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Abstract— We address the problem of robust, global, delay-
dependent and delay-independent stabilization of nonlinear
time-delay systems with memory state feedback. The methodol-
ogy we use is based on a linear-like representation of the time-
delay system for which we construct appropriate Lyapunov-
Krasovskii functionals. The resulting conditions take the form
of infinite-dimensional state-dependent Linear Matrix Inequal-
ities which can be treated as sum of squares matrices. The
sum of squares program that emerges can then be solved using
semidefinite programming and SOSTOOLS, which results in an
algorithmic construction of the control law and the Lyapunov-
Krasovksii functional. An example is presented that shows the
effectiveness of the methodology.

I. INTRODUCTION

Functional Differential Equations (FDEs) [1] are the sim-
plest adequate framework for modeling systems that involve
transportation of data or which have an aftereffect. Examples
come from population dynamics [2] and network congestion
control for the Internet [3]. Time-delay systems are important
for providing robust system descriptions; the presence of de-
lays should be taken into account analysis and design as they
can cause instabilities and loss of performance. Inevitably the
stability and stabilization of time-delay systems has attracted
the attention of many researchers in the area [4].

The analysis of systems described by FDEs is complicated
by their infinite-dimensional nature which many times gives
rise to conditions that are difficult to test algorithmically.
In particular, in the case of analyzing delay-dependent sta-
bility of linear time-delay systems, the complete Lyapunov-
Krasovskii (L-K) functional yields Linear Matrix Inequality
(LMI) conditions that are infinite dimensional [5] which are
difficult to test in general. Several ways have been proposed
recently to address this problem, such as a discretization
method by Gu [6] and other techniques [7]. In particular, a
technique based on the sum of squares (SOS) decomposition
that was proposed in [8] does not only allow the efficient
solution of such LMIs in the linear case, but it can also be
used to treat the more interesting case of stability analysis
for nonlinear time-delay systems algorithmically.

This paper is about controller synthesis for uncertain
systems described by FDEs. There are various classifica-
tions of state feedback control synthesis approaches for
FDEs of retarded type, based on whether the feedback is
instantaneous (memoryless) or contains delayed information
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(memory); whether the stabilization is for specific delay sizes
(delay-dependent) or not (delay-independent); whether a cost
function is being minimized (optimal control) or the pure
stabilization problem is being considered; and whether the
systems considered are linear or nonlinear, uncertain or not.
Memory controllers are a more natural choice for feedback
control, as time-delay systems are infinite dimensional. Such
controllers can achieve better performances than memoryless
controllers; in some cases memoryless controllers are inca-
pable of stabilizing the system.

There is a series of papers concerned with the design of
state feedback controllers for robust feedback stabilization
of linear time delay systems, see for example [9], [10].
Similar results were obtained for output feedback compen-
sators [11]. As far as optimal control is concerned, controllers
for robust optimal control of linear time delay systems
have been developed, such as H∞ [12], [13], [14] and
with guaranteed cost [15], [16], [17]. Some of the above
methods take the size of the delay into account during
the controller synthesis (delay-dependent stabilization), and
some don’t (delay-independent stabilization). In [18] the
authors consider the construction of L-K functionals using
the discretization approach proposed in [6], by solving the
resulting infinite dimensional LMIs.

As far as nonlinear time delay systems are concerned,
solutions of the global asymptotic stabilization problem of
feedforward systems and systems consisting of chains of
integrators with a delay in the input have been produced [19],
[20]. A synthesis procedure for nonlinear time-delay systems
was developed based on the backstepping method for con-
troller design [21], as well as other control L-K functional
constructions in [22].

Here we address the problem of memory controller synthe-
sis for delay-independent and delay-dependent stabilization
of uncertain nonlinear time delay systems, by constructing L-
K functionals algorithmically. Even in the case of nonlinear
systems described by ODEs, this problem is difficult to solve
algorithmically. In [23], using a linear-like representation of
the system dynamics and a new methodology for solving
state-dependent LMIs, a special class of Lyapunov functions
was constructed algorithmically to address the state feedback
control synthesis problem for nonlinear systems even with
guaranteed cost or H∞ performance objectives. Here we take
a similar approach. The time-delay system is represented in a
linear-like fashion, and the resulting stabilization conditions
are in the form of state-dependent LMIs [24]. These are
then treated as SOS matrices and solved using the SOS
decomposition [25] and SOSTOOLS [26]. This way we
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construct memory controllers for robust delay-independent
and delay-independent stabilization.

The paper is organized as follows. In Section II we revisit
the basic tools that will be needed to formulate and solve the
problem at hand. In Section III we present the problem we
wish to solve, and derive the relevant state-dependent infinite
dimensional LMIs. In Section IV we illustrate our technique
with some examples. We conclude the paper in Section V.

The notation we use is standard and can be found in [1].
R

n denotes the n-dimensional real Euclidean space with
norm | · |. Cn = C([a, b], Rn) denotes the Banach space of
continuous functions mapping the interval [a, b] into R

n with
the topology of uniform convergence. For [a, b] = [−τ, 0]
we designate the norm of an element φ ∈ C([−τ, 0], Rn)
by ‖φ‖ = sup−τ≤θ≤0 |φ(θ)|. For σ ∈ R and A ≥ 0 and
x ∈ C([σ − τ, σ + A], Rn) then for any t ∈ [σ, σ + A] we
let xt ∈ C be defined by xt(θ) = x(t + θ), −τ ≤ θ ≤ 0.

II. PRELIMINARIES

In this section we revisit some tools that will be needed to
formulate and solve the problem of interest. These are state-
dependent Riccati equation techniques and an algorithmic
approach for solving the infinite dimensional LMIs, using
the SOS decomposition and SOSTOOLS [26].

A. State-Dependent Riccati Equation Techniques

Consider the nonlinear differential equation

ẋ = f(x) + g(x)u

where x ∈ R
n, u ∈ R

m, and f : R
n → R

n and g : R
m →

R
n are polynomial functions with f(0) = 0. We seek a

u = k(x)

where k(x) is a polynomial function of x so that the zero
equilibrium of the feedback system

ẋ = f(x) + g(x)k(x)

is globally asymptotically stable. The problem of designing
k(x) and finding an appropriate Lyapunov function V (x) is
not jointly convex, so the problem is algorithmically hard.

To tackle the synthesis problem, the following method-
ology has been proposed. It is based on representing the
nonlinear dynamics in the following linear-like form with
state-dependent coefficients:

ẋ = A(x)Z(x) + B(x)u (1)

where A(x) and B(x) are polynomial matrices in x and
Z(x) is an N × 1 vector of monomials in x satisfying
Z(x) = 0 if and only if x = 0. In addition, we define
M(x) an N × n polynomial matrix such that Mij = ∂Zi

∂xj
.

It was shown in [27] there are many ways of ‘recasting’ the
nonlinear system to the state-dependent coefficient form. We
let u = K(x)Z(x) and we have [23]:

Theorem 1: For system (1), suppose there exist an N×N

symmetric polynomial matrix P , an m × N polynomial
matrix K(x), a constant ε1 > 0 and a sum of squares ε2(x)

such that the following two parameter dependent Linear
Matrix Inequalities are satisfied:

P − ε1I ≥ 0 (2)

− PAT (x)MT (x) − M(x)A(x)P − KT (x)BT (x)MT (x)

− M(x)B(x)K(x) − ε2(x)I ≥ 0 (3)

Then the state feedback stabilization problem is solvable, and
a controller that globally stabilizes the system is given by:

u(x) = K(x)P−1Z(x). (4)

Furthermore, if (3) holds with ε2(x) > 0 for x �= 0, then the
zero equilibrium is globally asymptotically stable.
The proof of the above theorem can be found in [23], and
is based on the fact that

V (x) = Z(x)T P−1Z(x) (5)

is a control Lyapunov function for the above system. The
problem that remains is how to test the above conditions
algorithmically and construct the resulting nonlinear control
law.

B. Solving state Dependent LMIs

Here we present a methodology for solving state-
dependent LMIs or in general, infinite dimensional LMIs
that appear in time delay systems when investigating delay-
dependent stability. What we mean by state-dependent LMIs
is an infinite dimensional convex optimization problem of
the form:

minimize
m∑

i=1

aici (6)

subject to F0(x) +

m∑
i=1

ciFi(x) ≥ 0 (7)

where the ai’s are the cost coefficients on the decision
variables ci, and the Fi(x) are some symmetric matrix
functions of x ∈ R

n. We therefore seek ci that minimize
the cost function (6) and for which the LMI (7) is satisfied
for all x ∈ R

n. If we restrict our attention to the case in
which the Fi(x) are symmetric polynomial matrices in x,
the sum of squares (SOS) decomposition [25] can provide
an appropriate computational relaxation. This is stated in the
following Proposition:

Proposition 2: Let F (x) be an N × N symmetric poly-
nomial matrix of degree 2d in x ∈ R

n, where by degree
we mean the maximum degree of all the polynomial entries.
Also, let Z(x) be a column vector whose entries are mono-
mials in x with degree no greater than d. Then vT F (x)v is
a SOS, where v ∈ R

N if and only if there exists a positive
semidefinite matrix Q such that

vT F (x)v = (v ⊗ Z(x))T Q(v ⊗ Z(x)) (8)

where ⊗ denotes the Kronecker product. Furthermore, if
vT F (x)v is a SOS, then F (x) ≥ 0 for all x ∈ R

n.
The proof can be found in [23]. A matrix for which vT F (x)v
is a SOS, is termed a SOS matrix. Therefore instead of
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solving the optimization problem (6–7), we can solve the
problem:

minimize
m∑

i=1

aici (9)

subject to vT (F0(x) +
m∑

i=1

ciFi(x))v is SOS (10)

(9–10) can be solved using semidefinite programming and
SOSTOOLS [28]. In the next section we will be using the
SOS decomposition to test the SOS matrix property.

III. STABILIZATION OF TIME-DELAY SYSTEMS

We are now ready to state the problem we wish to solve,
and provide a solution. Consider a nonlinear time-delay
system of the form:

ẋ(t) = f(xt, p) + g(xt, p)u

x(θ) = φ(θ), θ ∈ [−τ, 0]

where for convenience f(0, p) = 0. Here xt ∈ Cn =
C([−τ, 0], Rn) is the state, u ∈ Cm is the input and p ∈ ∆
is a parameter set, which we assume takes the form:

∆ = {p ∈ R
k|gi(p) ≤ 0, i = 1, . . . , N}

We assume that the gi(p) are polynomial functions of p. The
initial condition is φ(θ) ∈ Cn and τ > 0 is the time delay of
this system. For the purposes of this paper, we will assume
that both f(xt, p) and g(xt, p) are polynomial functions in
x(t), x(t − τ) and p — although this is not restrictive as
the case in which the system state is non-polynomial can be
treated in a unified manner [29]. The aim of this work is to
construct (design) u of the form:

u = k(x(t), x(t − τ)) (11)

i.e. a polynomial function of x(t) and x(t − τ), so that the
zero equilibrium of the resulting closed loop system enjoys
certain stability properties. In particular, the controller u has
to be such, so that the zero equilibrium of the closed loop
system

ẋ(t) = f(x(t), x(t − τ), p)

+ g(x(t), x(t − τ))k(x(t), x(t − τ))

is robustly (asymptotically) stable in a delay-independent or
delay-dependent fashion.

For notational simplicity, we denote z1 = x(t) and z2 =
x(t − τ) and let Z(y) be a vector of monomials in y =
(y1, . . . , yn) such that Z = 0 if and only if y is zero. In order
to proceed we write the above system in state-dependent
linear like representation:

ẋ(t) = A0(z1, z2, p)Z(z1) + A1(z1, z2, p)Z(z2)

+ B(z1, z2, p)u (12)

where A0, A1 and B are polynomial matrices in (z1, z2, p).
The control law is assumed to have the form

u = k(z1, z2) = K0(z1, z2)Z(z1) + K1(z1, z2)Z(z2).

Similarly, we define Mij = ∂Zi

∂xj(t)
(x(t)). The closed loop

system is therefore

ẋ(t) = (A0 + BK0)Z(z1) + (A1 + BK1)Z(z2)

where we have suppressed the fact that Ai are polynomial
matrices in (z1, z2, p) etc.

In the next two subsections we will construct controllers
for delay-independent stabilization.

A. Delay-independent stabilization

Delay-independent stabilization aims in constructing a
controller and a Lyapunov functional so that the resulting
system is delay-independent stable. Recall that for a system
of the form:

ẋ = f(xt)

with f(0) = 0 the following L-K functional was used in [8]
to prove delay-independent stability:

V (xt) = a0(x(t)) +

∫ 0

−τ

a1(x(t + θ))dθ

Here by ai we mean polynomials of degree at least 2 in their
arguments, that need to satisfy certain SOS conditions.

For the state-feedback stabilization of the system described
by (12) in a robust, global, delay-independent fashion, we
have the following Proposition:

Proposition 3: For system (12), suppose there exist N ×
N dimensional symmetric matrices P and Q, m×N dimen-
sional polynomial matrices S0 and S1, a constant ε1 > 0 and
a SOS ε2(z1) such that the following are satisfied:

P − ε1I ≥ 0, (13)

Q ≥ 0, and (14)

−

⎡
⎣

(
M(A0P + BS0) + ε2(z1)

+(ST
0 BT + PAT

0 )MT + Q

)
M(A1P + BS1)

(ST
1 BT + PAT

1 )MT −Q

⎤
⎦

(15)

is a SOS matrix for p ∈ ∆. Then the state feedback
stabilization problem is solvable, and the controller is given
by:

u(x) = S0(x)P−1Z(x(t)) + S1(x)P−1Z(x(t − τ)). (16)

This control law stabilizes the zero equilibrium of (12)
globally in a robust delay-independent way. Moreover, if
ε2(z1) > 0 for z1 �= 0, then the equilibrium is robustly
globally asymptotically stable independent of the size of the
delay.

Proof: Consider an L-K functional of the form:

V (xt) = ZT (z1)P
−1Z(z1)

+

∫ 0

−τ

ZT (x(t + θ))P−1QP−1Z(x(t + θ))dθ

V is positive definite since the conditions P > 0 and Q ≥ 0
are imposed by (13–14). The time derivative of V along the
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system trajectories is:

V̇ = ZT (z1)(P
−1MA0 + AT

0 MT P−1 + P−1QP−1)Z(z1)

+ ZT (z1)(P
−1MBK0 + KT

0 BT MT P−1)Z(z1)

+ ZT (z2)(A
T
1 + KT

1 BT )MT P−1Z(z1)

+ ZT (z1)P
−1M(A1 + BK1)Z(z2)

− ZT (z2)P
−1QP−1Z(z2).

Now condition (15) implies that⎡
⎣

(
PAT

0 MT + MA0P

+ST
0 BT MT + MBS0 + Q

)
MA1P + MBS1

ST
1 BT MT + PAT

1 MT −Q

⎤
⎦

is negative semidefinite for all z1, z2 and p ∈ ∆ (recall that
the matrices Si are dependent on z1, z2 and Ai are dependent
on z1, z2 and p even though this is not written explicitly). Pre
and post-multiplying this last expression by a block-diagonal
matrix diag{P−1, P−1} and renaming S0 = K0P and S1 =
K1P , we conclude that V̇ is non-positive for all p ∈ ∆.
This proves robust global stability of the zero equilibrium
of the closed loop system independent of the size of the
delay. If ε2(z1) > 0 for z1 �= 0, then V̇ < 0, and therefore
the zero equilibrium is robustly, globally, delay-independent
asymptotically stable.

The conditions in the above Proposition can be tested
algorithmically using the SOS decomposition, as explained
in Section II. Recall that the set ∆ is captured by certain
inequalities, gi(p) ≤ 0. These inequalities can be adjoined
to condition (15) using SOS multipliers, in a way reminiscent
to the S-procedure, as it was done in [8]. The resulting SOS
programme can be solved algorithmically with the aid of
SOSTOOLS.

We now turn to the more interesting delay-dependent
robust stabilization case.

B. Delay-dependent stabilization

If the size of the delay for which stabilization is required
is known a-priori, a more attractive stabilization condition
would be a delay-dependent one. A better performance may
be achieved by resorting to this type of stabilization rather
than a delay-independent one.

Recall that for a system of the form:

ẋ = f(xt)

with f(0) = 0 the following L-K functional was considered
in [8] for delay-dependent stability, which resembles closely
the complete L-K functional in the linear case,

V (xt) = a0(x(t))

+

∫ 0

−τ

∫ 0

−τ

a1(θ, ξ, x(t + θ), x(t + ξ), x(t))dθdξ

+

∫ 0

−τ

∫ t

t+θ

a2(x(ζ))dζdθ +

∫ 0

−τ

∫ t

t+ξ

a3(x(ζ))dζdξ

where again the ai’s are polynomials of degree at least 2
in the state arguments. In particular a1 can be taken to be
bipartite in (θ, ξ) and (x(t + θ), x(t + ξ), x(t)).

Here we use a more structured L-K functional, similar to
the one shown above, for delay-dependent stabilization. In
particular we have the following Proposition:

Proposition 4: For the system (12), suppose there exist
N × N dimensional symmetric matrices P and Q, m ×
N dimensional polynomial matrices S0 and S1, a matrix
polynomial R(ξ, θ) of size N×N , a constant ε1 > 0, positive
semi-definite matrices T1 and T2, and a SOS polynomial
ε2(z1) such that (18–19) hold. Then the state feedback
stabilization problem is solvable, and the controller is given
by:

u(x) = S0(x)P−1Z(x(t)) + S1(x)P−1Z(x(t − τ)). (17)

This stabilizes the zero equilibrium of system (12) globally
in a robust way, for a delay size equal to τ . Moreover, if
ε2(z1) > 0 for z1 �= 0, then the equilibrium is robustly
globally asymptotically stable for a delay size equal to τ .

Proof: Consider the following functional:

V (xt) =

∫ 0

−τ

∫ 0

−τ

⎡
⎣

Z(x(t))
τ

Z(x(t + θ))
Z(x(t + ξ))

⎤
⎦

T

⎡
⎣ P−1 1

2P−1 1
2P−1

1
2P−1 1

2P−1QP−1 1
2P−1R(ξ, θ)P−1

1
2P−1 1

2P−1RT (ξ, θ)P−1 1
2P−1QP−1

⎤
⎦

⎡
⎣

Z(x(t))
τ

Z(x(t + θ))
Z(x(t + ξ))

⎤
⎦ dθdξ

+

∫ 0

−τ

∫ t

t+θ

ZT (x(ζ))P−1T1P
−1Z(x(ζ))dζdθ

+

∫ 0

−τ

∫ t

t+ξ

ZT (x(ζ))P−1T2P
−1Z(x(ζ))dζdξ.

Condition (18) imposes positive definiteness of V since we
can pre- and post-multiply it by a block diagonal matrix
diag{P−1, P−1, P−1}, as P > 0, and T1 ≥ 0, T2 ≥ 0. The
derivative of V along the trajectories of the system (12),
with the control law (17) imposed, denoting z1 = x(t), z2 =
x(t − τ), z3 = x(t + θ) and z4 = x(t + ξ), is given by
(20). Condition (19) guarantees that V̇ is non-positive for
all θ ∈ [−τ, 0], ξ ∈ [−τ, 0] and p ∈ ∆. To see this, pre-
and post-multiply (19) by diag{P−1, P−1, P−1, P−1} and
rename of variables S0 = K0P and S1 = K1P . Note that
the resulting SOS matrices depend on the delay, and so the
resulting controller

u(x) = S0(x)P−1Z(x(t)) + S1(x)P−1Z(x(t − τ)) (21)

robustly, globally stabilizes the zero equilibrium of the
system for a delay of size τ . Moreover, if ε2(z1) > 0 for
z1 �= 0, then V̇ < 0 and the equilibrium is robustly globally
asymptotically stable for a delay size equal to τ .

Remark 5: Different Lyapunov functionals can be used
for the construction of appropriate delay-dependent stabi-
lization conditions, such as the one used in [13] or the
methodology proposed in [18].
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⎡
⎣ P 1

2P 1
2P

1
2P 1

2Q 1
2R(ξ, θ)

1
2P 1

2RT (ξ, θ) 1
2Q

⎤
⎦ −

⎡
⎣ ε 0 0

0 0 0
0 0 0

⎤
⎦ is SOS matrix ∀θ ∈ [−τ, 0], ξ ∈ [−τ, 0], (18)

−

⎡
⎢⎣

(P AT
0 + ST

0 BT )MT + Q + 2P

+M(A0P + BS0) + τ(T1 + T2)
M(A1P + BS1) − P 1

2
(P AT

0 + ST
0 BT )MT + 1

2
R(0, θ) 1

2
(P AT

0 + ST
0 BT )MT + 1

2
RT (ξ, 0)

(P AT
1 + ST

1 BT )MT
− P −Q 1

2
(P AT

1 + ST
1 BT )MT

−

1
2

R(−τ, θ) 1
2
(P AT

1 + ST
1 BT )MT

−

1
2

RT (ξ, −τ)

1
2

M(A0P + BS0) + 1
2

RT (0, θ) 1
2

M(A1P + BS1) −

1
2

RT (−τ, θ) −

1
τ

T1 −

1
2

∂R(ξ,θ)
∂θ

−

1
2

∂R(ξ,θ)
∂ξ

1
2

M(A0P + BS0) + 1
2

R(ξ, 0) 1
2

M(A1P + BS1) −

1
2

R(ξ, −τ) −

1
2

∂RT (ξ,θ)
∂θ

−

1
2

∂RT (ξ,θ)
∂ξ

−

1
τ

T2

⎤
⎥⎦

−

⎡
⎢⎢⎣

ε2(z1) 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ is SOS matrix ∀θ ∈ [−τ, 0], ξ ∈ [−τ, 0] and p ∈ ∆. (19)

V̇ (xt) = ZT (z1)((A
T
0 + KT

0 BT )MT P−1 + P−1M(A0 + BK0))Z(z1) + ZT (z2)(A
T
1 + KT

1 BT )MT P−1Z(z1)

+ ZT (z1)P
−1M(A1 + BK1)Z(z2) + 2ZT (z1)P

−1Z(z1) − ZT (z1)P
−1Z(z2) − ZT (z2)P

−1Z(z1)

+

∫ 0

−τ

(ZT (z1)(A
T
0 + KT

0 BT ) + ZT (z2)(A
T
1 + KT

1 BT ))MT P−1Z(z3)dθ + ZT (z1)P
−1QP−1Z(z1)

+

∫ 0

−τ

ZT (z4)P
−1M((A0 + BK0)Z(z1) + (A1 + BK1)Z(z2))dξ − ZT (z2)P

−1QP−1Z(z2)

+

∫ 0

−τ

(ZT (z1)P
−1R(0, θ) − ZT (z2)P

−1R(−τ, θ))P−1Z(z3)dθ

+

∫ 0

−τ

ZT (z4)P
−1(R(ξ, 0)P−1Z(z1) − R(ξ,−τ)P−1Z(z2))dξ

+

∫ 0

−τ

∫ 0

−τ

ZT (z4)P
−1

(
∂R(ξ, θ)

∂ξ
+

∂R(ξ, θ)

∂θ

)
P−1Z(z3)dθdξ + τZT (z1)P

−1T1P
−1Z(z1)

+ τZT (z1)P
−1T2P

−1Z(z1) −

∫ 0

−τ

ZT (z3)P
−1T1P

−1Z(z3)dθ −

∫ 0

−τ

ZT (z4)P
−1T2P

−1Z(z4)dξ (20)

The conditions θ ∈ [−τ, 0] and ξ ∈ [−τ, 0] can be adjoined
to the SOS matrix condition (19) using SOS matrix multi-
pliers, in a way similar to the S-procedure [8]. The resulting
SOS conditions can be tested algorithmically using SOS-
TOOLS; so the resulting infinite dimensional LMI conditions
can be solved directly, without resorting to discretization [18]
or other approaches [7]. To get robustness with respect to the
delay size, one can impose an extra condition that the above
LMIs are valid for all delays τ ∈ [0, τ ].

IV. EXAMPLE

Consider the system:

ẋ1(t) = x1(t)x2(t) + 2x1(t − τ)x2(t) − x1(t − τ) + u

ẋ2(t) = −px1(t) + x2(t − τ)

where p ∈ [0.5, 1.5]. We represent the system as follows:

ẋ =

[
x2(t) x1(t − τ)
−p 0

] [
x1(t)
x2(t)

]

+

[
−1 + x2(t) 0

0 1

] [
x1(t − τ)
x2(t − τ)

]
+

[
1
0

]
u

When u = 0, the above system has two equilibria, one which
is at the origin and the other one at

(
1
3p

, 1
3

)
. A sample sim-

ulation for the system with nominal value p = 1, initialized
with the constant initial function (x1, x2) = (0.5, 0.5) with
delay τ = 0.1 is shown in Figure 1A. We aim to construct
controllers for robust global delay-independent and delay-
dependent stabilization of the zero equilibrium, based on the
conditions for stabilizability that we proposed in this paper.
Note that the equilibrium of the above system is unstable in
the undelayed, unforced, linearized case.

A. Delay-Independent stabilization

In this case we setup a SOS program, which needs to
satisfy all the conditions in Proposition 3. For the above
system an appropriate control law was constructed which
guarantees that the zero equilibrium of the above system
is robustly globally delay-independent stable. The control
law that was constructed contains terms up to 2nd order in
x1(t), x2(t), x1(t − τ) and x2(t − τ), and is omitted due to
space restrictions. A simulation of the closed loop system
for p = 1 can be seen in Figure 1B.

B. Delay-dependent stabilization

Similarly, Proposition 4 was used to construct a feedback
control law that ensures robust global delay-dependent sta-
bility of the equilibrium of the loop system for τ = 0.1.
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Fig. 1. Simulations from initial conditions (x1, x2) = (0.5, 0.5). Figure A: open loop system. Figure B: closed loop system as it was stabilized in a
delay-independent fashion. Figure C: closed loop system as it was stabilized in a delay-dependent fashion.

Simulations of the closed loop system can be seen in Figure
1C for p = 1. The controller structure is also a polynomial
up to 2nd order in x1(t), x2(t), x1(t − τ) and x2(t − τ).

V. CONCLUSIONS

In this paper we presented a new technique for controller
synthesis for time-delay systems to achieve robust global
delay-dependent and delay-independent stability. The infinite
dimensional, state-dependent LMIs were solved using the
SOS technique. The above methodology can be extended
to guaranteed cost control and H∞ control synthesis proce-
dures, which will be the subject of future research. These
constructions were already implemented in [23]. Local (but
nonlinear) stabilization is also possible, by imposing that the
Lyapunov conditions are only satisfied in a neighborhood of
the equilibrium of interest.
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