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Abstract— This paper explores how the interconnection topol-
ogy among individuals of a multiagent system influences sym-
metry in its trajectories. It is shown how circulant connectivity
preserves cyclic group symmetries in a formation of simple
planar integrators. Moreover, it is revealed to what extent
circulant connectivity is necessary in order that symmetric
formations remain invariant under the system’s dynamics.

I. INTRODUCTION

“It’s a basic principle: Structure always affects function.”
— Steven Strogatz in Sync [1, p. 237]

This paper explores how the interconnection structure of a
multiagent system influences, in particular, symmetry in its
trajectories. A current research emphasis in the multiagent
systems and cooperative control literature is to generalize:
What are the connectivity conditions for achieving consen-
sus [2], [3]? What happens if the interconnection topology
among agents is dynamic [4]? These are matters of funda-
mental theoretical significance. On the other hand, practical
issues arise when designing multiagent systems required to
perform specific tasks. For instance, consider the problem of
dynamic target tracking using a team of n > 1 autonomous
robots. This task requires the team to act as a mobile and
reconfigurable sensor array. Suppose each agent is equipped
with a target-tracking sensor (e.g., ultrasonic sensors, a laser
range finder, or a CCD camera) that, when combined with the
sensor readings of other agents, can be utilized to estimate
the location of a target. If the sensors measure distances
to the target, then it can be shown that a configuration
that optimizes the estimate is one in which the sensors are
uniformly placed in a circular fashion around the target [5].
Notice how this optimal sensor placement is “symmetrical,”
in the sense that the configuration remains optimal under
rotations by 2π/n about the target.

The problem of achieving and maintaining symmetry in
multiagent formations is not a new endeavor. For example,
[6] investigates distributed heuristic algorithms for the for-
mation of geometric patterns in the plane (e.g., circles and
polygons). In [7], artificial potentials are used to generate sta-
ble symmetric formations by inserting virtual leaders among
the agents. How information flow influences the stability of
formations is studied in [8]. In [9], the authors demonstrate
how local pursuit strategies can generate regular polygon
formations in systems of kinematic unicycles. Symmetry
in the interconnection structure is exploited in [10], where
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the problem studied is distributed controller synthesis for
large arrays of spatially interconnected systems. Of particular
relevance to the current work is [11], wherein the symmetry
in a network of coupled identical dynamical systems is
exploited to classify invariant manifolds of the overall system
dynamics with respect to their stability. Hence, “stability in
the network descends from its topology” [11, p. 67].

The present research is especially influenced by the work
of [12] and [13], wherein a circulant interconnection struc-
ture among multiple agents is utilized to deduce the overall
steady-state behavior of the agents. In particular, [12] studies
the asymptotic behavior of a collection of points in discrete-
time circulant pursuit. Similarly, [13] studies the stability of
certain geometric patterns for a collection of continuous-time
fixed-speed agents in cyclic pursuit.

This paper studies connectivity as it relates to the problem
of choosing distributed controllers that inherently preserve
symmetric formations. Designing stable formations, e.g., as
in [7], [8], [13], is not studied here. The paper begins
by providing some terminology and background. Next, in
Sec. III, it is shown how circulant connectivity preserves
cyclic group symmetries in a formation of n > 1 simple
planar integrators, each endowed with only relative sensing
capabilities. In Sec. IV, it is revealed to what extent circulant
connectivity is necessary in order that symmetric formations
remain invariant under the system’s dynamics.

II. SYMMETRY GROUPS, GRAPHS, AND PURSUIT

This section introduces some terminology and background
material relating to symmetry groups, algebraic graph theory,
and the class of multiagent systems studied in this paper.

A. Cyclic Group Symmetry

It is assumed that the reader is familiar with some basic
group theory; e.g., as in [14]. Recall that the set of isometries
in R

2 form a group, denoted I(R2). A subgroup G of I(R2)
is called a symmetry group of a subset U ⊂R

2 if U remains
invariant under every element of G. A group is called cyclic
when all its elements are powers gk of some one element
g. For any element g in a group G, the set {gk : k ∈ Z} is
the cyclic subgroup of G generated by g. If gm = 1 for some
positive integer m, then the group generated by g consists of
a finite number of elements. If m is the least positive integer
for which this is true, then m is called the group’s order.

Definition 1 (Rotation Group): The rotation group of or-
der m, denoted Cm, is the cyclic group generated by a rotation
through 2π/m about the origin.

Therefore, it is said that U ⊂ R
2 has symmetry Cm if the

rotation group Cm is a symmetry group of U .
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B. Agents in Pursuit

In this paper, it will be useful to view the agents as points
in the complex plane, C. Consider a collection of n > 1
agents, z1(t),z2(t), . . . ,zn(t)∈C, evolving in time t. Suppose
that each agent is a simple integrator; i.e., żi(t) = ui(t) ∈ C,
i = 1,2, . . . ,n, where ui(t) is the control input. Here, we shall
assume that the agents have only relative sensing capabilities
(i.e., there is no global reference frame) and, therefore, that
the inputs ui(t) are of the type

ui(t) = ∑
k �=i

aik (zk(t)− zi(t)) , i = 1,2, . . . ,n. (1)

That is, the aggregate multiagent system is of the form

ż(t) = Az(t), (2)

where z(t) = (z1(t),z2(t), . . . ,zn(t)) ∈ C
n. A direct conse-

quence of the relative sensing limitation is:
Property 1: The matrix A has zero row-sums.
In other words, A[1,1, . . . ,1]� = 0. This implies that if the

agents are all collocated, then there is no motion. Given A,
one can define a digraph, denoted Γ(A). That is, if aik �= 0,
then there exists a directed edge in Γ(A) from vertex i to
k, implying that agent i receives information about agent k.
In the present context, for convenience, we abuse notation
and simply neglect the elements aii when constructing Γ(A).
This paper concerns itself with the trajectories of (2), and we
address the following question: What fixed interconnection
topologies Γ(A) and associated weights A = [aik] preserve
symmetries in multiagent formations z(t) ∈ C

n for all t ≥ 0?

C. Circulant Interconnections

It will be shown in Secs. III and IV that of fundamental
significance to the topic of symmetry is a particular structure
in the sensing topology: namely, circulant connectivity. If a
system has circulant connectivity we mean that the system
matrix A is a circulant matrix [15]; i.e., of the form

A =

⎡
⎢⎢⎢⎣

a0 a1 · · · an−1

an−1 a0 · · · an−2
...

...
...

a1 a2 · · · a0

⎤
⎥⎥⎥⎦ =: circ(a0,a1, . . . ,an−1).

Each row is merely the row above, shifted one element
to the right (modulo n). The matrix is entirely determined
by its first row. Also, intrinsic to the theory of circulants
is the fundamental permutation matrix of order n, Πn =
circ(0,1,0, . . . ,0). If A is a circulant matrix, then it can be
written as a sum of fundamentals, A = ∑n−1

i=0 aiΠi
n [15, p. 68].

A matrix A1 is said to have the same structure as another
matrix A2, of the same dimensions, if for every zero entry
of A1 the corresponding entry in A2 is also zero, and vice
versa. Accordingly, if a square matrix A is such that there
exists a circulant matrix Ac of the same order and structure
as A, then we call A structurally circulant.

D. Formation Graphs

At each instant t, one can define a set of locations
V t = {z1(t),z2(t), . . . ,zn(t)} and a set E t of edge vectors
eik(t) : V t ×V t → C such that an edge eik(t) := zk(t)− zi(t)
exists in E t only if there exists a corresponding edge in E .
Abusing terminology, it is convenient to refer to the pair
(V t ,E t) =: Γ(A,z(t)) as the formation graph (or often just
graph for short). Fig. 1 provides two example formation
graphs. In particular, the graph in Fig. 1a and its correspond-
ing adjacency matrix both exhibit a circulant structure.
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Fig. 1. Example formation graphs Γ(A,z(t)).

E. Permutations

Of particular utility when studying formations and sym-
metry is the theory of permutations. Let N := {1,2, . . . ,n}
and consider a bijection σ : N → N , which is called a
permutation of the set N . Associated with every permutation
σ is a square matrix, denoted Pσ, of order n. Given an n×n
matrix A = [aik], Pσ is such that PσA = [aσ(i),k] and, therefore,
that PσAP�

σ = [aσ(i),σ(k)] (e.g., Πn is the matrix corresponding
to σ(i) = i+1). Let σl(i) := σ◦σ◦· · ·◦σ(i), the permutation
σ applied l times to element i ∈ N . Every i ∈ N generates
a subset of N called a cycle of length l, where l is the least
positive integer such that σl(i) = i. In general, a permutation
σ can be factored (or partitioned) into a product of disjoint
cycles, denoted σ = (i1, i2, . . . , im) · · ·(ip, ip+1, . . . , in), where
i1, i2, . . . , in ∈ N . This factorization is unique up to the
ordering of factors, which are disjoint cycles. A permutation
is called primitive if it has only one factor (of full length n).
For more about permutations, see [15, Sec. 2.4].

III. SYMMETRIC FORMATIONS AND INVARIANCE

We refer to the configuration of points z(t) ∈ C
n at time

t as a multiagent formation, irrespective of the interagent
connections. The principal result of this section is Theorem
2, which states that if the system matrix A is circulant, then
symmetric formations remain symmetric. Let j :=

√−1.
Definition 2 (Formation Symmetry): The formation z(t)∈

C
n at time t is said to have symmetry Cm if there exists a

permutation σ : N → N such that

e j2π/mz(t) = Pσz(t). (3)

That is, by rotating the agents z(t)∈C through angle 2π/m
one obtains the same set of points in C, but (generally)
with a different labeling. Since agents at the origin play
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no role in symmetry, for simplicity’s sake, it is assumed
throughout this paper that there are no agents located at the
origin. Henceforth, it will simply be said that a formation
z(t) ∈ C

n has symmetry Cm “with Pσ” if the vector z(t)
satisfies Definition 2 with associated permutation matrix Pσ.
Following Definition 2, several remarks are in order.

Remark 1: If at time t a formation z(t) has symmetry Cm,
then m divides n. Apply the constraint (3) m times, yielding

e j2πm/mz(t) = z(t) = Pn
σz(t)

(i.e., σm(i) = i for every i ∈ N ). Thus, σ factors into n/m
disjoint cycles of length m. Hence, Cm is a subgroup of Cn.

Remark 2: If a formation z(t) has symmetry Cn, then the
associated permutation σ is primitive. For if not (i.e., σ has
a cycle of length l < n), then one obtains at the l-th iteration

e j2πl/nz(t) = Pl
σz(t) = z(t),

which can only be true for l < n if z(t) ≡ 0.
Remark 3: Suppose a formation z(t) has symmetry Cm,

where m < n. If there are collocated agents, then it is
possible that there exists more than one permutation σ
such that (3) is satisfied. For instance, the n = 8 agents in
Fig. 1b have symmetry C4 with the primitive permutation
σ = (1,2, . . . ,8). However, the constraint (3) also holds with
σ = (1,2,3,4)(5,6,7,8). Following Remark 1, it is clear from
the geometry of symmetry Cm that any factors of σ must have
a length that is a multiple of m.

Consequent to Remark 3, it is assumed in this paper that
if a formation z(t) has symmetry Cm according to Definition
2, then its associated permutation σ is one that factors
into exactly n/m cycles of length m. Let gcd(n,q) denote
the greatest common divisor of the integers n and q. The
following is a useful fact.

Remark 4: If m divides n, then there always exists an
integer q ∈ {1,2, . . . ,n−1} such that gcd(n,q) = n/m since
one can always choose q = n/m.

A. Canonical Ordering

The following theorem establishes a connection between
formation symmetry Cm and a canonical ordering of the
agents, often simply assumed; e.g., as in [14].

Theorem 1: Consider a formation z̃(t) with symmetry Cm

and let q ∈ {1,2, . . . ,n − 1} satisfy gcd(n,q) = n/m (cf.
Remark 4). Then, there exists a permutation τ of the agent
locations z(t) = Pτz̃(t) such that (3) holds with Pσ = Πq

n.
The proof has been omitted for brevity’s sake.
Let τ be the permutation described in Theorem 1. Clearly,

if a formation has symmetry Cm then any permutation of
the agent locations does not change this; it only changes
the permutation σ with which (3) holds. By simultaneously
permuting the rows and columns of A (i.e., compute PτAP�

τ )
one can view this as just a coordinate transformation given
by Pτ or, equivalently, simply a relabeling of the agents.

B. Symmetry Invariance

The focus of this paper is on identifying certain intercon-
nection structures that inherently result in invariant manifolds
corresponding to formation symmetry. This naturally leads to
the following definition.

Definition 3 (Formation Symmetry Invariance): Let m be
a divisor of n. Formation symmetry Cm is said to be invariant
under the system dynamics (2) if for every q ∈ {1,2, . . . ,n−
1} such that gcd(n,q) = n/m and for every initial formation
z(0) ∈ C

n with Pσ = Πq
n, the formation z(t) has symmetry

Cm with Pσ = Πq
n for all t ≥ 0.

What follows is the first principal result of this paper. It
shows that with the proper ordering, rotation group symmetry
of a formation is invariant under circulant dynamics.

Theorem 2: If A is a circulant matrix, then formation
symmetry Cm is invariant under the dynamics (2) for every
m that divides n.

Proof: For every m that divides n, associated with the
constraint (3) at time t = 0 is a complex linear subspace
M = {z ∈ C

n : Mz = 0}⊂C
n, where M = Πq

n−e j2π/mIn. It is
well known that the subspace M is A-invariant if MA = AM.
Since A is a circulant matrix, it can be written in the form
A = ∑n−1

i=0 aiΠi
n [15, p. 68], implying that

MA =
(

Πq
n − e j2π/mIn

) n−1

∑
i=0

aiΠi
n

=
n−1

∑
i=0

aiΠi+q
n − e j2π/m

n−1

∑
i=0

aiΠi
n

=
n−1

∑
i=0

aiΠi
n

(
Πq − e j2π/mIn

)

= AM.

Therefore, the subspace M is invariant under the system’s
dynamics (2), which means that the formation constraint (3)
holds with Pσ = Πq

n for all t ≥ 0.
Example 1: Consider the n = 8 agents depicted in Fig.

2a. This formation z(0) has symmetry C4 with associated
permutation σ = (1,3,5,7)(2,4,6,8). Let

A = circ(−1,−1,0,0,0,0,2,0) (4)

be the corresponding multiagent system matrix. Thus, every
agent i ∈ V is repelled from agent i+1, but doubly attracted
to agent i+6. The simulation in Fig. 1b shows the evolution
of the formation starting at z(0) under the dynamics (2) with
(4). The fact that the agents converge to the origin is not of
interest here. Rather, dashed lines connecting agents of the
cycle {1,3,5,7} form a square at regular intervals during the
simulation, highlighting that C4 symmetry is preserved. 


The following corollary to Theorem 2 addresses the more
general case when the formation is not initially ordered.

Corollary 1: Given a permutation σ, let τ be such that
PτPσP�

τ = Πq
n (cf. Theorem 1). Let m be any divisor of n

and suppose z(0) ∈ C
n has symmetry Cm with permutation

matrix Pσ. If PτAP�
τ is a circulant matrix, then the formation

z(t) has symmetry Cm with Pσ for all t ≥ 0.
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(b) Simulation demonstrating symmetry invariance.

Fig. 2. Initial formation graph and simulation results for Example 1.

IV. CIRCULANT NECESSITY

Thus far, it has been shown that circulant multiagent
systems preserve rotation group symmetries. But, when is
a circulant system matrix also necessary? In this section, we
reveal that circulant connectivity is necessary if formation
symmetry Cm is to be invariant under the system’s dynamics
for every m that divides n.

A. Counterexample

Firstly, for any single m dividing n, the condition of
Theorem 2 that A be circulant is not, in general, necessary for
symmetry invariance, as illustrated by the following example.

Example 2: Consider a system (2) of n = 4 agents, where
the inputs (1) are given by

ui(t) = zi+1(t)− zi(t), i = 1,3,4

u2(t) = z4(t)− z2(t)− (z1(t)− z2(t))

The corresponding system matrix A is not circulant. Consider
the initial formation z(0) given by the graph Γ(A,z(0)) in Fig.
3. Although the graph Γ(A,z(0)) does not have symmetry C4

(see Sec. V), the formation z(0) does (and with Pσ = Π4).
Simulations confirm that z(t) has symmetry C4 for all t ≥ 0.

However, it can also be verified by simulation that there
exists an initial formation having symmetry C2 (a subgroup
of C4) with Pσ = Π2

4 such that symmetry C2 is not preserved
for all t ≥ 0 (e.g., let z1(0) = z3(0) and z2(0) = z4(0)). 


3 1

4

2

Fig. 3. Non-circulant graph Γ(A,z(0)) for Example 2.

B. A Special Class of Formations

When studying the necessity of circulant connectivity, it
is helpful to employ a special class of formations; namely,
those given by the constraint

ωqz(t) = Πnz(t), (5)

for some q ∈ {1,2, . . . ,n−1} and where ω := e j2π/n. Notice
that the locations zi(t), i = 1,2, . . . ,n, generated by the
constraint (5) all have the same magnitude, and hence lie on a
common circle. The following lemma associates a formation
satisfying (5) with its symmetry.

Lemma 1: Suppose ωqz(t) = Πnz(t) holds for some q ∈
{1,2, . . . ,n−1} and z(t) ∈ C

n. Then, the formation z(t) has
symmetry Cm, where m = n/gcd(n,q).

Proof: Let p := gcd(n,q) and define m := n/p and kq :=
q/p. To show the formation has symmetry Cm one must show
there exists a permutation matrix Pσ such that (3) holds. From
ωqz(t) = Πnz(t) one has

(
e j2π/n

)q
z(t) =

(
e j2π/m

)kq
z(t) = Πnz(t). (6)

By Bézout’s identity1, there exist integers lq and lm such that
1 = gcd(kq,m) = lqkq + lmm. This fact with (6) yields

e j2π/mz(t) =
(

e j2π/m
)lqkq

z(t) = Πlq
n z(t).

By letting Pσ = Πlq
n , one obtains the desired result.

Notice that the proof of Lemma 1 also reveals how for-
mations satisfying the special constraint (5) have symmetry
Cm with the canonical ordering introduced in Sec. III-A (i.e.,
(3) holds with Pσ = Πlq

n ).
Example 3: Consider the example graphs Γ(A,z(0)) with

ωqz(0) = Πnz(0) given in Fig. 4, where n = 6. In Fig.
4a, q = 1 and the formation has symmetry C6 since m =
6/gcd(6,1) = 6/1 = 6. In Fig. 4b, q = 2 and the formation
has symmetry C3 since m = 6/gcd(6,2) = 6/2 = 3. 


1Given two nonzero integers a and b, Bézout’s identity says there exist
integers c and d such that gcd(a,b) = ac+bd [16, Sec. 1.2, Theorem 1.7].
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Fig. 4. Example graphs Γ(A,z(0)) with ωqz(0) = Π6z(0).

Let vq := (1,ωq,ω2q, . . . ,ω(n−1)q), the (q + 1)-th column
of

√
nF∗

n , where Fn denotes the Fourier matrix [15, p. 32].
Lemma 2: For every q ∈ {1,2, . . . ,n− 1}, the vector z ∈

C
n satisfies ωqz = Πnz if and only if z = vqz1.

Proof: The statement ωqz = Πnz is equivalent to z2 =
ωqz1, z3 = ωqz2 = ω2qz1, . . . , zn = ω(n−1)qz1, with ωnqz1 = z1.
Equivalently, z = vqz1, which concludes the proof.

C. Necessary Conditions for Invariance

The following theorem is about the necessity of circulant
connectivity and is the second principal result of this paper.

Theorem 3: If formation symmetry Cm is invariant under
the dynamics (2) for every m that divides n, then the system
matrix A is a circulant matrix.

Proof: Theorem 3.1.1 of [15] says that an n×n matrix A
is circulant if and only if it commutes with the fundamental
permutation matrix, Πn. Therefore, it suffices to show that
ΠnA−AΠn = 0. Let q ∈ {1,2, . . . ,n− 1} be arbitrary and
pick an initial formation z(0) = vqz1(0), with z1(0) �= 0. By
Lemma 2, z(0) satisfies ωqz(0) = Πnz(0). By Lemma 1,
z(0) has symmetry Cm with m = n/gcd(n,q). By assumption,
z(t) has symmetry Cm for all t ≥ 0. By differentiating the
constraint ωqz(t) = Πnz(t) with respect to time, one obtains

ωqAz(t) = ΠnAz(t)
(5)⇐⇒ (ΠnA−AΠn)z(t) = 0

⇐⇒ (ΠnA−AΠn)vqz1(t) = 0,

for all t ≥ 0, using Lemma 2 again in the last step. In
particular, since z1(0) �= 0, (ΠnA−AΠn)vq = 0. By Property
1, A has zero row-sums. Thus, Av0 = 0. Also, because v0 is
an eigenvector of Πn with corresponding eigenvector λ = 1,
Πnv0 = v0 [15, pp. 72–73]. Therefore,

(ΠnA−AΠn)v0 = ΠnAv0 −AΠnv0 = −Av0 = 0.

Recall that, [v0 v1 · · · vn−1] =
√

nF∗
n , where Fn is the Fourier

matrix [15, p. 32]. Therefore, it has been shown that
(ΠnA−AΠn)F∗

n = 0. Since F∗
n is invertible, ΠnA−AΠn = 0.

Therefore, A is a circulant matrix.
The next example highlights the significance of the as-

sumption that not only is symmetry Cn invariant, but also all
of its subgroups are invariant under the system’s dynamics.

Example 4: Consider n = 6 agents initially configured
such that ωz(0) = Π6z(0). Suppose the graph Γ(A,z(0))
is coupled in an all-to-all fashion, as in Fig. 4a. Let Ã =
circ(−5,1,1,1,1,1) and let A be the matrix Ã but with

its second row replaced by (1/2,−4,1/2,1/2,2,1/2). For
the initial formation ωz(0) = Π6z(0), Fig. 5a shows how
the rotation group C6 is invariant under the dynamics (2),
despite the fact that A is not circulant. In Fig. 5a, the dashed
lines connect agents {1,2,3,4,5,6}, in sequence, at regular
intervals during the simulation.

However, consider a different initial formation ω2z(0) =
Π6z(0), which has symmetry C3 (since gcd(6,2) = 2, imply-
ing that m = 6/2 = 3). C3 is a subgroup of C6. The associated
formation graph is given in Fig. 4b. Formation symmetry
C3 is not invariant under the dynamics (2), as one can see
from the simulation results of Fig. 5b, where the dashed
lines connect agents {1,2,3}. As time evolves, the initial
equilateral formation becomes only isosceles. 


V. GRAPH SYMMETRY AND INVARIANCE

Although Theorems 2 and 3 make no mention of graph
symmetry, the condition that A is a circulant matrix implies
the graph is also symmetric. Proposition 1 offers this last
result, but a definition and example are helpful first.

Definition 4 (Graph Symmetry): The graph Γ(A,z(t)) =
(V t ,E t) is said to have symmetry G at time t if it has the
property that for every element g ∈ G, if v(t) ∈ V t , then
gv(t) ∈ V t , and if e(t) ∈ E t , then ge(t) ∈ E t . Moreover, the
maps v(t) �→ gv(t) and e(t) �→ ge(t) are permutations.

Example 5: Fig. 1a has symmetry C2, but not C4 because
a rotation through π/2 does not map vertices to vertices. Fig.
1b has symmetry C1, but not C2 because a rotation through
π changes the edge directions. 


Proposition 1: Suppose the formation z(t) has symmetry
Cm with Pσ = Πq

n. If A is a structurally circulant matrix, then
the graph Γ(A,z(t)) also has symmetry Cm.

Proof: As per Definition 4, it is enough to show that
the map induced by a generator of the cyclic group Cm maps
vertices in V t (resp., edges in E t) to vertices in V t (resp.,
edges in E t) by a bijection. Rotation through 2π/m is a
generator of the cyclic group Cm. Constraint (3) implies the
map z(t) �→ e j2π/mz(t) is a bijection on V t , which means that
vertices zi(t)∈V t are mapped to vertices in V t by a bijection.
Consider the rotation of an arbitrary edge eik(t)∈ E t through
angle 2π/m, yielding e j2π/meik(t) = e j2π/m (zk(t)− zi(t)) =
zk+q(t) − zi+q(t) = ei+q,k+q(t). Since eik(t) ∈ E t , aik �= 0.
But, since A is structurally circulant, ai+q,k+q �= 0, implying
that ei+q,k+q(t) ∈ E t . Hence, by the constraint (3), edges
eik(t) ∈ E t are mapped to edges in E t by a bijection.

This final example illustrates the fact that graph symmetry
is not sufficient to preserve cyclic group symmetries.

Example 6: Consider a system of n = 6 agents with A =
circ(−3,1,2,−1,3,−2) and corresponding graph at t = 0
given by Γ(A,z(0)) in Fig. 4a, which has symmetry C6

with Pσ = Πn. Following Theorem 2, formation symmetry
C6 is invariant. But, consider a new initial formation, given
by a permutation of the original one, z̃(0) = Pτz(0), where
τ = (1)(2,3)(4)(5)(6). Since the coupling is all-to-all, the
new graph Γ(A, z̃(0)) also has symmetry C6. However, (3)
does not hold with Pσ = Πq

n for any q, since PτΠnP�
τ is not

of the form Πq
n. It can be shown by simulation that symmetry
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(a) C6 symmetry preserved.
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(b) C3 symmetry not preserved.

Fig. 5. Simulations for Example 4.

C6 of the formation z̃(0) is not invariant under ˙̃z(t) = Az̃(t),
despite the fact that Γ(A, z̃(0)) has symmetry C6. 


VI. CONCLUSIONS

By combining the sufficiency result of Theorem 2 and the
necessity result of Theorem 3, we have shown that for a
multiagent system of the form (1)–(2), formation symmetry
Cm is invariant under the system’s dynamics for every m that
divides n if and only if the system has circulant connectivity.

In light of our results, there exist a few open questions.
Firstly, one might wonder about the necessity of the canoni-

cal labeling introduced in Sec. III-A and assumed in Defini-
tion 2. Is this ordering assumption without loss of generality?
Do there exist other classes of ordering for which there is
symmetry invariance if and only if the system matrix is
circulant? Secondly, to what extent are the presented results
specific to the simple integrator model (1)–(2)? And finally,
multiagent systems design is often presented as the problem
of synthesizing local control strategies that generate desired
global behaviors. Instead, the contributions of this paper em-
phasize the importance of structure. It seems reasonable that
structure could be exploited towards design. Given a set of
fixed agent behaviors, can we control a multiagent system’s
function (e.g., its steady-state and transient behaviors) by
intelligently switching the agent interconnection topology?
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