of indices

� violating �-diagnosability requires computation of the

weights of all paths that satisfy either condition (a) or (b).

Let Cl◦(Y ) denote the set of fault-free cycles in I , and let

Tr(y0, cl) ⊆ Tr(y0) denote the set of elementary paths that

start from initial state y0 and end at a cycle cl.
Algorithm 2: (For finding the set of indices for which

�-diagnosability of system G is violated under observation

mask M and fault assignment function Ψ.)

(i) (Set of indices satisfying condition (a) of Theorem 2)

La

:=
⋃

cl∈Cl◦(Y )

⋃
tr∈Tr(y0,cl)

[w+(tr) + 1,∞)

=
[

min
cl∈Cl◦(Y ),tr∈Tr(y0,cl)

(w+(tr) + 1),∞
]

.

Then La is the set of indices satisfying Theorem 2,

condition (a).

(ii) (Set of indices satisfying condition (b) of Theorem 2)

Lb

:=
⋃

cl∈Cl◦(Y )

{[min(w+, w−) + 1,max(w+, w−)] |

(w+, w−) ∈ �W (Tr(y0, cl)), and cl is

sgn(w+ − w−)-vocal}.
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Then Lb is the set of indices satisfying Theorem 2,

condition (b).

The following theorem establishes the correctness of Al-

gorithm 2.

Theorem 3: Algorithm 2 is correct.

The following example illustrates Algorithm 2.

Example 3: Consider system G in Example 1 and its

indistinguishable-pairs automaton I shown in Figure 2. We

compute the set of all indices � for which G is not �-

diagnosable.

By step (i) of Algorithm 1, we can obtain a +ve-

part fault-free non-zero cycle cl = (44′, 66′, 77′). The

set of elementary paths to cl is {(00, 11′, 22′, 33′, 44′),
(00, 11′, 22′, 33′, 44′, 66′), (00, 11′, 22′, 33′, 44′, 66′, 77′)}.

Thus, La = [min{2, 2, 2} + 1,∞) = [3,∞).
By step (ii) of Algorithm 1, we can obtain fault-free

cycles Cl◦(Y ) = {(44, 66, 77), (77′), (7′7), (7′7′), (99)}.

Let cl = (77′), cl1 = (22′, 33′, 44′, 55′), cl2 = (33′, 44′),
cl3 = (44′, 66′, 77′).

Then Tr(y0, cl) = {(00, 11′, 22′, 33′, 44′, 66′, 77′)} =
{tr}. By definitions of ClSeq(·) and Cl∗(·), we have:

ClSeq(00)=ClSeq(11′) = ∅,

Cl∗(00) = Cl∗(11′) = ∅,

ClSeq(22′) = {〈cl1, cl2〉, 〈cl1, cl3, cl〉, 〈cl1〉, 〈cl1, cl3〉},

Cl∗(22′) = {cl1, cl2, cl3, cl},

ClSeq(33′) = {〈cl1, cl3, cl〉, 〈cl2, cl3, cl〉, 〈cl1〉, 〈cl1, cl3〉,
〈cl2〉, 〈cl2, cl3〉},

Cl∗(33′) = {cl1, cl3, cl, cl3},

ClSeq(44′) = {〈cl2〉, 〈cl1〉, 〈cl3, cl〉, 〈cl3〉},

Cl∗(44′) = {cl2, cl1, cl3, cl},

ClSeq(66′) = {〈cl3, cl2〉, 〈cl3, cl1〉, 〈cl3〉, 〈cl3, cl〉},

Cl∗(66′) = {cl3, cl2, cl1, cl},

ClSeq(77′) = {〈cl3, cl2〉, 〈cl3, cl1〉, 〈cl〉, 〈cl3〉},

Cl∗(77′) = {cl3, cl2, cl1, cl}.

By Equation (1), we have

�W (tr) = {(2, 3) +

[m(22′)
cl1

+ m
(33′)
cl1

+ m
(44′)
cl1

+ m
(66′)
cl1

+ m
(77′)
cl1

] × (2, 1)

+[m(22′)
cl2

+ m
(33′)
cl2

+ m
(66′)
cl2

+ m
(44′)
cl2

+ m
(77′)
cl2

] × (1, 1)

+[m(22′)
cl3

+ m
(33′)
cl3

+ m
(44′)
cl3

+ m
(66′)
cl3

+ m
(77′)
cl3

] × (0, 2)

| m
(22′)
cl2

> 0 ⇒ m
(22′)
cl1

> 0, m
(22′)
cl3

> 0 ⇒ m
(22′)
cl1

> 0,

m
(33′)
cl3

> 0 ⇒ m
(33′)
cl1

> 0, m
(33′)
cl3

> 0 ⇒ m
(33′)
cl2

> 0,

m
(66′)
cl2

> 0 ⇒ m
(66′)
cl3

> 0, m
(66′)
cl1

> 0 ⇒ m
(66′)
cl3

> 0,

m
(77′)
cl2

> 0 ⇒ m
(77′)
cl3

> 0, m
(77′)
cl1

> 0 ⇒ m
(77′)
cl3

> 0}
When the values of all variables m

(i)
j are zero,

(w+, w−) = (2, 3) (equaling the weight of the path tr). Since

cycle cl is −ve-vocal, [min(w+, w−) + 1,max(w+, w−)] =
[w+ + 1, w−] = [3, 3] = {3} ∈ Lb.

When m
(33′)
cl2

= 1 and all other m
(i)
j ’s are zero,

(w+, w−) = (2, 3) + (1, 1) = (3, 4) (equaling the weight

of the path (00, 11′, 22′, 33′, 44′, 33′, 44′, 66′, 77′)). Since

cycle cl is −ve-vocal, [min(w+, w−) + 1,max(w+, w−)] =
[w+ + 1, w−] = [4, 4] = {4} ∈ Lb.

Note when m
(22′)
cl1

= 2 and all other m
(i)
j ’s are zero,

(w+, w−) = (2, 3) + (4, 2) = (6, 5) and [min(w+, w−) +
1, max(w+, w−)] = [w− + 1, w+] = [6, 6] = {6}. However,

cycle cl is −ve-vocal. So this interval does not belong to Lb.

A complete analysis can be used to conclude that G is not

[3,∞)-diagnosable.

VI. CONCLUSION

The goal of the paper is the identification of fault-

occurrence indices � of a repeatable-fault for which the given

system is not �-diagnosable. For this, we provided a condition

to check whether a system is �-diagnosable for every � ≥ 1,

i.e., ∀�-diagnosable. For the class of systems that are not ∀�-

diagnosable, we next presented a condition to determine the

set of indices � for which the system is not �-diagnosable

by identifying all possible ways in which the paths of the

underlying testing automaton can violate the �-diagnosability

property. The weights associated with such paths were then

examined to determine the indices � for which the system

is not �-diagnosable. In order to compute the weight of a

path, we viewed it as being composed of an elementary path

and a set of elementary cycles. Since elementary cycles may

have to appear in a certain order along a path, the notion

of state-relative ordering of cycles was introduced and used

for imposing constraints over the execution times of cycles

appearing in a path. Then the weight of a path was computed

by using as “basis” the weights of its constituent elementary

path and elementary cycles obeying such constraints.
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