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Abstract— This paper considers the problem of state esti-
mation for repetitive nonlinear systems. Taking the repetitive
nature of the process into account a new state estimation
scheme is proposed, which from repetition to repetition itera-
tively improves the estimate. The scheme combines ideas from
iterative learning control and moving horizon state estimation.
The state estimate during every repetition is based on approx-
imately minimizing the deviation between the measured and
estimated output. Stability and iterative improvements of the
state estimates are ensured by enforcing a sufficient contraction
of the deviation between the measured and estimated output
over the considered estimation window. As shown, under the
contraction constraints the state estimation scheme ensures
asymptotic convergence of the state estimation error in the
nominal case, provided that the system satisfies an uniform
reconstructability condition.

I. INTRODUCTION

Many processes are inherently repetitive, i.e. the same
process happens over and over again. Typical examples for
repetitively operating processes are:

« Industrial robot operations for welding, cutting, etc. .

o Batch processes in the chemical or the pharmaceutical

industry.

o Synchrotrons for particle acceleration.

« Rail vehicles operated on a specific track over and over

again.

The industrial importance of these processes has lead
to significant research interest with respect to the control,
modeling and analysis over the past decades [5, 7, 8].

In comparison to the control of standard/non repetitive
continuous time systems systems the control of repetitive
processes offers several challenges. Most of these challenges
arise from the fact that one has to consider two distinct time
scales. The time elapsing in every repetition and the iteration
or repetition number, which is naturally discrete valued. Due
to the additional degree of freedom in the time, repetitive
systems are sometimes also referred to as 2D systems or
two degree of freedom systems.
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By now several results with respect to the control of
repetitive/iterative systems have been established. We do not
go into details here, see for example [5,7, 8].

The promising results in the area of repetitive, iterative and
learning control schemes for repetitive processes naturally
lead to the question if the same algorithms can be extended
to the state estimation problem for repetitive processes. State
estimation for repetitive processes is of practical as well as
theoretical interest, since the estimated state can be used
for various purposes such as process monitoring and state
feedback control. The interest in the state estimation problem
is also driven by the fact that very often the development
of new control methods has given birth to analogous ob-
servers schemes. Thus, the focus of this paper is on the
state estimation problem for repetitive processes, for which,
surprisingly, only limited results are available by now, see
for example [13].

In this paper we propose to combine ideas from itera-
tive learning control with ideas from moving horizon ob-
servers [1,6, 10, 11, 14]. Specifically we outline an extension
of the contraction based moving horizon state estimation
scheme proposed in [6] for repetitive processes.

In moving horizon state estimation the state estimate is
obtained by (approximately) minimizing a cost functional,
typically the deviation of the estimated and measured output,
over a past measurement window. Stability of moving hori-
zon estimation schemes for non repetitive continuous time
systems is typically achieved by either employing an upper
bound on the “initial weight”, the so called arrival cost [10],
or by the application of a contraction constraint that enforces
a sufficient decrease of the cost function. The approach
proposed here is based on a double contraction constraint
on the cost resulting from the approximate solution of the
moving horizon problem, ensuring contraction/convergence
of the estimation error in the run of each repetition as well
as from repetition to repetition.

The paper is structured as follows: Section II introduces
the considered problem setup, the considered system struc-
ture, and the objective of the paper. Section III outlines the
basic idea behind the proposed moving horizon observer
strategy for repetitive systems. The stability of the proposed
approach in the sense of convergence of the state estimation
error is established in Section IV. Section V contains a small
application example of the outlined state estimation strategy
considering a repetitively operated batch reactor. The paper
is concluded in Section VI with some final discussions.

In the following ||-|| denotes the Euclidean vector norm.
Np denotes the nonnegative numbers including 0, while N
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denotes the nonnegative numbers without 0.

II. PROBLEM SETUP
A. System Class and Assumptions

Throughout the paper we use the word repetition for the
subsequent instances of the repetitive process. Specifically,
the considered nonlinear time-invariant system that operates
repetitively over the finite-time interval [0,7] is given by

V) = fE@@),  HJO0)=x ()
V() = g(1), (1b)
0<t<T, (1c)

where:

t€[0,T] denotes the time during each repetition
T > 0 is the repetition/batch time
(-)/ denotes the discrete repetition index j € Ny
x/(t) ER" is the state of the system at time ¢ at the
repetition j
u/(t) €R™ denotes the system input at time ¢ at the
repetition j. It is assumed to be measur-
able and bounded over the interval [0, 7], i.e.
w() €L
(), g(+) are vector valued functions of appropriate
dimension that are locally Lipschitz con-
tinuous in all their arguments.

Remark 1: Even so that only the state estimation problem
is considered, we consider from repetition to repetition
varying, but known inputs. This allows the application of
the derived state estimation method for state feedback stabi-
lization of repetitive processes.

One can distinguish various forms of repetitivity
depending on the values that change from repetition to
repetition. For simplicity of presentation it is assumed that
the system is repetitive in the initial conditions, which
will be denoted as initial condition repetitive, or shortly
IC-repetitive:

Definition 1: (IC-repetitive process)

The process (1) is called IC-repetitive if for all repetitions
J€Ny ¥/ (0) = x} = xo.

Note that this definition allows for varying inputs from
repetition to repetition, which are, however, assumed to be
provided externally since we focus on the state estimation
problem. For existence and uniqueness of solutions we
assume that:

Assumption 1: (Existence and uniqueness of solutions)
The functions f and g of the system (1) are locally Lipschitz
continuous with respect to x and u, and f(0,0) = 0. Fur-
thermore, for any initial conditions xp, any repetition time
T € (0,), and any control u/(-) € o7 (1) has a finite
solution.

We also assume that:

Assumption 2: (Nominal System and Exact Knowledge of
the Input) There is no model plant mismatch and noise
present. Furthermore, the input «/(-) during every repetition
is known exactly up to the current time ¢.

For any (w,t) € R" x [0,T], let x/(-;w,¢) denote the solution
of (1), due to the externally provided input u/(-), which
passes through state w at time #. We will use the abbreviation
x/(t) to shortly denote the real system state at repetition j
at time ¢, i.e. x/(t) = x/(-;x0,t). Figure 1 clarifies the used
notation and the appearing two time scales, the repetition
number j and the time ¢ during each repetition.

time t during each repetition

XO(I];X(),O)

Xo

repetition number j

e
00

X0

Fig. 1. Two time scales of repetitive processes.

B. Objective

We assume that not the full system state is accessible via
the output measurements (1b) and that the true initial state xq
is unknown. The objective is to design an iterative learning
observer for the repetitive process such that the observer
state, in the following denoted by X becomes smaller with
an increasing number of repetitions, i.e.:

ij(t)*x’\j(t)nﬂo as  j— oo )

Remark 2: As outlined in Section III we will actually only
achieve the convergence of the observer error at “discrete”
sampling times # in the interval [0, 7], i.e.

Hxl(tl)_)el(tl)n_)() as ]—)oo VZE{O,I,N} (3)

Here #; are the sampling instants and N is the number of sam-
pling times per repetition, compare Section III. Considering
discrete sampling instants is necessary due to the usage of a
moving horizon state estimation strategy.

To achieve this objective it is necessary to require certain
observeability assumptions on the system. For this purpose
let Wj(Wl,Wz;tl,tz), with 11 <y, 11,1 € (0,T], and wy, wy €
R", denote the L, norm of the difference between the system
outputs of (1) corresponding to trajectories at repetition j
passing through the points (wy,#1) and (wp,1,), respectively,
ie.

. 5} . .
W/ (wi,wast, 1) ::/ llg(x/ (s;w1,11)) —g(x/ (s3w2,12)) H2ds.
1
4
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Specifically, it is required that the following uniform recon-
structability condition, which is similar to the one used in [6],
holds:

Assumption 3: (Uniform reconstructability)
There exists a horizon T € (0,T) and a constant y€ (0,o0)
such that for any two states wy, wp € R", any ¢ € (Tg,T), any
repetition j and any control u/ satisfying Assumption (2).

W‘j(Wl,Wz;t—TE,t) Z}/HWl—Wsz. 5)
Remark 3: Assumption 3 is an uniform reconstructabil-
ity condition, similar to the one for continuous time non
repetitive processes assumed in [6]. For repetitive processes
it implies that there exists a time horizon T% such that
the operator mapping the current value of the state into
the corresponding system outputs (defined on an interval
[t —TF t] in the past) is injective. Thus, any control «/ and
output function on the interval [t — ¥ ¢] uniquely determines
the current state of the system. Note that for repetitive/batch
system this assumption only ensures that the state can be
uniquely determined from the measured output and the
known input after the time 7%, since the system is not defined
for time r < 0, for which thus no output informations are
available.

III. BASIC IDEA

We propose to use an iteratively improving moving hori-
zon estimator to estimate the unknown system states. Basi-
cally in moving horizon state estimation the state estimate
is given by minimizing the distance between the measured
output and the estimated output over a window of past
measurements [1,6, 10,11, 14] utilizing the system model.
The degree of freedom in the minimization is the unknown
initial state at the beginning of the estimation window.

Since the numerical solution of the resulting dynamic op-
timization problem, which must be solved on-line, typically
requires a non negligible time, moving horizon observers
typically provide state estimates only at “discrete” sampling
instant #;. For this purpose we assume that the interval
[0,T] is partitioned in a finite series of sampling instants
ti, i€ {l1,...,N}, such that 1 =0, t; € [TE,T|, t;<t;y1 <T
and ti41—t) <Tg Vie{2,....N—1},and ty =T.

We will shortly denote values at the sampling instants by
a subscript, i.e. x] denotes the real state of the system during
repetition j at the sampling instant #;, i.e. x :=x/(1;).

At every sampling instant #; for in ideal moving-horizon
observer the state estimate would be obtained from the
solution of the following minimization problem:

Inil’l Ve (le;li — TE,li). (6)

W{ER”

Here VE(Wj;ll,lz) denotes the following measure of the
observer error over the interval [t1,1]:

15) . .
Ve(witi,n) = [ g (siwn) =/ (s) Pds. ()
Al
where y/(-) denotes the measured output at the repetition

j» ie. ¥/(+) := g(x/(+;x0,0)), compare also Figure 2. Thus,
one would ideally minimize the error between the estimated

sampling instant #;

repetition j j . .
wi EZ0 N .
' \\\--4.)‘{:x](fi):x’(fiiwfvfi*T )
X0 xll :xj(ti;x070)
\ £ \ ™
0 =T i liv1 T =ty
Fig. 2. Moving horizon state estimation for repetitive processes.

output and the measured output over the horizon 7% in the
past.

Remark 4: Note that Assumption 3 guarantees that the
minimum value for Vg is 0, i.e. that one ideally could
estimate the state perfectly based on the information provided
over the moving window [r; — Tg,#;]. However, this would
involve to find the exact solution of (6), which is typically
not possible in finite time since one has to find the global
minima of an (often) non-convex optimization problem. Thus
it was proposed in [6] to replace the exact minimization (6)
by an approximated solution requiring only that the value of
Vi rather only decreases from sampling instant to sampling
instant by enforcing a certain contraction constraint. This
does, in the non-repetitive case lead to asymptotic conver-
gence of the observer error. This, however, can not be directly
transfered to repetitive processes, since the repetition time 7'
is finite.

To achieve convergence of the error in the repetitive case
we rather propose a double contraction constraint, requiring
that the error between the estimates from sampling instant
to sampling instant in one repetition as well as in between
repetitions decreases by a certain amount. The resulting
scheme that provides state estimates at the sampling instants
t; can be describe by the following algorithm:

Strategy 1:

Initialization: Pick an arbitrary initial guess w8 for xo.
Choose two contraction parameters o, 3 € (0,1).
Repetition j =0, initialization of the state estimation:

1. Continuous estimates for t € [0,11): The state estimate
for ¢ € [0,11) is given by £(¢) =x%(¢;w},0) (open-loop
simulation).

2.a Improving at the first sampling instant t;: At time t;
find a w(l) € R" (improved initial guess) such that

VE(Wisty — Tg,11) (8)

becomes as small as possible. The point w’lo = w8 is

used as an initial guess for this calculation.

2.b Improving at the sampling instants t;: At any time t;,
i=2,...N an (improved) state estimate w? is calculated
such that

VeWdst; = TE 1)) < BVEOW) 1311 —TE 1i1)  (9)

is satisfied. For this the point wgo =x0(1; - TF; W?—1 Jtio1)
is used as initial guess.

3. Continuous estimates for t > t): At any time t € [t;,1;11),
i=1,...N—1, the estimate of the state x(¢) is given by
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forward simulation of the system from w?, i.e. £(¢) =
Ow?, - TE).
Repetition j=1,2,3,..., iteratively improving the estimates:
1. Continuous estimates for t € [0,¢;): The state estimate
for 7 € [0,11) is given by #/(z) = xo(t;wé_l,Q) (open-
loop simulation). Here wy) is given by setting w}, = wy !
2.a Improving at the first sampling instant t;: At time t; an
(improved) state estimate w{ is calculated such that

Vewlin — TE ) < ave(wl 0 — TE 1) (10)

is satisfied. For this the point w;j = w{fl

as initial guess.

2.b Improving at the sampling instants t;: At any time t;,
i=2,...N an (improved) state estimate w{ is calculated
such that

can be used

Ve(wliti — T 1) <
min{ﬁVE(w{,l;l‘pl —T* ti1),
aVs(w] S —1En) ) ()

is satisfied. For this the point w =x/(t; = TE;w/_|,t;_1)
can be used as initial guess.

3. Continuous estimates for t > t): At any time ¢ € [t;,t;+1)
i=1,...N—1, the estimate of the state x/(f) is given by
forward simulation of the system from w/, i.e. #/(r) =
Xl (t;wl 1 —TE).

Remark 5: For the repetitions j = 1,2,... we enforce a
double contraction to ensure that the estimate is improving
in the repetition from sampling instant to sampling instant
and also from repetition to repetition, see (11). The contrac-
tion parameter ¢ ensures improvement from repetition to
repetition (excluding the first sampling interval [té,tf ) ). The
contraction parameter 3 ensures contraction from sampling
instant to sampling instant similarly to the work presented
in [6] for non repetitive systems.

Remark 6: Tt is necessary to distinguish the first repeti-
tion (j=0) from the following repetitions, since in the first
repetition no informations from the previous repetition can
be used. Furthermore, one has to distinguish the first and
second sampling instant.

For 1y this is necessary since no past state informations,
which would span over the interval [—T7g,0), are available.
Rather one can only use state informations from the previous
run. Different possibilities exist for transferring the old state
estimates to the new repetition. We propose here the most
simplest case, using w{_l as initial guess for w(j). One could
in principle also backward simulate the last predicted state,
ie. setting w) = xj’l(O;w,Jv_l,tN). However, for practical
applications this might be not of advantage due unconsidered
model plant mismatch, noise, and external disturbances.

Remark 7: Under the assumption of no model mismatch
and no measurement noise the outlined strategy is well
defined and produces always an improving sequence w{ .
This is due to the fact that under nominal conditions there

exists always an improved estimate w/ in Step 2.a and

i

2.b since Ve(x/(t;) —TE;t; — TE ;) =0 Vi=1,...,N. Thus
w! = x/(t; — Tg) always satisfies (9) or respectively (11). In
practice satisfying (9) or (11) might be difficult due to
measurement noise, model plant mismatch or numerical opti-
mization problems for chosen values of ¢ and f3. Practically
such problems can be overcome by monitoring the decrease
in Vg and, if necessary, increase the value of Vg or increase
the values for o or f3.

Remark 8: For the first repetition j = O the outlined
scheme does not provide a corrected state estimate until the
time 7r. This can be problematical if Ty is rather large to
ensure observability. This problem could be overcome by
employing a so called batch state estimator with increasing
horizon length or an extended Kalman filter until the time
Tg [9,10].

Remark 9: The main advantage of the outlined scheme
lays in the fact that the solution of the global optimization
problem of minimizing Vg exactly at every sampling instant #;
is distributed over multiple sampling instants and repetitions,
thus leading to asymptotic convergence of the estimation
error as shown in the next section. The decrease/improvement
in the state estimate as required by (9) or respectively (11)
can for example be achieved by the application of opti-
mization algorithm that guarantee feasibility in every sub-
iteration, such as for example the scheme describe in [4] for
static optimization. Similar approaches are also employed in
suboptimal nonlinear model predictive control strategies [3,
12].

Note that the speed of convergence of the observer can
be directly adjusted by decreasing the values of 3, which
corresponds to a decrease in the speed of convergence in
between sampling instants, and decreasing of the value of «,
which corresponds to a decrease in the speed of convergence
in between repetitions.

IV. STABILITY

The properties of he observer/state estimator as outlined
in the algorithm above can be summarized in the following
theorem, which is closely related to the non repetitive results
as presented in [6]:

Theorem 1: Suppose that Assumptions 1-3 are satisfied.
Then Strategy 1 produces for any initial state xo € R” and any
initial guess w8 € R" an infinite sequence of state estimates
at the sampling instances {£/};cn, where £/ = £/(z;) such
that £/ — x/, x/ =x/(t;), as j — oo, i.e. Strategy 1 is globally
convergent. Furthermore, the convergence rate is exponential
in that there exist a constant M € (0, ) such that

18/ —xl|| < Me |50 20| forall ie{l,...N},

JjeN, (12

where § € (0,0) is given by { = —0.5In(c).

Proof:  The proof is similar to the one presented
in [6] for non repetitive systems. First, note that from the
assumption on f and g as well as due to the uniform
reconstructability Assumption 3 and Assumption 1 it im-
mediately follows that Vg (w;;t; — TE,1;) exists and is finite.
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Furthermore, the existence of the improved initial conditions
w; as required in (9) and (11) respectively is guaranteed, see
Remark 7. Hence, Strategy 1 produces for any sampling time
#; an infinite sequence {£/},cn. By virtue of (9), (11), and
the fact that 0 < B < 1 and 0 < & < 1 it follows that

Vewhiti—TE 1) =0 as  j— oo, (13)

Furthermore, by the definition of the functions Wi (see (4))
and Vg (see (7)), uniqueness of solutions due to Assump-
tion (1), and Assumption 3 we have that

vl = £/l < Wi, & 1= T 1), (14)
This together with (13) implies that
e =/l =0 as j—ee, (15)

which establishes global convergence of the state estimation
Strategy 1. Condition (11) furthermore implies (at least) that

VE(W{;ti — TE,tl') < (XVE(W{_l;ti — TE,t,'), Vi e {1, .. N}

(16)
Since Vg (w¥;1; — TE 1), Vi € {1,...N} is finite, there exists
a constant M such that

VeWdst; — TE 1,) < My |22 — x0||%. (17)

Combining equation (16) and (17) yields
I =2/ < o3 by |5 — a0 < Mem¢ ) a0, 18)
where M := (M;)'> —y %3 and { = —0.5In(B) € (0,) (so
that e=¢ = B0). ]

Note that condition (9) and (11) also ensure a decrease of the
observer error during every repetition. However, due to the
finite repetition interval [0,7] and due to the fact that only
asymptotic convergence is achieved, an exact state estimation
in single repetitions can normally not be achieved if Vg is
not exactly minimized at every sampling instant.

V. APPLICATION EXAMPLE

We consider the application of the outlined ILMHE to a
feed-batch polymerization process. The simplified 4th order
model is given by:

m = F (19)
E

iy = F—p-Vikp-e ® -M(m,m,) (20)

. 1 _Ey

T ooy [(*AH)WV-kpo'e R - M(m,m;)(21)
+UA(Tj—T)+F -MW,,-Cp(T —T)] (22)

. MW,

Vv = pW F. (23)

Here m is the total number of monomer in mole, m, is the
total number of residual monomer (mole), T is the reactor
temperature (degree C), and V (cm?) is the reactor volume.
M is the concentration of monomer in the polymer which is
given by:

m,
M(m,m,) = — (24)
MW, (,,— - p—m)

The manipulated inputs are the jacket temperature 7; and
the monomer input flow rate F. They are given as pre-
specified fixed profiles over the batch time T of 80 min
as shown in Figure 3. Details about the parameters and
all other variables can be found in [2]. As measurements

Temperature in the jacket

40
time (min)

X107 Monomener input flow rate

mol/s

time (min)

Fig. 3. Pre-specified batch control profiles of the manipulated variables 7
and F

the total number of monomer m, the reactor temperature 7,
and the reaction volume V are available. The objective for
the ILMHE is to estimate the number of residual monomer
m,. The sampling instants at which new measurements are
available are equidistant, i.e. ; =i- &, where 0 is the fixed
sampling time of 1 min.

The window length of the moving horizon estimator is
set to Tg = 4min, and the ILMHE parameters are chosen to
o= =0.95.

Figure 4 shows the evolution of the estimated residual
monomer concentration from batch to batch starting with
incorrect initial conditions. As can be seen, as expected the
ILMHE is improving its estimates from iteration to iteration

Evolution of the stimated state
4 T T T

“““ First iteration
351 = = —Second iteration| 7
N Third iteration | _|
e Fourth iteration
251 Real State 4

. T
0 10 20 30 40 50 60 70 80
time (min)

Evolution of the cost
025 r

First iteration

- - - Second iteration
02 == Third iteration
Fourth iteration

time (min)

Fig. 4. Evolution of the real and the estimated residual monomer
concentration m, and of the MHE cost function over the time and over
subsequent batches.
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Already after four batch iterations a neligible estimation
error is achieved. This underpins the increasing performance
of the ILMHE from iteration to iteration taking the informa-
tions from previous runs into account. Further examinations
will consider changing input signals as well as the influence
of unconsidered external disturbances and noise.

VI. CONCLUSIONS

Many processes are inherently repetitive, i.e. the same op-
eration is repeated over and over again. Even so that the con-
trol of repetitive processes have received significant academic
and industrial interest over the recent years, only limited
results with respect to iteratively improving state estimation
strategies are available by now [13]. In this paper we have
proposed an optimization based moving horizon strategy for
the state estimation problem of nonlinear continuous time
repetitive processes. The outlined strategy combines ideas
from iterative learning control and moving horizon state esti-
mation. Specifically, the state estimate during each repetition
is based on the approximate minimization of the deviation
between the estimated and measured output. Asymptotic
convergence and improvement of the state estimate is ensured
by enforcing a double contraction constraint on the deviation
between the measured and estimated output during each
repetition and in between repetitions. As shown, the out-
lined iteratively improving state estimation strategy achieves
asymptotic convergence of the state estimation error, at least
at the sampling instants, provided that the system satisfies
an uniform reconstructabilty condition. Further research will
investigate the application of the outlined strategy to derive
optimization based output-feedback control strategies for
nonlinear repetitive processes.
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