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Abstract—When deriving data-driven uncertainty
descriptions that are compatible with robust con-
troller design methods, it is still a challenge to quan-
tify potentially nonlinear and time-varying model er-
rors. One way to deal with such errors is to choose
norm bounds on the error that are not contradicted
by measured data which is here called model un-
falsification. This methodology enables particularly
reliable statements about the model error, if no a pri-
ori assumptions about measurement noise are made.
Usually, in order to reduce the impact on the control
performance, linear filters must be chosen. In this pa-
per, in order to systematise the choice of linear filters,
a methodology that minimises the conservatism in the
frequency domain while maintaining the unfalsifica-
tion property in the time domain is proposed, leading
to a mixed frequency- and time-domain optimisation
problem. The advantages of the approach are that
tightness issues can be addressed in the frequency
domain while time-domain unfalsification enables the
consideration of nonlinearities and time-varying er-
rors. The method is applied to experimental data from
a reactive distillation process that exhibits nonlinear
and time-varying behaviour.

I. Introduction

In recent years, the field of optimal linear controller de-
sign methods employing frequency-weighted uncertainty
descriptions has become very mature [1], [16], [15], [19],
[8], [20]. The methodology to ensure robustness by con-
straining H∞ performance channels is a widely accepted
tool to design robust control systems. It can be extended
to broader classes of systems, such as LPV systems [14].
One way to obtain frequency-dependent bounds that
are compatible with the design framework for linear
controllers is based upon the analysis of the residuals
between model simulation and measured data. In order
to generalise this approach, the concept of the model
error model, herewith denoted as ∆, is used. The term
model error model was mentioned first by [11], although
in this context not all possible model representations
were addressed: in [11], [9], the model error model is
restricted to be of linear FIR (Finite Impulse Response)
type similar to [22], where uncertainty descriptions are
derived by assuming the residuals to be generated by a

stochastic process which entails the assumption that the
data was generated by a linear process. We will make
use of this concept in an extended fashion comprising
possibly nonlinear and time-varying operators which can
be considered in the time domain employing a model val-
idation result from [13]. To make sense for robust control,
a linear weighting matrix has to be chosen a priori. To the
authors’ knowledge, no systematic method is available up
to now. In this paper, an algorithm is proposed that aims
at providing a procedure to find minimal conservative
uncertainty weights that are not invalidated (unfalsified)
in the sense of [13], where it should be mentioned that the
result can be straightforwardly extended to the gain esti-
mation method from [12]. The issue of least conservative
uncertainty weights was addressed in the frequency by
frequency method from [7], which is, however, restricted
to linear model error models. In further contrast, the
procedure presented here minimises the conservatism in
the frequency domain in a cumulated fashion which offers
the possibility to shift error contributions to frequen-
cies where they have smaller impact on the achievable
control performance. The paper is organised as follows.
After an introduction of notations, a general definition
of uncertainty structures is given. Then, techniques for
model unfalsification are briefly reviewed. The main part
is concerned with the formulation of the optimisation
problem to minimise the control-relevant conservatism.
Additionally, some numerical issues of the implementa-
tion are discussed. Finally, the proposed algorithm is
applied to experimental data recorded during closed-
loop operation of a reactive distillation column. A linear
model is estimated and by means of the new algorithm a
multiplicative uncertainty description is derived that is
not invalidated by large model errors and and still leads
to reasonable performance in robust controller design.
For benchmarking, all relevant data can de downloaded
via the internet1.

1http://www.bci.uni-dortmund.de
/ast/en/content/mitarbeiter/ewissmitarb/voelker.html
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II. Preliminaries

Signals and transfer matrices are considered in
discrete-time setting throughout the paper unless oth-
erwise stated. Let S

nu denote the linear space of all
sequences {u(k) ∈ R

nu}0≤k≤N−1, 1 ≤ N ≤ ∞. All linear
discrete-time filter operations are denoted by using the
shift operator z

z−1 : S
nu → S

nu : (u(0), . . . , ) → (0,u(0), . . . , ),

where we do not differentiate between time domain and
z-domain as we assume all filter operations y = W (z) ·
u with zero initial conditions. Multivariate signals and
filters are indicated by using bold font. Let

lnu

2 = {u ∈ S : ‖u‖2
2 =

∞∑
k=0

‖u(k)‖2
2 < ∞}

denote the Hilbert space of one sided square summable
sequences equipped with the usual two-norm that in-
duces the well known l2-gain or induced 2-norm of a
causal operator.

Definition 2.1 (l2-gain): Let G(•) : lnu

2 → l
ny

2 be a
possibly nonlinear causal operator so that y = G(u). Its
l2-gain γ2 or its induced 2-norm ‖.‖i2 is defined as

γ2(G) := ‖G‖i2 := sup
u �=0

‖y‖2

‖u‖2
.

For stable linear systems W(z), γ2(W(z)) is equal to
‖W(z)‖∞ equipping the Hardy space H∞ of all functions
W(z) that are analytic and bounded outside the unit
disc. We also use the well known time truncation operator

πk :Snu →S
nu : (u(0), . . . ,)→(u(0), . . . ,u(k−1)).

We use the Matlab-like notation X(:, i) to denote sub-
parts of matrices; in this case the subpart is the ith
column of the matrix X. In the course of the paper, fre-
quent use will be made of the following operators which
can be applied to frequency- or time-dependent matrices
(X(ejω),X(t)), as well as transfer matrices (X(z)):

• transpose T ,
• complex conjugate transpose H ,
• stacking operator col, where

col(X) :=
[
(X(:, 1))T , (X(:, 2))T , . . . , (X(:, n))T

]T
,

• tr (trace), where tr(X) :=
∑
i

Xii,

• Kronecker operator ⊗, where precedence is indicated
by using brackets, given by

X ⊗ Y :=

⎡
⎢⎢⎢⎢⎣

X11 · Y X12 · Y . . . X1n · Y
X21 · Y . . .

...
...

. . .
...

Xm1 · Y Xmn · Y

⎤
⎥⎥⎥⎥⎦ .

Finally, Im denotes the m by m square identity matrix.

III. General model error models

Let a sequence of input values u ∈ lnu

2 and of output
values y ∈ l

ny

2 and a potentially nonlinear and time-
varying model G that approximates the mapping u →
y be given. The idea of the model error model is to
hypothesise an operator ∆ that fully explains the input-
output data if added to G. The only general assumption
on the model G and the model error model ∆ is causality.
Therefore, the proposed method for the derivation of
an uncertainty model is not limited to linear robust
control, but can be utilised also in the context of e. g.
LPV control with induced norm constraints and linear
weighting matrices.

For illustration purposes this concept is depicted for
the special case of an output-multiplicative model error
model ∆om in Fig. 1. The input-output relation of the

Fig. 1. Example of a model error model.

hypothetical operator ∆ that is needed for the compu-
tation of the model error model from measured data can
in most cases (e.g. additive, coprime factor uncertainty)
be obtained by filtering. E. g., let

y = G(u) + ∆om(G(u)), (1)

be the output-multiplicative uncertainty description in
Fig. 1, then the input and output sequences of the model
error model become

ȳ = y − G(u), ū = G(u),

which is easily seen by modifying (1). For the derivation

Uncertainty structure ū ȳ

y = G(u) + ∆a(u) u y − G(u)
y = G(u) + ∆om(G(u)) G(u) y − G(u)
y = G(u + ∆im(u)) u G−1(y− G(u))
y =(M + ∆M )−1(N + ∆N )·u [uT,−yT ]T My − Nu

TABLE I

Model error model input and output sequences for

different uncertainty representations.

of our methodology, we use the general model error model
input sequence ū and output sequence ȳ so that it applies
with full generality to all uncertainty descriptions whose
inputs and outputs can be obtained by filtering. For
clarity, in Tab. I, some filter operations for common
uncertainty descriptions are given in an exemplary fash-
ion (from top to bottom: additive, output-multiplicative,
input-multiplicative, left-coprime factor uncertainty). It
should be noted that the input-multiplicative structure
requires invertibility of G and that the left-coprime factor
structure employs the linear model M−1 · N.
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IV. Model Unfalsification in the Time Domain

A. General Setup

To derive unfalsified uncertainty bounds from mea-
sured data, we consider the following setup. To obtain a
less conservative model set for robust control, the model
error model mapping ū → ȳ is decomposed as:

ȳ = Wy(z) · ∆c (Wu(z) · ū) , (2)

where ∆c is a potentially nonlinear perturbation with

nũ inputs and nȳ outputs and Wu(z) ∈ Hnũ × nū
∞ ,

Wy,W−1
y (z) ∈ Hnȳ × nȳ

∞ are linear filters; all with
zero initial conditions. For the unfalsification of ∆c, new
variables

ỹ := W−1
y (z) · ȳ, ũ := Wu(z) · ū, (3)

are introduced so that ∆c : ũ → ỹ. The concept is illus-
trated in Fig. 2. The decomposition (2) can be employed

Fig. 2. Internal structure of ∆

without loss of generality, since the assumptions about
a nonlinear operator with neglected internal structure as
well as about an operator decomposed as in (2) adhere
to the same concept of testing hypotheses.

B. Extension Theorem

For model unfalsification, the extension theorem from
[13] is used which assumes that ∆ be relaxed prior to
conducting the experiment. Hence, the data used for
unfalsification should be recorded starting close to a
steady-state of the true process.

Theorem 4.1 (Operator with bounded l2-gain):
Given the length N input sequence of ∆c

ũN :={ũ(0),. . . , ũ(N − 1) ∈ R
nũ} and the output

sequence ỹN := {ỹ(0), . . . ,ỹ(N − 1) ∈ R
nỹ}, then there

exists a stable causal operator ∆c(•) with

‖∆c(•)‖i2 ≤ γ, such that ỹN = ∆c(ũ
N ),

iff‖πkỹ‖2 ≤ γ‖πkũ‖2 k = 1, . . . , N. (4)
Proof: See [13].

V. Minimum Bounds

A. Problem Specification

A procedure for calculating the tightest uncertainty
bounds which are not falsified by the given data is
proposed as follows. Wy is not considered as a degree
of freedom in the optimisation and is therefore specified
as a fixed invertible minimum phase transfer matrix.
Then it can be assumed without loss of generality that
Wy = I, since any invertible weight could be considered

by obtaining ỹ by means of the filter operation W−1
y · ȳ.

We formulate the following minimisation problem

min
Wu∈H∞,γ

‖γ · Wu‖2
Fro s.t. (4), (5)

with the cumulated Frobenius norm defined by

‖γ · Wu‖2
Fro :=

γ2
Nω∑
i=1

tr
(
WH

u (ejωi) · Wu(ejωi)
) · |lW (ωi)|2 , (6)

where Nω logarithmically spaced frequency points ωi

are cumulated and lW is a scalar weighting function.

Using the substitution Wu =
W′

u

γ
in (4), (5) and the

equivalence (3) it is easy to see that the factor γ can
be set to any positive real constant without affecting
the optimisation objective. Hence, γ vanishes as a degree
of freedom of the optimisation (5) and is here set to 1.
Unlike a peak-point criterion such as the H∞-norm, (5)
offers the possibility to tighten the uncertainty in the
frequency range in which it has the most limiting impact
on the achievable robust control performance. Due to the
discretisation of ωi on a logarithmic grid, high and low
frequencies contribute evenly to the optimisation goal
(5).

B. Formulation of the Optimisation Problem

We first formulate the problem (5) for nũ = 1 and
then show that, in the case of equal basis functions for
each channel, the solution for nũ > 1 can be derived
by a symmetry argument from the nũ = 1 case. In
order to render (5) amenable to a numerical solution the

transfer matrix of the filter Wu(z) ∈ H1 × nū
∞ must be

represented by a finite series expansion. Here, identical
series expansions for each channel are used, given by

col(Wu(z,x)) :=
(
Inū ⊗ qT (z)

) · x, (7)

where qT = [q0, q1, . . . , qnq−1] ∈ H1×nq
∞ .

1) Objective function: Employing the finite series ex-
pansion (7) and noting that for some complex matrix
A ∈ C

m×n it holds that tr
(
AH · A)

= (col(A))
H ·

col(A), the problem (5) can be expressed as

min
x

xT · HWu
· x, with HWu

:= (8)

Nω∑
i=1

�
{
Inū ⊗ (

q(e−jωi) · qT (ejωi)
) · |lW (ωi)|2

}
,

with �{.} denoting the real part.
2) Constraints: The constraints of the minimisation of

(5) are given by the unfalsification conditions (4). With
γ = 1 and squaring both sides of (4), they become

‖πkỹ‖2
2 ≤ ‖πkũ‖2

2 k = 1, . . . , N. (9)

Define the time-dependent variable ûi := q · ūi and the
constant data matrix

Ûi,k :=
[
ûi(0) ûi(1) . . . ûi(k − 1)

]T
. (10)
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Then, using (3) and (7), πkũ in (9) can be written as

πkũ = Ak · x, with Ak := [Û1,k, Û2,k, . . . , Ûnū,k].

Hence, (9) defines quadratic constraints

xT (−1) · (AT
k · Ak)︸ ︷︷ ︸

:=−Pk�0

·x ≤ −‖πkỹ‖2
2︸ ︷︷ ︸

:=r2
k

k = 1, . . . , N.

(11)

3) General case (nũ ≥ 1): Let us assume that Wu(z)
has more than one output and is organised in the follow-
ing block repeated structure:

Wu=
[
col(Wu(x1)) . . . col(Wu(xnũ))

]T
, (12)

where each block is given by (7).
Lemma 5.1: We claim that at the optimum of (5) it

holds for the block repeated structure (12) that

x1 = x2 = . . . = xnũ . (13)
Proof: Due to (12) it can be inferred that

‖Wu‖2
Fro =

nũ∑
i=1

xT
i · HWu

· xi so that the objective is

symmetric with respect to the xi. Note that, for all

k, the constraints ‖πkũ‖2
2 =

nũ∑
i=1

‖Ak · xi‖2
2 ≥ ‖πkỹ‖2

2

exhibit the same symmetry. Hence, it is concluded that
at the optimum of a symmetric objective with symmetric
constraints we have x1 = x2 = . . . = xnũ .

Remark 5.1: Due to the equality of rows in the optimal
solution it is sufficient to solve (5) for nũ = 1 reducing
the computational complexity.
(11) determines N concave quadratic constraints and
therefore yields a nonconvex solution space (see also [3]).
Here the problem is solved in two steps, consisting of first
solving a convex optimisation problem that is based on
replacing the if and only if constraints by one sufficient
one and then using the result as a starting point for a
gradient-based optimisation in the second step.

C. Approximate Convex Solution

For a single quadratic constraint (N=1) the problem
(8) s.t. (11) can be solved to optimality by using its
dual which can be formulated as a semidefinite program,
[3]. This is one of the occasions where a nonconvex
optimisation problem can be transferred to a convex
optimisation problem and admits no duality gap. Some
extensions have been made, see for instance [18], but for
more than one nonconvex quadratic constraint, potential
dual functions are still an open research item. Hence,
to exploit the numerical efficiency of convex optimisa-
tion techniques, in this step, we restrict ourselves to
a sufficient but not necessary condition for satisfying
(11). We proceed as follows. (11) restricts the feasible
space to the outside of the ellipsoids Ek with associated
quadratic functions xT ·Pk · x ≤ r2

k. Here, the idea is to
calculate a minimum volume ellipsoid E0 with associated

quadratic function xT ·P0 ·x ≤ r2
0 that fulfils E0 ⊇

N⋃
k=1

Ek

using [2], pp. 43, such that a quadratic problem with one
nonconvex quadratic constraint

xc := arg min xT · HWu
· x

s.t. xT · (−P0) · x + r2
0 ≤ 0 (14)

can be solved [3], where xc denotes the solution to the
convex optimisation problem. Clearly, for the proposed
methodology it must be be avoided that, at each k,
Pk has eigenvalues at zero, because this corresponds
to ellipsoids of infinite volume. Two causes for such
ellipsoids are considered. The first depends on the choice
of basis functions, while the second is due to numerical
inaccuracies. Counter-measures are introduced for both
cases.

1) Choice of Basis Functions: For ease of notation we
consider the case where nū = nȳ = 1 and a single basis
q, nq = 1 ⇒ Pk = Pk. The general case follows the
same principles. Define the number of trailing zeros at
the beginning of the filtered sequence û = q · ū as d(û) :=
max

k
(πkû = 0), where 0 is the zero sequence. Since for

k ≤ d(ỹ) the constraints (11) can be dropped and the
corresponding ellipsoids do not need to be considered,
the basis function q does not cause a zero eigenvalue of
Pk if it is ensured that d(û) ≤ d(ỹ). Define the delay d(q)
of the zero initial condition filter q(z) = zm·bm+...+b0

zn·an+...+a0

as the difference between its numerator order and its
denominator order d(q) := n − m. Therefore, d(û) =
d(q)+d(ū) so that the final condition for the optimisation
bases is

d(q) ≤ d(ỹ) − d(ū). (15)

Since it is possible to achieve d(ỹ) = 1 by scaling and
assuming that d(ū) = 0, (15) yields d(q) ≤ 1. In this
paper, generalised Laguerre bases are used that fulfil this
property and d(ū) = 0.

2) Regularisation: The problem under investigation is
targeted for large scale applications with a couple of
thousand ellipsoids. To avoid large condition numbers
and numerically caused negative definiteness of Pk, we
use Pk ← Pk + I · ε, ε << λmax(Pk), where λmax is the
spectral radius and ← denotes assignment.

D. Nonlinear Optimisation

For the nonlinear optimisation no regularisation is
performed. A standard gradient-based solver (Matlab’s
’fmincon’) inititialised with xc is employed to solve the
original problem (5). The solution to the nonlinear opti-
misation is denoted as xn.

VI. Application Example

A. The Reactive Distillation Column

In this paper, the heterogeneously catalysed esterifi-
cation of acetic acid and methanol to methyl acetate
and water in a pilot plant operated at the Department
of Biochemical and Chemical Engineering at Universität
Dortmund is studied. The pilot plant is 9 meters high
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and has a diameter of 100 millimeters. A scheme of the
plant is depicted in Fig. 3. It consists of three parts,
the reboiler, the condenser and reflux, and the column
itself. Within the column, there are three sections of
structured packings, two catalytic ones at the bottom
and a separating section at the top of the column. Each
packing has a length of 1 meter. The plant is operated

Fig. 3. Scheme of the semibatch reactive distillation column.

in semi-batch mode. This means that, in a first step, the
reboiler is filled with methanol which is then evaporated.
After the column is filled with methanol vapour, the
acetic acid feed is opened and methanol is consumed by
the reaction until the concentration of methanol is too
low to achieve the desired product concentration. The
major degrees of freedom are the reflux ratio2, the acetic
acid feed (feed) and the heat flow supplied to the reboiler
via an electrically heated water pipe system. As was
shown in [21], the process can be efficiently automated by
a robust linear compensator that employs as controlled
variables (CVs) the liquid-phase compositions in the
reflux xMeAc

[
mole
mole

]
and xH2O

[
mole
mole

]
which are measured

online by near-infrared (NIR) spectroscopy and the reflux
ratio and the feed as manipulated variables (MVs). The
heat flow is used as an external degree of freedom which
is kept at 4 kW using a simple auxiliary control loop.
The multivariable controller from [21] was validated in
several experiments, one being a setpoint change sce-
nario, designed such that it is possible to estimate a
more accurate linear model. Employing a dual Youla
parametrisation, [5], of the stabilising controller and the
identified model given in [21] and using orthonormal
basis functions [6] for the regression aimed at increasing
the control relevant accuracy of the identified model.
Since the resulting model is of high order and hence
of unfavourable numerical tractability, it was reduced
via frequency response approximation [4]. The unscaled
reduced system (sampling time Ts = 10) is given in
the appendix in (16). Fig. 4 shows the comparison of
reduced-order model simulation (sim) and measured sig-
nals (data).

2Here defined as the ratio Ṙ

Ḋ
in the interval [0, 1], see Fig. 3.
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Fig. 4. Validation data set.

B. Computation of Error Bounds

On the basis of 3140 validation data samples with
sampling time Ts = 10 seconds, the new proce-
dure was applied to the structure of an output-
multiplicative model error model. As basis functions
for qT generalised Laguerrre transfer functions qi(z) =√

1 − a2 [−az+1]i

[z−a]i+1 for i = 0 . . . 5, a = 0.8 were used. The
objective function was cumulated in the frequency range
from 10−4 to 10−1 at Nω = 200 frequency points. The
weighting function was chosen as lW = 10−100·ω entailing
the emphasis on low frequencies. All LMI-computations
were realised in YALMIP [10] where the Sedumi solver
from [17] was interfaced. Let xc denote the optimal result
from the convex optimisation and let xn denote the result
from the nonlinear optimisation where xc was used as
the starting value. Both weighting functions Wu(xc) and
Wu(xn) were a posteriori checked by forward evaluation
of min γ s.t. (4), yielding for the convex result γc =
0.91164 and for the nonlinear optimisation γn = 1. Tab.
II shows the values of the objective functions, where
the value in brackets corresponds to the multiplication
of the convexly optimised value with γ2

c . The frequency

Convex opt. Nonlinear opt.
Objective 25.34 (21.06) 19.63

TABLE II

Result of the optimisations: objective functions

response of the elements of Wu is depicted in Fig. 5.
It can be seen that a large feasible frequency range for
robust control is enabled. Fig. 6 shows the course of the
unfalsification constraints 1− ‖πkỹ‖

‖πkũ‖ over the experiment
time. At approximately 1.9 h it becomes most conserva-
tive which coincides with a large transition of MVs and
CVs, where the system is operated far outside the range
of its nominal operation.
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Fig. 5. Minimised model uncertainty bounds.
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Fig. 6. Unfalsification constraints over time, model is invalidated
below the dashed line.

VII. Conclusion

We have shown how to address the issue of model error
quantification regarding not only variance errors but also
systematic model errors that are caused by nonlinearities
and time-varying behaviour. In order to decrease the
conservatism of well known model unfalsification results,
an optimisation scheme that reduces the control relevant
conservatism was proposed and applied to validation
data generated by a reactive distillation column with
pronounced nonlinear and time-varying characteristics
yielding a reasonably large frequency for linear robust
control.
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Appendix

G11(s) =

− 0.0072
(s − 0.1890)(s2 − 0.0247s + 0.0003)(s + 3.64 · 10−5)

(s2 + 0.0353s + 0.0004)(s + 0.0007)(s + 3.43 · 10−5)

G12(s) =

− 0.2919
(s − 0.0352)(s2 − 0.0224s + 0.0002)(s + 0.0002)

(s2 + 0.0353s + 0.0004)(s + 0.0007)(s + 0.0001)

G21(s) =

− 0.0117
(s + 0.1188)(s2 − 0.0267s + 0.0003)(s + 0.0003)

(s2 + 0.0353s + 0.0004)(s + 0.0015)(s + 0.0003)

G22(s) =

− 0.2188
(s − 0.0323)(s2 − 0.0214s + 0.0002)(s + 0.0039)

(s2 + 0.0353s + 0.0004)(s + 0.0071)(s + 0.0006)
,

G(z) = zoh{G(s)}. (16)
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