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Abstract— We present a steering algorithm for regular – i.e.,
without singularities – nonholonomic systems which are not
required to possess special properties such as flatness or exact
nilpotentizability. The method makes use of local steering laws,
with suitable contraction properties, designed on the basis of
a continuous approximation of the system. The algorithm is
amenable to extension to systems with singularities.

I. INTRODUCTION

Nonholonomic systems attract the attention of the sci-

entific community for the theoretical challenges arising

from the research on the control of these systems and for

their relevance in applications. In particular, the problem of

generating feasible trajectories joining two system config-

urations (referred to as nonholonomic path planning) has

been solved for specific classes of driftless systems by

effective techniques. These include a Lie-theoretical method

for steering nilpotentizable systems [3], open-loop control

(e.g., sinusoidal inputs [5]) for chained-form transformable

systems and trajectory generation for flat systems [2].

However, there exist nonholonomic robots — also called

general in this paper — whose kinematic model does not fall

into any of the aforementioned classes. For example, mobile

robots with more than one trailer cannot be transformed in

chained form unless each trailer is hinged to the midpoint

of the previous wheel axle — a particular arrangement,

very unusual in real trailer vehicles, known as ‘on-hooking’.

Another such example are robotic systems that perform

object manipulation by rolling contacts [6]: even the simplest

mechanism in this category, the so-called plate-ball system,

does not admit a chained-form transformation. More in

general, for 2-input systems, as soon as the dimension of

the state space reaches 5, exact nilpotentizability becomes

the exception rather than the rule (whereas all systems up to

dimension 4 possess this property [4]).

Techniques for steering general nonholonomic systems

include the iterative method of [3], the generic loop method

of [7] and the continuation method of [10]. However, the

practical applicability of these methods is limited. In fact,

the first two essentially require an a priori estimate of some

“critical distance” which is generally unknown1, while the

third imposes strong assumptions on the system.
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1In [7], this is “masked” by the fact that an optimization problem is
solved at each iteration.

On a similar line, we mention the iterative approach in [6],

where stabilization (i.e., arbitrary boundedness of trajectories

within the iterations) is seeked, so that appropriate continuity

conditions must be satisfied by the steering control law.

In this paper, assuming that the considered system is

regular (i.e., it has no singularities), we first give a local

steering algorithm based on continuous approximations and

steering laws characterized by a suitable contraction property.

Then, we use the local method as an inspiration to devise

a global steering algorithm. Our work is closely related to

a suggestion in [9], where an iterative scheme of the type

implemented in this paper is envisaged to overcome the

necessity of knowing a priori the aforementioned critical

distance.

The paper is organized as follows. In Section II we fix

the notation and recall the basic definitions. In Section III

we describe local approximate steering methods based on

the use of approximations. These local methods are used

in Section IV for devising a globally convergent steering

algorithm in the absence of singularities, validated through

simulation in Section V.

II. NONHOLONOMIC CONTROL SYSTEMS

We recall some basic tools used in sub-Riemannian ge-

ometry following [1].

Let Ω be an open connected subset of R
n, and VF (Ω)

the set of C∞ vector fields on Ω. Consider a nonholonomic

control system

ẋ =
m∑

i=1

gi(x)ui, x ∈ Ω, (1)

where g1, . . . , gm belong to VF (Ω) and the input u(t) =
(u1(t), . . . , um(t)) is an integrable vector function which

takes values in R
m. This system is characterized by the m-

tuple g = (g1, . . . , gm) ∈ VFm(Ω).

Definition 1: Given the function u(t), t ∈ [0, T ], the

length of u is defined as

�(u) =
∫ T

0

√
u2

1(t) + . . . + u2
m(t) dt.

Given x ∈ Ω, let xu(t), t ∈ [0, T ] be a trajectory of (1)

originating from x under an input function u(t). We define

its length as

�(xu(t)) = �(u).

A point x = xu(t), for t ∈ [0, T ], is accessible from x.
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Definition 2: System (1) induces a sub-Riemannian dis-
tance d on Ω, defined as

d(x1, x2) = inf
xu

�(xu), (2)

where the infimum is taken over all trajectories xu joining

x1 to x2.

Note that d(x1, x2) < ∞ if and only if x1 and x2 are

accessible from each other. Chow’s Theorem states that any

two points in Ω are accessible from each other if the elements

of the Lie Algebra Lg generated by the gi’s form an n-

dimensional vector space at each point. As system (1) is

driftless, Chow’s condition implies controllability in any

usual sense [8]. Throughout this paper, we assume that

system (1) is controllable.

Take x ∈ Ω and let Ls(x) be the vector space generated

by the values at x of the brackets of the elements of g of

length ≤ s, s = 1, 2, . . . (input vector fields are brackets

of length 1). Controllability guarantees that there exists a

smallest integer r = r(x) such that dim Lr(x) = n. This

integer is called the degree of nonholonomy at x.

Definition 3: Let ns(x) = dimLs(x), s = 1, . . . , r, the

sequence (n1(x), . . . , nr(x)) is the growth vector of g at x.

Point x is said to be regular if the growth vector remains

constant in a neighborhood of x; otherwise x is singular.

Points at which the degree of nonholonomy changes are

singular. Regular points form an open and dense set in Ω.

Consider a smooth real-valued function f . Call first-order
nonholonomic derivatives of f the Lie derivatives gif of f
along gi, i = 1, . . . ,m. Call gi(gjf), i, j = 1, . . . ,m, the

second-order nonholonomic derivatives of f , and so on.

Definition 4: A function f is of order ≥ s at x if its

nonholonomic derivatives of order ≤ s − 1 vanish at x. If

f is of order ≥ s and not of order ≥ s + 1 at x, it is

of order s at x.

Equivalently, if f is of order ≥ s at x, then f(x) =
O(ds(x, x)).

Definition 5: A vector field h is of order ≥ q at x if, for

every s and every f of order s at x, hf has order ≥ q + s
at x. If h is of order ≥ q but not ≥ q + 1, it is of order q at

x.

It is easy to show that every element of g has order ≥ −1,

bracket [gi, gj ], i, j = 1, . . . ,m, has order ≥ −2, and so on.

Definition 6: Let the integer wj , j = 1, . . . , n, be defined

by setting wj = s if ns−1 < j ≤ ns, with ns = ns(x) and

n0 = 0. Local coordinates z1, . . . , zn centered at x form a

system of privileged coordinates if the order of zj at x equals

wj (called the weight of coordinate zj), for j = 1, . . . , n.

The order of functions and vector fields expressed in

privileged coordinates can be computed in an algebraic way:

• The order of the monomial zα1
1 . . . zαn

n is equal to its

weighted degree w(α) = w1α1 + · · · + wnαn.

• The order of a function f(z) at z = 0 (the image of x)

is the least weighted degree of the monomials actually

appearing in the Taylor expansion of f at 0.

• The order of a vector field h(z) =
∑n

j=1 hj(z)∂zj
at

z = 0 is the least weighted degree of the monomials

actually appearing in the Taylor expansion of h at 0:

h(z) ∼
∑
α,j

aα,jz
α1
1 . . . zαn

n ∂zj ,

considering the term aαzα1
1 . . . zαn

n ∂zj as a monomial

and assigning to ∂zj the weight −wj .

Definition 7: Given the system z1, . . . , zn of privileged

coordinates at x, the function

‖z‖x = |z1|1/w1 + · · · + |zn|1/wn ,

where w1, . . . , wn are the coordinate weights at x, is called

pseudonorm at x.

Denoting by B(x, r) an open sub-Riemannian ball of

radius r centered at x, we have the following:

Definition 8: A continuously varying system of privileged
coordinates on Ω is a mapping Φ, with values in R

n, defined

and continuous on a neighborhood of the diagonal in Ω×Ω,

and such that the partial mapping z = Φ(x, ·) is a system

of privileged coordinates at x. In this case, there exists

a continuous function σ : Ω → (0, +∞) such that the

coordinates Φ(x, ·) are defined on B(x, σ(x)); we call σ
an injectivity radius of Φ.

If x ∈ Ω is a regular point, then there exists a continuously

varying system of privileged coordinates on a neighborhood

of x (see for instance [1] and [11] ).

Privileged coordinates provide an estimate of the sub-

Riemannian distance d, according to the following result.

Theorem 1 (Ball-Box Theorem): Consider g ∈ VFm(Ω),
a point x ∈ Ω and a system of privileged coordinates z at

x. There exist positive constants C ′(x) and ε′(x) such that,

for all x with d(x, x) < ε′(x),

1
C ′(x)

‖z(x)‖x ≤ d(x, x) ≤ C ′(x) ‖z(x)‖x. (3)

If Ω contains only regular points and if Φ is a continuously

varying system of privileged coordinates on Ω, then there

exist continuous positive functions C ′(·) and ε′(·) on Ω
such that inequality (3) holds with z = Φ(x, ·) at all (x, x)
satisfying d(x, x) < ε′(x).

III. LOCAL APPROXIMATE STEERING METHODS

In this section, we define local approximate steering

methods based on the use of system approximations, and

introduce notions and criteria of contraction.

A. First-order approximations

Let g = (g1, . . . , gm) ∈ VFm(Ω).
Definition 9: A m-tuple ĝ = (ĝ1, . . . , ĝm) defined on a

neighborhood of x is a first-order approximation of g at x if

the vector fields gi− ĝi, i = 1, . . . ,m, are of order ≥ 0 at x.

A first-order approximation of g on Ω is a mapping A that

associates to each x ∈ Ω a first-order approximation ĝ =
A(x) of g at x defined on a ball B(x, ρ(x)). The function

ρ : Ω → (0, +∞) is called the approximation radius of A.

7515



Since first-order approximations are always used in this

paper, they are referred to simply as ‘approximations’.

Definition 10: A continuous approximation of g on Ω is

an approximation A : x �→ ĝ of g on Ω such that the mapping

(x, x) �→ ĝ(x) ∈ R
n,

is defined and continuous on a neighborhood of the diagonal

in Ω×Ω, and the approximation radius ρ of A is continuous.

An additional property of approximations, useful for con-

trol design, is nilpotency.

Definition 11: Let s ∈ N. We say that an approximation

A : x �→ ĝ on Ω is nilpotent of step s if, for all x ∈ Ω, the

Lie algebra generated by ĝ is nilpotent of step s.

An explicit procedure for constructing continuous nilpo-

tent approximations is given in [1], extended to systems with

singularities in [11].

First-order approximations are used in this paper to design

approximate steering laws for the original system. Privileged

coordinates allow to measure the error obtained when we

replace g by a first-order approximation (see [1, Prop. 7.29]).

Lemma 1: Consider a point x ∈ Ω, a system of privileged

coordinates z at x, and a first-order approximation ĝ of g at

x. Then, there exist positive constants C ′′(x) and ε′′(x) such

that, for all x ∈ Ω with d(x, x) < ε′′(x) and all integrable

control functions u(·) with �(u) < ε′′(x), we have

‖z(xu(T ))−z(x̂u(T ))‖x ≤ C′′(x) max
(
‖z(x)‖x, �(u)

)
�(u)1/r, (4)

where r is the degree of nonholonomy at x and xu and x̂u are

the trajectories of ẋ =
∑m

i=1 gi(x) ui and ẋ =
∑m

i=1 ĝi(x) ui

respectively which are defined by the same initial condition

xu(0) = x̂u(0) = x and the same control function u(·).
If Ω contains only regular points, Φ is a continuously

varying system of privileged coordinates on Ω and A a

continuous approximation on Ω, then there exist continuous

positive functions C ′′(·) and ε′′(·) such that inequality (4)

holds, with z = Φ(x, ·) and ĝ = A(x), for all (x, x) with

d(x, x) < ε′′(x) and all integrable control functions u(·)
with �(u) < ε′′(x).

B. Approximate steering

We need to define precisely the notion of steering law for

an approximation. Let A : x �→ ĝ be an approximation on Ω
and ρ its approximation radius.

Definition 12: A steering law of A is a mapping which,

to every pair x, x ∈ Ω satisfying d(x, x) < ρ(x), associates

an integrable control function û(t), t ∈ [0, T ] (henceforth

called a steering control) such that the trajectory x̂û(·) with

x̂û(0) = x is defined on [0, T ] and satisfies x̂û(T ) = x. In

other terms, û(·) steers A(x) from x to x.

For example, a systematic design of the steering law is

possible when nilpotent approximations are used [3].

Given g, an approximation A of g, and a steering law for

A, we define a local approximate steering method for g as:

Definition 13: Fix x ∈ Ω. For a point x ∈ B(x, ρ(x)),
let û(·) be the steering control of A(x) between x and x.

We denote by xû(·) the trajectory of the control system (1)

originating from xû(0) = x under this control function û(·).
The local approximate steering (LAS) method associated to

A and its steering law is the function defined by:

AppSteer(x, x) = xû(T ).

Definition 14: A LAS method is contractive if, for any

x ∈ Ω, there exist positive constants ε(x) and C(x) such

that, for any x sufficiently close to x, d(x, x) < ε(x) implies

d(AppSteer(x, x), x) ≤ C(x) d(x, x)1+1/p,

where p is a positive constant independent of x. A LAS

method is uniformly contractive if it is contractive and if

ε(·) and C(·) can be chosen as continuous functions.

A useful result which is later needed is the following.

Lemma 2: Consider a contractive LAS method

AppSteer(·, ·) associated to A. Then, ∀x, x ∈ Ω, ∃β(x) > 0
such that if d(x, x) < β(x) both the following inequalities

are satisfied:

d(AppSteer(x, x), x) ≤ 1
2
d(x, x) (5)

‖z(AppSteer(x, x))‖x ≤ 1
2
‖z(x)‖x. (6)

If Ω contains only regular points and the LAS method is

uniformly contractive, then the function β(·) is continuous.

Proof: Straightforward from Definition 14 and the Ball-

Box Theorem.

C. Quasi-optimal steering methods

It is possible to show that a contractive LAS method

is obtained whenever the steering law satisfies a special

condition.

Definition 15: We say that a steering law of A is quasi-
optimal if there exists a constant K > 0 such that, for any

x, x ∈ Ω with d(x, x) < ρ(x), the control û(·) steering A(x)
from x to x satisfies:

�(û) ≤ K d(x, x) = K d(x̂û(0), x̂û(1)).

Note that, due to the definition of the sub-Riemannian

distance, quasi-optimal steering laws always exist.

Proposition 1: A LAS method based on a quasi-optimal

steering law is contractive. Moreover, if Ω contains only

regular points and if the approximation A is continuous on

Ω, then the method is uniformly contractive.

Proof: Let A be an approximation of g on Ω, and

AppSteer a local approximate steering method associated to

A based on a quasi-optimal steering law.

Given x ∈ Ω, let z be a system of privileged coordinates

at x, and ĝ = A(x). Reducing if needed the approximation

radius ρ(x) of A, we assume that ρ(x) is an injectivity radius

of z. Given another point x ∈ B(x, ρ(x)), let û(·) be the

steering control of ĝ between x and x, and set xû(T ) =
AppSteer(x, x). Using Lemma 1, the fact that x̂û(T ) = x
by construction and that the image of x in the privileged
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coordinates at x is the origin, we obtain, that, if d(x, x) and

�(u) are smaller than ε′′(x), then

‖z(xû(T ))‖x ≤ C ′′(x) max
(‖z(x)‖x, �(û)

)
�(û)1/r.

Now, since û(·) is quasi-optimal, we have �(û) ≤
Kd(x, x). Using then the Ball-Box Theorem, we obtain

1
C ′(x)

d(x, xû(T ))≤C ′′(x)K1/rmax(C ′(x),K) d(x, x)1+1/r,

provided that d(x, x) is smaller than a constant ε(x) depend-

ing on C ′(x), C ′′(x), ε′(x), ε′′(x), ρ(x) = σ(x) and K. We

then obtain that the method is contractive.

Assume now that A is continuous and that Ω contains only

regular points. There exists a continuously varying system

Φ of privileged coordinates on Ω. Thus C ′(·), C ′′(·), ε′(·),
ε′′(·), ρ(·), σ(·) – and so ε(·) – can be chosen as continuous

functions, and the LAS method is uniformly contractive.

IV. THE GLOBAL APPROXIMATE STEERING ALGORITHM

Assume that the domain of definition Ω for system (1)

contains only regular points. Assume further that there exist

a continuously varying system of privileged coordinates and

an associated continuous approximation A of g on Ω. This

hypothesis will be removed at the end of the section.

In this section, we will devise an algorithm to steer

system (1) from any x0 ∈ Ω to the origin (assumed w.l.o.g.

to be the goal) using a contractive LAS designed on the

basis of A. To have an infinite injectivity radius, we use the

algebraic privileged coordinates defined in [1].

First, note that a locally convergent approximate steer-

ing algorithm can be easily built using a contractive LAS

method, as follows.

Take a starting point x0 such that d(x0, x) < ε(x) and

d(x0, x) < β(x), and let e be a given tolerance.

Local Approximate Steering(x0, x)

1. k := 0;

2. xk := x0;

3. while ‖z(xk)‖x > e

4. xk+1 = AppSteer(xk, x);

5. k := k + 1;

Based on this local algorithm, the construction of the

global approximate steering method to be presented is in-

spired to the following idea. Consider a parameterized path2

γ connecting x0 to 0, and choose a finite sequence of

intermediate goals {xd
0 = x0, x

d
1, . . . , x

d
n = 0} on γ, such

that d(xd
i−1, x

d
i ) < β(xd

i )/2, i = 0, . . . , n, with β(xd
i ) as in

Lemma 2 (this is always possible thanks to the regularity

assumption, which guarantees that β(·) is continuous and,

hence, has a positive lower bound on the compact set γ).

It is possible to prove that the iterated application of a

2If no such path exists, Ω is not arc-connected and the steering problem
has no solution in Ω.

contractive steering method AppSteer(xi−1, x
d
i ) from the

current state to the next subgoal (having set xd
i = 0, ∀i ≥ n)

yields an approximate steering algorithm3 which is globally

convergent to 0.

However, the above algorithm requires the a priori knowl-

edge of β(·), which in practice is not available. An algorithm

which achieves global convergence to 0 without knowing

β(·) is described in Fig. 1.

The function Subgoal is the following.

Subgoal(xi,0, ηi, x
d
i,j−1)

1. tj := max(0, 1 − jηi

‖z(xi,0)‖0
);

2. xd
i,j := δ0,tj

(xi,0)

Here, δ0,tj
denotes the dilation in privileged coordinates

at 0, with parameter t. That is, δ0,tj
(xi,0) is computed by

first dilating z(xi,0) and then mapping back to the original

coordinates. The formula for generating tj guarantees that

‖z(xd
i,j)−z(xd

i,j−1)‖0 = ηi if ‖z(xd
i,j−1)‖0 > ηi; otherwise,

tj = 0 and then xd
i,j = 0.

The global convergence of the approximate steering algo-

rithm is established in the following result. For the sake of

simplicity we assume to work on a compact set K ⊂ Ω.

Proposition 2: If the LAS method AppSteer(·, ·) used

in Step 7 is uniformly contractive, then the algorithm

Global Approximate Steering terminates in a finite number

of steps for any choice of x0 and of the tolerance e.

Proof: Set β = minx∈K β(x). The LAS method being

uniformly contractive, the function β(·) is continuous and so

the constant β is positive.

Note first that the contraction property of the LAS method

guarantees that if d(xi,j−1, x
d
i,j) < β, for some i and

for j = 1, 2, . . . , then condition (6) is verified and the

conditional statement of Step 8 is not true (i.e., the system

is approaching the origin). In this case, the error ‖z(xi,j)‖0

is reduced at each iteration and the algorithm stops when it

becomes smaller than a given tolerance e.

Another preliminary remark is that, due to the continuity

of the control distance and of the pseudonorm at zero in the

regular case, there exists µ such that, for any x, y ∈ K,

‖z(x) − z(y)‖0 < µ ⇒ d(x, y) <
β

2
. (7)

In the following, we will prove by induction that if

‖z(xd
i,j−1) − z(xd

i,j)‖0 = ηi < µ,

for some i and for j = 1, 2, . . . , then

d(xi,j−1, x
d
i,j) < (1/2 + · · · + (1/2)j)β < β.

For j = 1, it is xi,0 = x0 and by construction

‖z(xi,0) − z(xd
i,1)‖0 = ηi < µ.

In view of (7) we have then d(xi,0, x
d
i,1) < β/2.

3A similar idea is proposed in [3].
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Global Approximate Steering(x0, 0)

1. i := 0; j := 0;

2. xi,0 := x0;

3. ηi := ‖z(x0)‖0; initial choice of the maximum step size;

4. while ‖z(xi,j)‖0 > e while the pseudonorm at 0 of the state
is above a given tolerance e. . . ;

5. j := j + 1;

6. xd
i,j := Subgoal(xi,0, ηi, x

d
i,j−1); choose the subgoal xd

i,j at a distance ηi from xd
i,j−1;

7. xi,j := AppSteer(xi,j−1, x
d
i,j); steer the system from xi,j−1 using an

approximate steering control with destination xd
i,j;

8. if ‖z(xi,j)‖xd
i,j

> 1
2‖z(xi,j−1)‖xd

i,j
if the system is not approaching the subgoal. . . ;

9. ηi+1 := min(ηi

2 ,
‖z(xi,j−1)‖0

2 ); reduce the maximum step size;

10. xi+1,0 := xi,j ; i := i + 1; j := 0;

Fig. 1. The approximate steering algorithm

Assume now that for j = n − 1 > 1 we have:

d(xi,n−2, x
d
i,n−1) < (1/2 + · · · + (1/2)n−1)β. (8)

For j = n we can write

d(xi,n−1, x
d
i,n) ≤ d(xi,n−1, x

d
i,n−1) + d(xd

i,n−1, x
d
i,n).

By construction, it is

‖z(xd
i,n−1) − z(xd

i,n)‖0 = ηi < µ,

which implies d(xd
i,n−1, x

d
i,n) < β/2. The induction hypoth-

esis (8) implies that

d(xi,n−1, x
d
i,n−1) ≤

1
2
d(xi,n−2, x

d
i,n−1).

Finally, we have

d(xi,n−1, x
d
i,n) ≤ 1

2
d(xi,n−2, x

d
i,n−1) + d(xd

i,n−1, x
d
i,n)

≤ (1/2 + · · · + (1/2)n)β.

If, for some (i, j), ηi ≥ µ the conditional statement of

step 8 could be false. In this case, ηi is decreased as in step

9 and the algorithm is restarted from the current point. The

updating law of ηi guarantees that there exists i such that

ηi < µ for j = 1, 2, . . . , i.e., there exists i such that the

error ‖z(xi,j)‖0 is reduced at each iteration.

For the sake of simplicity, we have assumed through this

section the existence on Ω of a continuously varying system

of privileged coordinates and an associated continuous ap-

proximation of g. This hypothesis can be removed by noting

that, since Ω contains only regular points, the existence is

guaranteed on a neighbourhood of every point in Ω. As

suggested in [6], the working space K ⊂ Ω can then be

covered by a finite number of compact sets, the assumption

being true on each one of these compact sets. The proof of

Proposition 2 should be accordingly modified by assigning

the appropriate minimum value of β(x) over K.

V. SIMULATION RESULTS

The proposed algorithm has been tested on the plate-

ball manipulation system, a well-known example of general

nonholonomic system without singularities. The generalized

coordinates are (u, v, ψ, x, y), where u and v are the coordi-

nates of the contact point on the sphere, ψ is the orientation

of the sphere, and x, y are the coordinates of the contact

point on the plane. A feedback transformation allows to

put the system in a triangular form, with the first three

equations in chained form, as described in [6]. We refer

the reader to this work for the original and the transformed

model of the system as well as for the definition of the

privileged coordinates and the computation of the nilpotent

approximation. In the same paper it is also shown that the

steering problem for this system can be splitted in two

phases: in the first one, the u, v and ψ coordinates are driven

to the origin while x and y drift; in the second phase, x and

y are steered approximately to the origin while the first three

coordinates perform a cyclic motion returning to the origin

at the end of this steering phase.
For simplicity, we assume that the first three coordinates

are already at the origin. This allows to compute the privi-

leged coordinates and nilpotent approximations only at points

with the first three coordinates equal to zero. It can be

shown [6] that if the parameters of the steering law:

w1 = aII
1 cos ωt + aII

2 cos 4ωt (9)

w2 = bII
1 cos 2ωt, (10)
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Fig. 2. Euclidean norm of the first three coordinates.

with aII
1 , aII

2 , bII
1 ∈ R and ω = 2π/T , are chosen as:

aII
1 =

(
zi
4

k1bII
1

)1/2

, aII
2 =

zi
5

k2(bII
1 )2

,

bII
1 = −sign(zi

4) ·
∣∣∣∣
(

zi
4

zi
5

)∣∣∣∣
1/3

,

where k1 = −T 3/32π2 and k2 = T 3/128π2, then the

control (9–10): (i) steers the system from zi to z = 0,

respectively the image of the current and goal point in

privileged coordinates centered at the latter, (ii) drives u, v,

ψ exactly back to the origin, (iii) is uniformly contractive.

In the proposed simulation, the initial point has been

chosen as (0, 0, 0,−1,−1.7) and the tolerance e as 10−5.

The algorithm converges (i.e., the pseudonorm at zero is

below e) after six iterations. Figure 2 shows the norm of

the first three coordinates. Note that, at the end of each

iteration the norm is zero, confirming that the first three

coordinates are driven exactly to zero, while its maximum

value is reduced along the iterations. The euclidean norm of

the (x, y) subvector is reported in fig. 3 and shows how the

error is reduced both at the end and during each iteration.

The values of the pseudonorm of the state used at step 8

of the algorithm, are reported in Table I. Observe that the

error is not reduced to half of the initial error at the end

of iterations 1 and 2. The step size ηi is correspondingly

updated to the value in the fourth column of the table.

TABLE I

PSEUDONORM OF THE STATE AT STEP 8 OF THE ALGORITHM

iteration 1
2
||z(xi,j)||xd

i,j−1
||z(xi,j)||xd

i,j
ηi

1 0.45 0.6471 0.9
2 0.2250 0.2332 0.45
3 0.1125 0.0188 0.2250
4 0.0664 0.0062 0.2250
5 0.0031 0.0002 0.2250
6 0.0001 0.0000 0.2250

VI. CONCLUSIONS

In this paper we have presented a globally convergent

steering algorithm for regular nonholonomic systems. In par-

ticular, we have defined local approximate steering methods
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Fig. 3. Euclidean norm of x and y.

based on the use of system approximations, and introduced

notions and criteria of contraction. On this basis we have

constructed a steering algorithm which is proven to be glob-

ally convergent. We have tested the algorithm by simulation

on the plate-ball manipulation system.

We are currently extending the presented algorithm to sys-

tems with singularities relying on the tools devised in [11]. In

particular, we use nonhomogeneous nilpotent approximations

built on continuously varying systems of privileged coordi-

nates therein developed to generalize the proposed steering

algorithm to systems with singularities.
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