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Abstract— In this paper we analyze the Dahl, LuGre, and
Maxwell-slip friction models as Duhem hysteresis models. We
classify each model as either a generalized or a semilinear
Duhem model, and we analyze the rate-independent or rate-
dependent behavior of the corresponding input-output map.
This unified treatment of Duhem-based friction models is used
to investigate friction-induced hysteresis.

I. INTRODUCTION

Friction is a dynamic phenomenon of widespread im-

portance, and the associated literature is vast; overviews are

given in [1]–[3]. Friction can be viewed as an emergent,

macroscopic phenomenon arising from molecular interaction.

Consequently, both phenomenological (physics-based) and

empirical (experiment-based) models have been proposed

[2], [4]–[10]. Estimation and control methods have been

developed for applications involving friction [11]–[14]; how-

ever, these topics are beyond the scope of this paper.

In friction modeling it is important to distinguish between

presliding friction and sliding friction. Presliding or micro-
slip friction refers to the friction forces that occur when

the relative displacement between two contacting surfaces

is microscopic. Sliding friction refers to the friction forces

that occur when the relative displacement is macroscopic.

From a mathematical point of view, friction modeling is

challenging since some models involve nonsmooth dynamics.

For example, the most widely used dry friction model,

namely, Coulomb friction, is discontinuous. Discontinuous

dry friction models are studied in [15]. Some friction models

are continuous but not Lipschitzian, in which case finite

settling time is possible.

Understanding presliding friction is important for high pre-

cision position control applications. For example, hysteresis

can occur between the presliding friction force and displace-

ment [5], [8], [9]. As a dynamic phenomenon, hysteresis is

the result of multistability, which refers to the existence of

multiple attracting equilibria [16]–[18]. Hysteresis is a quasi-

static phenomenon in the sense that the hysteresis map is

the limit of the dynamic input-output maps as the period of

the periodic input becomes unbounded. In both presliding

and sliding friction models, there exist multiple equilibria

corresponding to states that model the friction forces under

constant displacement or velocity.

*This research was supported in part by the National Science Foundation
under grant ECS–0225799.

The goal of the present paper is to examine some well-

known friction models from a hysteresis modeling point

of view. Our starting point is [19], which focuses on the

Duhem model for hysteresis. The Duhem model has the

property that, under constant inputs, every state is an equilib-

rium. When there exist multiple attracting (step-convergent)

equilibria for a step input, the system exhibits hysteresis

under inputs that drive the system through distinct equilibria

that map into distinct outputs. In certain cases, the limiting

input-output map is independent of the input period; this

case is known as rate-independent hysteresis. In general, the

hysteresis map is rate-dependent, although the terminology

is slightly misleading since, as already noted, hysteresis per

se is a quasi-static phenomenon.

The generalized Duhem model ẋ = f(x, u)g(u̇) and a

specialization known as the semilinear Duhem model, whose

dynamics are of the form ẋ = (Ax+Bu)g(u̇), are considered

in [19]. These models give rise to rate-independent hysteresis

when the function g is positively homogeneous; otherwise,

the hysteresis is usually rate-dependent.

In the present paper we consider three friction models,

namely, the Dahl model, the LuGre model, and the Maxwell-

slip model. We recast each model in the form of a generalized

or a semilinear Duhem model and provide a unified frame-

work for comparing the hysteretic nature of these models. For

example, the Dahl model is shown to be a rate-independent

generalized Duhem model. Furthermore, in one special case,

the Dahl model is also a semilinear Duhem model for which

closed-form solutions are available. Similarly, the LuGre

model can be seen to be a rate-dependent generalized Duhem

model.

The contents of the paper are as follows. In Section 2 we

review the basic theory of the Duhem model. In sections

3, 4, and 5 we recast the Dahl, LuGre, and Maxwell-slip

models as Duhem models and relate their dynamic behavior

to properties of the Duhem models. In Section 6 we study

the sliding friction dynamics of the three friction models. In

section 7 we provide some concluding remarks.

II. GENERALIZED AND SEMILINEAR DUHEM MODELS

In this section, we summarize the main result of [19]

concerning the generalized and semilinear Duhem models.

The terms closed curve, limiting periodic input-output map,

hysteresis map, and rate-independence are defined in [19].
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Consider the single-input single-output generalized Duhem
model given by

ẋ(t) = f
(
x(t), u(t)

)
g
(
u̇(t)

)
, x(0) = x0, t ≥ 0, (1)

y(t) = h
(
x(t), u(t)

)
, (2)

where x : [0,∞) → R
n is absolutely continuous, u :

[0,∞) → R is continuous and piecewise C1, f : R
n ×R →

R
n×r is continuous, g : R → R

r is continuous and satisfies

g(0) = 0, y : [0,∞) → R, and h : R
n × R → R is

continuous. The value of ẋ(t) at a point t at which u̇(t)
is discontinuous can be assigned arbitrarily. We assume

that the solution to (1) exists and is unique on all finite

intervals. Under these assumptions, x and y are continuous

and piecewise C1. The following result in [19] is needed for

further discussion.

Proposition 2.1:. Assume that g is positively homoge-

neous, that is, g(αv) = αg(v) for all α > 0 and v ∈ R. Then

the generalized Duhem model (1), (2) is rate independent.

As shown in [19], if g is positively homogeneous, then

there exist h+, h− ∈ R
r such that

g(v) =

{
h+v, v ≥ 0,

h−v, v < 0,
(3)

and the rate-independent generalized Duhem model (1), (2)

can be reparameterized in terms of u. Specifically, consider

dx̂(u)
du

=

⎧⎪⎨
⎪⎩

f+(x̂(u), u), when u increases,

f−(x̂(u), u), when u decreases,

0, otherwise,

(4)

ŷ(u) = h
(
x̂(u), u

)
, (5)

for u ∈ [umin, umax] and with initial condition x̂(u0) =
x0, where f+(x, u) �= f(x, u)h+, f−(x, u) �= f(x, u)h−,

and u0 ∈ [umin, umax]. Then x(t) �= x̂(u(t)) and y(t) �=
ŷ(u(t)) satisfy (1), (2). Note that the reparameterized Duhem

model (4) and (5) can be viewed as a time-varying dynamical

system with nonmonotonic time u.

As a specialization of (1) and (2), we now consider the

rate-independent semilinear Duhem model

ẋ(t) =
[
u̇+(t)In u̇−(t)In

]×([
A+

A−

]
x(t) +

[
B+

B−

]
u(t) +

[
E+

E−

])
,

(6)

y(t) = Cx(t) + Du(t), x(0) = x0, t ≥ 0, (7)

where A+ ∈ R
n×n, A− ∈ R

n×n, B+ ∈ R
n, B− ∈ R

n,

E+ ∈ R
n, E− ∈ R

n, C ∈ R
1×n, D ∈ R, and

u̇+(t) �= max{0, u̇(t)}, u̇−(t) �= min{0, u̇(t)}. (8)

Let ρ(A) denote the spectral radius of A ∈ R
n×n, and let

the limiting input-output map F∞(u, y) be the set of points

z ∈ R
2 such that there exists an increasing, divergent se-

quence {ti}∞i=1 in [0,∞) satisfying limi→∞ ‖(u(ti), y(ti))−
z‖ = 0. The following result given in [19] provides a

sufficient condition for the existence of the limiting periodic

input-output map of a rate-independent semilinear Duhem

model.

Theorem 2.1:. Consider the rate-independent semilinear

Duhem model (6), (7), where u : [0,∞) → [umin, umax] is

continuous, piecewise C1, and periodic with period α and

has exactly one local maximum umax in [0, α) and exactly

one local minimum umin in [0, α). Furthermore, define β
�=

umax − umin, and assume that A+ and A− are invertible,

and

ρ
(
eβA+e−βA−

)
< 1. (9)

Then, (6) has a unique periodic solution x : [0,∞) → R
n,

the limiting periodic input-output map H∞(u) exists, and the

limiting input-output map F∞(u, y) is given by F∞(u, y) =
H∞(u). Specifically,

H∞(u) =
{(

u, ŷ+(u)
) ∈ R

2 : u ∈ [umin, umax]
}

∪ {(
u, ŷ−(u)

) ∈ R
2 : u ∈ [umin, umax]

}
,

(10)

where

ŷ+(u) = CeA+(u−umin)x̂+ − CZ+(u, umin) + Du,

ŷ−(u) = CeA−(u−umax)x̂− − CZ−(u, umax) + Du,

and

x̂+
�= − (

I − e−βA−eβA+
)−1 ×(

e−βA−Z+(umax, umin) + Z−(umin, umax)
)
,

x̂−
�= − (

I − eβA+e−βA−
)−1 ×(

eβA+Z−(umin, umax) + Z+(umax, umin)
)
,

Z+(u, u0)
�= A−1

+ (uI − u0e
A+(u−u0))B+ + A−2

+ ×
(I − eA+(u−u0))B+ + A−1

+ (I − eA+(u−u0))E+,

Z−(u, u0)
�= A−1

− (uI − u0e
A−(u−u0))B− + A−2

− ×
(I − eA−(u−u0))B− + A−1

− (I − eA−(u−u0))E−.

III. DAHL MODEL

The Dahl model [4] is a nonlinear friction model of the

form

Ḟ (t) = σ

∣∣∣∣1 − F (t)
FC

sgn u̇(t)
∣∣∣∣
γ

sgn
(
1 − F (t)

FC
sgn u̇(t)

)
u̇(t),

(11)

where F is the friction force, u is the relative displacement

between the two surfaces in contact, FC > 0 is the Coulomb

friction force, γ ≥ 0 is a parameter that determines the force-

deflection curve, and σ > 0 is the rest stiffness, that is, the

slope of the force-deflection curve when F = 0. The right

hand side of (11) is Lipschitz continuous in F for γ ≥ 1 but

not Lipschitz in F for 0 ≤ γ < 1.

When u is increasing, the right-hand side of (11) is

positive for all F < FC and negative for all F > FC.

Similarly when u is decreasing, the right-hand side of (11)

is positive for all F < −FC and negative for all F >
−FC. Hence the friction force F asymptotically approaches

the Coulomb friction force under monotonic inputs. The

parameter γ determines the shape of the input-output map.

The input-output hysteresis maps of the Dahl model for
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Fig. 1. Displacement u versus the friction force F for the Dahl model
with various values of γ, where FC = 0.75 N, σ = 7.5 N/m, and u(t) =
10−5 sin 0.1t m.

various values of γ are shown in Figure 1. In practice, γ
is typically set to 0 or 1 [7], [20].

To represent (11) as a Duhem model, let

F+

(
F (t)

) �= σ

∣∣∣∣1 − F (t)
Fc

∣∣∣∣
γ

sgn
(
1 − F (t)

Fc

)
, (12)

F−
(
F (t)

) �= σ

∣∣∣∣1 +
F (t)
Fc

∣∣∣∣
γ

sgn
(
1 +

F (t)
Fc

)
. (13)

Then the Dahl model (11) can be rewritten as

Ḟ (t) = σ
[F+

(
F (t)

) F−
(
F (t)

)] [
u̇+(t)
u̇−(t)

]
, (14)

which is a generalized Duhem model for all γ ≥ 0. Further-

more, since
[
u̇+(t) u̇−(t)

]T
is positively homogeneous,

Proposition 2.1 implies that (14) is rate independent for all

γ ≥ 0.

Let γ = 1. Then (11) becomes

Ḟ (t) = σ

(
1 − F (t)

FC
sgn u̇(t)

)
u̇(t)

=
[− σ

FC
F (t) + σ σ

FC
F (t) + σ

] [
u̇+(t)
u̇−(t)

]
,

which is a rate-independent semilinear Duhem model. Fur-

thermore, the convergence condition (9) becomes

e
−2 βσ

FC < 1. (15)

Taking logarithm on both sides of (15), we have,

−2
βσ

FC
< 0, (16)

which is true if and only if β > 0. We thus have the following

result as a direct consequence of Theorem 2.1.

Corollary 3.1:. Consider the Dahl model (11) with γ =
1. Let u be continuous, piecewise C1, and periodic with

period α and have exactly one local maximum umax in [0, α)
and exactly one local minimum umin in [0, α). Then (16)

is true, (11) has a unique periodic solution F : [0,∞) →
R

n, the limiting periodic input-output map H∞(u) exists,

and the limiting input-output map F∞(u, F ) is given by

F∞(u, F ) = H∞(u). Specifically,

H∞(u) =
{(

u, F̂+(u)
) ∈ R

2 : u ∈ [umin, umax]
}

∪
{(

u, F̂−(u)
) ∈ R

2 : u ∈ [umin, umax]
}

,
(17)

where

F̂+(u) = e
− σ

FC
(u−umin)

α̂+ + FC

(
1 − e

− σ
FC

(u−umin)
)

,

F̂−(u) = e
σ

FC
(u−umax)

α̂− − FC

(
1 − e

− σ
FC

(u−umax)
)

,

and

α̂+ = −α̂− = FC
e

−βσ
FC − 1

e
− βσ

FC + 1
.

IV. LUGRE MODEL

The LuGre model [7], which models the asperities of

two surfaces as elastic bristles, is given by

ẋ(t) = u̇(t) − |u̇(t)|
r
(
u̇(t)

)x(t), (18)

F (t) = σ0x(t) + σ1ẋ(t) + σ2u̇(t), (19)

where x is the average deflection of the bristles, u is the rela-

tive displacement, F is the friction force, and σ0, σ1, σ2 > 0
are stiffness, damping, and viscous friction coefficients, re-

spectively. The right hand side of 18 is Lipschitz continuous

in x.

There are various choices for the function r(u̇(t)) given

in [1, p. 83]. In [7] r(u̇(t)) is defined by

r(u̇(t)) =
FC

σ0
+

FS − FC

σ0
e−(u̇(t)/vS)2 , (20)

where FC > 0 is the Coulomb friction force, FS is the

stiction (sticking friction) force, and vS is the Stribeck

velocity, which is the velocity at which the plot of the steady

state friction force versus velocity starts dipping. For a given

constant velocity, the steady state friction force Fss, derived

from the Lugre model, is given by

Fss(u̇(t)) = σ0r(u̇(t))sgn(u̇(t)) + σ2u̇(t). (21)

A plot of steady state friction force against velocity is shown

in Figure 2. The dip in the friction force at low magnitudes

of velocity is the Stribeck effect.

If r(u̇(t)) = FC, σ0 = 1, and σ1 = σ2 = 0, then (18),

(19) are equivalent to the Dahl model (11) with γ = 1 and

σ = 1. The Dahl model is basically Coulomb friction with

a lag in the change of the friction force when the direction

of motion reverses. The Lugre model combines the friction

lag of the Dahl model with the Stribeck effect.

The state equations (18) and (19) can be rewritten as

ẋ(t) =
[
1 x(t)

] ⎡
⎣ u̇(t)

−
∣∣u̇(t)

∣∣
r
(
u̇(t)

)
⎤
⎦ , (22)

y(t) = σ0x(t) + σ1ẋ(t) + σ2u̇(t), (23)
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Fig. 2. Steady state friction force (21) given by the Lugre model, where
FC = 1 N, FS = 1.5 N, vS = 0.001 m/s, σ0 = 105 N/m, and σ2 = 0.4
N-s/m.
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Fig. 3. Input-output maps for the LuGre model with FC = 1 N, FS = 1.5
N, vS = 0.001 m/s, σ0 = 105 N/m, σ1 =

√
105 N-s/m, σ2 = 0.4 N-s/m,

and u(t) = 10−4 sin ωt m.

which is a generalized Duhem model of the form (1). Since

r given in (20) is not positively homogeneous, the LuGre

model is not necessarily rate independent. In fact, the input-

output maps in Figure 3 show that the LuGre model is rate

dependent.

V. MAXWELL-SLIP MODEL

The Maxwell-slip model [5], [9], [10] as shown in

Figure 4, has N masses mi with displacement xi connected

by a stiffness ki to a common termination point whose dis-

placement is u. Associated with each mass is a displacement

deadband of width Δi ∈ R, below which the mass does not

move, and above which the mass moves with velocity u̇,

that is, the inertia of the masses is ignored when the mass

u

x
1

m
1 Δ

1

k
1

x
i

x
N

m
i

m
N

Δ
i

Δ
N

k
i

k
N

Fig. 4. The Maxwell slip model with N masses and N springs. Each mass
is associated with a displacement deadband Δi, below which the mass does
not move, and above which the mass moves with the same velocity as the
common termination point.

is sliding. We can write this system as the Duhem model

ẋi(t)=
[M(

xi(t),u(t),Δ
)

1−N (
xi(t),u(t),Δ

)][u̇+(t)
u̇−(t)

]
(24)

F (t) =
∑N

i=1 ki

( − xi(t) + u(t)
)
, (25)

for i = 1, . . . , N , where F is the friction force, Δ �
[Δ1 · · ·ΔN ],

M(
xi,u,Δ

) �= U
( − xi + u − Δi

)
, (26)

N (
xi,u,Δ

) �= U
( − xi + u + Δi

)
, (27)

and, U(v) �=

{
1, v ≥ 0,

0, v < 0.
(28)

Illustrative input-output maps of the Maxwell-slip model for

N = 1 and N = 10 are shown in Figures 5(a) and 5(b),

respectively.

The Maxwell-slip model (24), (25) is a generalized Duhem

model of the form (1), (2). Note that
[
u̇+(t) u̇−(t)

]T
is

positively homogeneous, and thus Proposition 2.1 implies

that (24), (25) is rate independent. Since the function U
and hence the functions M and N are discontinuous, the

Maxwell-slip model is also discontinuous.

VI. SLIDING BEHAVIOR OF THE DAHL, LUGRE AND

MAXWELL-SLIP MODELS

We now consider the behavior of the presliding friction

models in the sliding regime, that is, the behavior of these

models when subject to large magnitudes of displacement

and velocity.

Consider the Dahl model (11) with γ = 1. The friction

force F as a function of displacement u and velocity u̇ is

shown in Figure 6, where u and u̇ have initial values equal

to zero. The displacement is -20 when the velocity changes

sign from negative to positive and is zero when the velocity

changes sign from positive to negative. As noted in Section

4, Figure 6(b) shows that each velocity reversal leads to a

change in the sign of the friction force but with a delay.

The friction force F as a function of displacement u and

velocity u̇ for the LuGre and Maxwell-slip models are shown

8135
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Fig. 5. Input-output map of the Maxwell-slip model (a) with N = 1,
Δ1 = 1.5 × 10−3 m, k1 = 1 N/m, u(t) = 0.01 sin 0.1t m, and (b)
with N = 10, Δ = [1.5, 2.4, 3.3, 4.2, 5.1, 6, 6.9, 7.8, 8.7, 9.6]×10−3 m,
k = [1, 1.8, 2.6, 3.4, 4.2, 5, 5.8, 6.6, 7.4, 8.2] N/m, u(t) = 0.01 sin 0.1t
m.

TABLE I

CLASSIFICATION AND PROPERTIES OF FRICTION MODELS

Friction Model Duhem Rate Continuity
type dependence

0 ≤ γ < 1 generalized rate independent not Lipschitz
Dahl γ = 1 semilinear rate independent Lipschitz

γ > 1 generalized rate independent Lipschitz
LuGre generalized rate dependent Lipschitz

Maxwell-slip generalized rate independent discontinuous

in Figures 7 and 8 respectively. All three models have similar

behavior in the sliding regime, that is, the reversals of the

friction force lag velocity sign changes.

VII. CONCLUSION

In this paper we recast the Dahl, LuGre, and Maxwell-

slip models as extended, generalized, or semilinear Duhem

models. We classified each model accordingly including

its rate-independent or rate-dependent behavior. Lipschitz

continuity properties of the three friction models were also

studied. Table 1 shows the summary of the classification and

the properties of the models.

This unified treatment of Duhem-based friction models

provides the starting point for further investigations into

the relationship between friction modeling and hysteresis.

For example, the structure of the Maxwell-slip model as
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Fig. 6. (a) Friction force versus displacement and the corresponding (b)
friction force versus velocity for the Dahl model with FC = 0.75 N, γ = 1,
σ = 7.5 N/m, and u(t) = 10 (cos 0.01t) − 1 m.

a superposition model suggests that it can be viewed as

a variant of the Preisach model [21]–[26]. Allowing the

virtual masses in the Maxwell-slip model to possess positive

mass should give rise to a rate-dependent presliding-friction

model. Finally, by combining these friction models with

single- and multi-degree-of-freedom oscillators, we can ob-

tain hysteretic damping models whose frequency-dependent

characteristics are more realistic than viscous damping [27].
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new model for control of systems with friction,” TAC, vol. 40, no. 3,
pp. 419–425, 1995.

8136



−0.02 −0.015 −0.01 −0.005 0
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Displacement   u[m]

F
ric

tio
n 

fo
rc

e 
  F

[N
]

(a)

−1 −0.5 0 0.5 1

x 10
−4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Velocity [m/s]

F
ric

tio
n 

fo
rc

e 
  F

[N
]

(b)

Fig. 7. (a) Friction force versus displacement and the corresponding (b)
friction force versus velocity for the LuGre model (18), (19) with FC = 1
N, FS = 1.5 N, vS = 0.001 m/s, σ0 = 105 N/m, σ1 =

√
105 N-s/m,

σ2 = 0.4 N-s/m, and u(t) = 0.01 (cos 0.01t) − 1 m.

[8] J. Swevers, F. Al-Bender, C. G. Ganseman, and T. Prajogo, “An inte-
grated friction model structure with improved presliding behavior for
accurate friction compensation,” IEEE Trans. Autom. Contr., vol. 45,
no. 4, pp. 675–686, 2000.

[9] F. Al-Bender, V. Lampaert, and J. Swevers, “Modeling of dry sliding
friction dynamics: From heuristic models to physically motivated
models and back,” Chaos, vol. 14, no. 2, pp. 446–445, 2004.

[10] F. Al-Bender, V. Lampaert, S. D. Fassois, D. D. Rizos, K. Worden,
D. Engster, A. Hornstein, and U. Parlitz, “Measurement and identi-
fication of pre-sliding friction dynamics,” in Nonlinear Dynamics of
Production Systems. Weinheim: Wiley, 2004, pp. 349–367.

[11] J. Amin, B. Friedland, and A. Harnoy, “Implementation of a friction
estimation and compensation technique,” IEEE Contr. Sys. Mag.,
vol. 17, no. 4, pp. 71–76, 1997.

[12] S. C. Southward, C. J. Radcliffe, and C. R. MacCluer, “Robust
nonlinear stick-slip friction compensation,” J. Dynamic Systems, Mea-
surement and Control, vol. 113, no. 4, pp. 639–645, 1991.

[13] S.-W. Lee and J.-H. Kim, “Robust adaptive stick-slip friction compen-
sation,” IEEE Trans. Industrial Electronics, vol. 42, no. 5, pp. 474–
479, 1995.

[14] R.-H. Wu and P.-C. Tung, “Studies of stick-slip friction, presliding
displacement, and hunting,” J. Dynamic Systems, Measurement and
Control, vol. 124, no. 1, pp. 111–117, 2002.

[15] M. Marques, Differential Inclusions in Nonsmooth Mechanical Prob-
lems: Shocks and Dry Friction. Boston, MA: Birkhauser, 1993.

[16] J. Oh and D. S. Bernstein, “Step convergence analysis of nonlinear
feedback hysteresis models,” in Proc. Amer. Contr. Conf., Portland,
OR, 2005, pp. 697–702.

[17] D. Angeli and E. D. Sontag, “Multi-stability in monotone input/output
systems,” Sys. Contr. Lett., vol. 51, pp. 185–202, 2004.

[18] D. Angeli, J. E. Ferrell, and E. D. Sontag, “Detection of multistability,
bifurcations, and hysteresis in a large class of biological positive
feedback systems,” Proc. Nat. Academy Sci., vol. 101, no. 7, pp. 1822–
1827, 2004.

−0.02 −0.015 −0.01 −0.005 0
−4

−3

−2

−1

0

1

2

3

4
x 10

−3

Displacement   u[m]

F
ric

tio
n 

fo
rc

e 
  F

[N
]

(a)

−1 −0.5 0 0.5 1

x 10
−3

−4

−3

−2

−1

0

1

2

3

4
x 10

−3

Velocity  [m/s]
F

ric
tio

n 
fo

rc
e 

  F
[N

]

(b)

Fig. 8. (a) Friction force versus displacement and the correspond-
ing (b) friction force versus velocity for the Maxwell-slip model
with N = 10, Δ = [1.5, 2.4, 3.3, 4.2, 5.1, 6, 6.9, 7.8, 8.7, 9.6] × 10−5

m, k = [1, 1.8, 2.6, 3.4, 4.2, 5, 5.8, 6.6, 7.4, 8.2] N/m, and u(t) =
0.01 (cos 0.01t) − 1 m.

[19] J. Oh and D. S. Bernstein, “Semilinear Duhem model for rate-
independent and rate-dependent hysteresis,” IEEE Trans. Autom.
Contr., vol. 50, no. 5, pp. 631–645, 2005.

[20] P. Dupont, V. Hayward, B. Armstrong, and F. Altpeter, “Single state
elasto-plastic friction models,” IEEE Trans. Autom. Contr., vol. 47,
no. 5, pp. 787–792, 2002.

[21] I. D. Mayergoyz, “Dynamic vector models of hysteresis,” J. Appl.
Phys., vol. 69, pp. 4829–4834, 1991.

[22] X. Tan and J. S. Baras, “Modeling and control of hysteresis in
magnetostrictive actuators,” Automatica, vol. 40, pp. 1469–1480, 2004.

[23] J. W. Macki, P. Nistri, and P. Zecca, “Mathematical models for
hysteresis,” SIAM Review, vol. 35, no. 1, pp. 94–123, 1993.

[24] I. D. Mayergoyz, Mathematical Models of Hysteresis. New York:
Springer-Verlag, 1991.

[25] A. Visintin, Differential Models of Hysteresis. New York: Springer-
Verlag, 1994.

[26] R. B. Gorbet, K. A. Morris, and D. W. L. Wang, “Control of hysteretic
systems: A state space approach,” in Learning, Control and Hybrid
Systems. New York: Springer, 1998, pp. 432–451.

[27] A. D. Nashif, D. I. G. Jones, and J. P. Henderson, Vibration Damping.
New York: Wiley, 1985.

8137


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



