
Semi-Algebraic Constant Reset Hybrid Automata - SACoRe

Alberto Casagrande∗†, Carla Piazza†, Bud Mishra‡§
∗PARADES, Via S.Pantaleo, 66, 00186 Roma, Italy
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Abstract— In this paper we introduce and study a special
class of hybrid automata, Semi-Algebraic Constant Reset hybrid
automata (SACoRe). SACoRe automata are an extension of O-
minimal semi-algebraic automata over the reals in the case
of flows obtained from non-autonomous systems of differential
inclusions. Even though SACoRe automata do not have the
finite bisimulation property, they do admit decision procedures
for reachability and model checking for a limited fragment of
CTL, by combining Tarski’s decidability result over the reals
and Michael’s selection theorem.

I. INTRODUCTION

The notion of Hybrid Automata was first introduced in [1],
[2] as a model and specification language for hybrid systems,
i.e., systems consisting of a discrete program within a
continuously changing environment. Since their introduction
they have been widely used for the automatic verification of
both natural and engineered systems.

In this paper we introduce and study a special class of such
automata, Semi-Algebraic Constant Reset hybrid automata
(SACoRe), whose characterizing conditions are based upon
first-order theory over (IR, 0, 1, +, ∗, =, <). In particular, a
hybrid automaton of dimension k can be defined using only
formulæ over k dimensional vectors of reals. The dynamics
are defined through formulæ which can be obtained as solu-
tions of non-autonomous systems of differential inclusions.
The reset conditions have to be constant as in the case
of O-minimal hybrid automata [3]. Even though SACoRe
automata do not have the finite bisimulation property, the
conditions we impose on their dynamics allow us to combine
Tarski’s result [4] and Michael’s selection theorem [5] to
translate reachability problems into first-order satisfiability
problems over the reals.

The approach of exploiting Tarski’s result and quantifier
elimination to study hybrid automata has begun to be widely
investigated in the last few years. For instance, Jirstrand [6]
demonstrated, in the context of non-linear control system
design, the use of Qepcad for the problems of computing
reachability, stationarizable sets, range of controllable output,
and curve-following. Subsequently, Anai [7] and Franzle [8]
independently suggested the use of quantifier elimination for
the verification of polynomial hybrid systems. Franzle went
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on to prove that progress, safety, state recurrence and reacha-
bility are semi-decidable using quantifier elimination [9] and
developed “proof engines” for bounded model checking [10].
More recently, Lafferiere et al. [11] have again described
a method based upon quantifier elimination for symbolic
reachability computation of linear vector fields.

The novelty of our approach mainly lies in the use of
continuous selection results [12] which allow us to consider
non-autonomous differential inclusions. Moreover, as a direct
consequence of continuous selection results, we can derive
first-order formulæ to encode reachability problems with low
structural complexity.

The paper is organized as follows. In Section II we
introduce the syntax and the semantics of hybrid automata. In
Section III we give a definition of SACoRe automata and in
Section IV we show how to decide reachability over them.
Section V is devoted to model checking of a fragment of
CTL for SACoRe automata. Finally, Section VI concludes
the paper with a discussion of how SACoRe automata may
be used. All the missing proofs can be found in [13].

II. HYBRID AUTOMATA

A. Syntax

First, we introduce some notations and conventions. Cap-
ital letters Zm, Z ′

m, and Zn
m, where n, m ∈ IN denote

variables ranging over IR. Analogously, Z denotes the vector
of variables 〈Z1, . . . , Zk〉; Z ′ denotes the vector 〈Z ′

1, . . . ,
Z ′

k〉; and Zn denotes the vector 〈Zn
1 , . . . , Zn

k 〉. The temporal
variables T and T ′ model time and range over IR+. We
use the small letters p, q, r, s, . . . to denote k-dimensional
vectors of real numbers.

Occasionally, we will use the notation ϕ[X1, . . . , Xm] to
stress the fact that the set of free variables of the first-order
formula ϕ may be included in the set of variables {X1, . . .,
Xm}. By extension, if {X1, . . ., Xn} is a set of variable
vectors, ϕ[X1, . . ., Xn] indicates that the free variables of
ϕ are included in the set of components of X1, . . ., Xn.
Moreover, given a formula ϕ[X1, . . ., Xi, . . ., Xn] and a
vector p of the same dimension as the variable vector Xi,
the formula obtained by component-wise substitution of Xi

with p is denoted by ϕ[X1, . . ., Xi−1, p, Xi+1, . . ., Xn].
If in ϕ the only free variables were the components of Xi,
after the substitution we can compute the truth value of ϕ[p].

We are now ready to formally introduce hybrid automata.
For each state of a discrete automaton we have an invariant
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condition and a dynamic law. This dynamic law may depend
on the initial conditions, i.e., on the values of the continuous
variables at the beginning of the evolution in the state. The
jumps from one discrete state to another are regulated by the
activation and reset conditions.

Definition 1 (Hybrid Automata): A hybrid automaton
H = (Z, Z ′, V, E, Inv , Dyn , Act , Reset) of dimension k
consists of the following components:

1) Z = 〈Z1, . . ., Zk〉 and Z ′ = 〈Z ′
1, . . ., Z ′

k〉 are two
vectors of variables ranging over the reals IR;

2) 〈V, E〉 is a finite directed graph; the vertices, V, are
called locations, or control modes, the directed edges,
E, are called edges, or control switches;

3) Each vertex v ∈ V is labeled by the two for-
mulæ Inv(v)[Z] and Dyn(v)[Z,Z ′, T ] such that
if Inv(v)[p] is true then Dyn(v)[p, p, 0] is true;
InvSet = {Inv(v)[Z] | v ∈ V} and DynSet =
{Dyn(v)[Z, Z ′, T ] | v ∈ V};

4) Each directed edge e ∈ E is labeled by
the two formulæ Act(e)[Z] and Reset(e)[Z,Z ′];
ActSet = {Act(e)[Z] | e ∈ E} and ResetSet =
{Reset(e)[Z,Z ′] | e ∈ E}.

where Inv(v)[Z], Dyn(v)[Z, Z ′, T ], Reset(e)[Z, Z ′] and
Act(e)[Z] are formulæ of a generic language over reals.

In our definitions, instead of the classical approach of
using differential equations to define the flow, we use the for-
mulæ in DynSet to describe the continuous evolution with-
out using derivatives. Our approach is similar to that followed
in [14]. For instance, in [3], even though the automata are
defined with differential equations, it is necessary to compute
their solutions in order that the bisimulation algorithm can
be applied, and express these solutions by Dyn(v)[Z, Z ′, T ],
whose intuitive meaning is that from Z after T instants the
continuous flow can reach Z ′. Thus, our hybrid automata
generalize several recently discovered notions in the hybrid
systems theory. Note, as an example, that O-minimal hybrid
automata [3], [14] are a subclass of our hybrid automata,
since we do not impose restrictions on the formulæ and on
the resets. Moreover, we admit an infinite number of flows,
which can also be self-intersecting. Similarly, Rectangular
hybrid automata [15] can be easily mapped into a subclass
of our definition. In general, we are able to express all
the hybrid automata defined using differential expressions,
provided that either exact or approximated solutions of the
differential expressions can be characterized with a formula.

Example 1: Consider this system of differential equations:{
Ż1 = 2Z1

Ż2 = Z2 + 3

Its solutions with initial conditions Z1(0) = z1 and Z2(0) =
z2 are {

Z1(t) = z1e
2t

Z2(t) = (z2 + 3)et − 3

Translated in our notation this system corresponds to the fol-
lowing hybrid automaton H = (Z, Z ′,V, E, Inv ,Dyn,Act ,

Reset) where Z = 〈Z1, Z2〉 and Z ′ = 〈Z ′
1, Z

′
2〉 are variables

over IR2; V = {v} and E = ∅; Inv(v)[Z] ≡ true;
Dyn(v)[Z,Z ′, T ] ≡ (Z ′

1 = Z1e
2T∧ Z ′

2 = (Z2 + 3)eT − 3).
Hence, starting from the point p0 = 〈1, 1〉 we reach at

time T = 1 the point p1 = 〈e2, 4e − 3〉 and at time T = 2
the point p2 = 〈e4, 4e2 − 3〉. Notice that if we start from
the point p1 at time T = 1 we reach p2, as we are using an
autonomous system of differential equations.

Consider next the following system:{
Ż1 = 2t

Ż2 = 1

We can express this in our notation with the hybrid au-
tomaton H ′ in which V, E, InvSet are as in H , while
Dyn(v)[Z,Z ′, T ] is (Z ′

1 = T 2 + Z1 ∧ Z ′
2 = T + Z2).

Starting from the point q0 = 〈1, 1〉, we can reach at time
T = 1 the point q1 = 〈2, 2〉 and at time T = 2 the point
q2 = 〈5, 3〉. Notice that in this case if we start at time 0
from q1 at time T = 2 we reach the point q3 = 〈6, 3〉
which cannot be reached starting from q0. In fact, as this
example illustrates, when the system of differential equations
is not autonomous and the trajectories are not “transitive”,
the trajectories cannot be split and recombined.

B. Semantics

Let H be a hybrid automaton of dimension k. The
semantics of H is presented in terms continuous and discrete
transitions as defined below.

Definition 2 (Hybrid Automata - Transitions): A state �
of H is a pair 〈v, r〉, where v ∈ V is a location and
r = 〈r1, . . . , rk〉 ∈ IRk is an assignment of values for the
variables of Z. A state 〈v, r〉 is said to be admissible if
Inv(v)[r] is true.

The continuous reachability transition relation →C be-
tween admissible states is defined as follows:
〈v, r〉 →C 〈v, s〉 iff
there exists f : IR+ → IRk continuous function such
that r = f(0), there exists t ≥ 0 such that s = f(t),
and for each t′ ∈ [0, t] the formulæ Inv(v)[f(t′)] and
Dyn(v)[r, f(t′), t′] are true.

The discrete reachability transition relation →D between
admissible states is defined as follows:
〈v, r〉 →D 〈u, s〉 iff
It holds 〈v, u〉 ∈ E and the formulæ Act(〈v, u〉)[r] and
Reset(〈v, u〉)[r, s] are true.

Building upon continuous and discrete transitions, we can
introduce notions of trace and reachability. A trace is a
sequence of continuous and discrete transitions. A point s
is reachable from a point r if there is a trace starting from r
and ending in s. We use the notation � → �′ to denote that
either � →C �′ or � →D �′.

Definition 3 (Hybrid Automata - Reachability): Let I be
either N or an initial finite interval of N. A trace of H is a
sequence �0, �1, . . . , �i with i ∈ I , also denoted by (�i)i∈I ,
of admissible states such that:

• For each i ∈ I , i > 0, it holds �i−1 → �i;
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• If �i →C �i+1, then �i+1 
→C �i+2.
A point r ∈ IRk reaches a point s ∈ IRk if there exists a

trace �0, . . . , �n of H such that �0 = 〈v, r〉 and �n = 〈u, s〉,
for some v, u ∈ V.

We use ReachSet (r) to denote the set of points reach-
able from r. Moreover, given a region R ⊆ IRk we use
ReachSet (R) to denote the set ∪r∈RReachSet (r).

We impose the condition that, in a trace, continuous
transitions do not occur consecutively. If we only consider
automata whose flows are solutions of autonomous differ-
ential inclusions, there the continuous transition relation
is transitive, and all their traces, containing sequence of
consecutive continuous transitions, can be reduced to a trace
without such consecutive continuous transitions. In general,
it may be the case that the continuous transition relation is
not transitive (see H ′ in Example 1). In this case, if we start
from a point r in a location v, as long as we remain inside
v, it is reasonable to consider only those points reachable
from r, which satisfy the dynamics conditions imposed on r,
i.e. Dyn(v)[r, Z ′, T ]. Similarly we allow that a point r may
reach a point s passing through a point u, while s may not be
reachable from u. Such apparently paradoxical situation can
occur when the dynamics are solutions of non-autonomous
differential inclusions, since in this case the evolution from a
point depends on time instant, at which the point is reached.

We recall that given a finite directed graph G a path of
G is a sequence v0, v1, . . . , vn, . . . of nodes of G such that
for each i ≥ 0 there exists an edge of G connecting vi to
vi+1. Given a trace of H we can identify a path of 〈V, E〉
as follows.

Definition 4 (Corresponding Path): Let H be a hybrid
automaton. Let tr = 〈v0, r0〉, . . . , 〈vn, rn〉 be a trace of H .
The corresponding path of tr is the path ph = v′0, . . . , v

′
m

of the graph 〈V,E〉 obtained by considering the discrete
transitions occurring in tr. In this case, we also say that
ph corresponds to tr.

Notice that for each trace tr there exists always a unique
path ph which corresponds to tr.

III. SEMI-ALGEBRIC CONSTANT RESETS AUTOMATA

A. Definition

As is well known, the afore-introduced hybrid automata
are “undecidable”, i.e., many of the classical problems re-
garding hybrid automata, such as reachability and temporal
logic model checking, remain recalcitrant to a decision pro-
cedure [16] even when specialized to the kind of automata
described above. Many subclasses of hybrid automata have
been explored in the literature with the hope of proving
decidability results under appropriate restrictions, e.g., O-
minimal hybrid automata [3] and Rectangular hybrid au-
tomata [15] are two such well-known examples. In the rest
of the paper, we will focus on decidability results for a new
subclass of hybrid automata, we introduce here.

Following the approach of O-minimal hybrid automata,
we require that the formulæ defining the invariants, the

dynamics, the activations, and the resets be taken from an
o-minimal theory. In particular, we focus on the first-order
theory (IR, 0, 1, +, ∗, =, <), as it suffices for all our areas
of applications. Nonetheless, our results can be also applied
to O-minimal extension of the reals, mutatis mutandis.

Definition 5 (Semi-Algebraic Automata): We call a hy-
brid automaton H semi-algebraic if the formulæ in InvSet ,
DynSet , ActSet , and ResetSet are first-order formulæ in
(IR, 0, 1, +, ∗, =, <) i.e., first-order formulæ involving
addition, multiplication and order over the reals.

In order to define this new class of automata, we also
need to characterize the time instants, at which the automata,
starting from a point p in a location v, can reach a point
q, while remaining inside the invariant set of v. Such a
characterization is possible when the automaton is semi-
algebraic. We recall that an interval over R

+ is a set of the
form {r ∈ R

+ |a ≺1 r ≺2 b}, where ≺1, ≺2 are in {<, ≤},
a ∈ R

+, b ∈ R
+ ∪ {+∞}, and a ≤ b.

Lemma 1: Let H be a semi-algebraic hybrid automaton.
Let p ∈ IRk be such that Inv(v)[p] holds. The set of time
instants T , satisfying the formula ∃Z ′(Dyn(v)[p, Z ′, T ] ∧
Inv(v)[Z ′]), can be expressed as the union of a finite number
of disjoint intervals of R

+. One of these intervals contains
the time instant 0.

The above lemma allows us to focus on the interval Iv
p of

time instants, for which there are dynamics that start from
p and remain inside the invariant of v—these dynamics are
main objects of our interest. We use ℘(Rk) to denote the set
of subsets of R

k.
Definition 6 (Iv

p and F v
p ): Let H be a semi-algebraic hy-

brid automaton. Let v be a location of H and p be such that
Inv(v)[p] holds. Iv

p is the interval of time instants satisfying
the following: ∀T ∈ Iv

p ∃Z ′(Dyn(v)[p, Z ′, T ]∧ Inv(v)[Z ′]);
0 ∈ Iv

p , and Iv
p is maximal with respect to the first two

requirements.
Define the function F v

p : Iv
p → ℘(Rk) as:

F v
p (T ) = {q | Dyn(v)[p, q, T ] and Inv(v)[q]}.

We will need to impose on the functions F v
p some

continuity conditions—in particular, we require lower semi-
continuity, as defined below. For a complete treatment of this
notion, please refer to [12].

Definition 7 (Lower semi-continuous function): Let I ⊆
R

k be an interval and F : I → ℘(Rk). We define F to be
lower semi-continuous (abbreviated, l.s.c.) if for each t ∈ I ,
for each y ∈ F (t), and for each neighborhood Uy of y,
there exists a neighborhood Ut of t (in I) such that for each
t′ ∈ Ut it holds F (t′) ∩ Uy 
= ∅.

We now possess all the ingredients to introduce our class
of hybrid automata.

Definition 8 (Semi-Algebraic Constant Reset Automata):
We say that a hybrid automaton H is a semi-algebraic
constant reset hybrid automaton, or simply a SACoRe, if:

1) H is semi-algebraic;
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2) For each v ∈ V, p ∈ IRk such that Inv(v)[p] holds,
the function F v

p is lower semi-continuous, and for each
t ∈ Iv

p the set F v
p (t) is closed and convex;

3) Each formula Reset(e)[Z,Z ′] is of the form
Reset(e)[Z ′], i.e., it does not depend on Z .

A SACoRe hybrid automaton is defined using first-order
formulæ over the reals, and thus, exploits Tarski’s results
over the reals [4] to get decidability procedures. The con-
dition 2 imposes a certain kind of continuity on the set of
trajectories. Moreover, it requires that for each point p and
for each time instant t the set of points reachable from p at
time t is a closed convex set. This condition will allow us to
exploit Michael’s selection theorem [5] to find trajectories.
The condition 3 is exactly the condition imposed on O-
minimal hybrid automata.

Example 2: Let H = (Z,Z ′, V, E, Inv ,Dyn,Act , Reset)
where Z = 〈Z1, Z2〉 and Z ′ = 〈Z ′

1, Z
′
2〉; V = {v}

and E = {e}, where e goes form v to v; Inv(v)[Z] ≡
(0 ≤ Z1 ≤ 1 ∧ 0 ≤ Z2 ≤ 1); Dyn(v)[Z, Z ′, T ] ≡ (Z ′

1 =
T + Z1 ∧Z ′

2 ≥ T 2 + Z2); Act(e)[Z] ≡ (Z1 = 1 ∨Z2 = 1);
Reset(e)[Z,Z ′] ≡ (Z ′

1 = 1 ∧ Z ′
2 = 1).

The formulæ in H are first-order formulæ over the reals.
If p = 〈p1, p2〉, with 0 ≤ p1, p2 ≤ 1, then the function
F v

p is defined as F v
p (t) = {〈q1, q2〉 | q1 = t + p1, q2 ≥

t2+p2, and 0 ≤ q1, q2 ≤ 1}. It is easy to see that p ∈ F v
p (0)

and for each t the set F v
p (t) is closed and convex, since it is

a segment. Moreover, this function is lower semi-continuous
over the interval Iv

p . Finally, Reset(e)[Z,Z ′] does not depend
on Z. Hence, H is a SACoRe automaton.

O-minimal hybrid automata are easily seen as special
cases of SACoRe automata. Since, in O-minimal hybrid
automata, each point allows only one continuous algebraic
flow from it, in this case, for each time instant t, the set
F v

p (t) reduces to a singleton, which is obviously closed and
convex. The continuity of the flow immediately implies the
lower semi-continuity of F v

p (t) over Iv
p . On the other hand,

the class SACoRe is not included in the class of O-minimal
hybrid automata, since from each point we allow a set of
flows. Moreover, our flows are not necessarily solutions of
autonomous differential inclusions.

B. Reachability and Model Checking

Given a SACoRe hybrid automaton H and a starting
region R ⊆ IRk characterized by a first-order formula
ρ over the reals, we may wish to compute the region
ReachSet (R) ⊆ IRk of points that can be reached starting
from a point in R and following a trace of H .

More generally, given a formula Q of a temporal logic, we
may also be interested in determining the points of R which
satisfy Q. Let us introduce here the syntax and semantics of
CTL−X, CTL without the next operator (see [17]).

Definition 9 (CTL−X - Syntax): Let P be a set of propo-
sitional symbols and P ∈ P . The formulæ of CTL−X over

P are defined by the following grammar:

Q ::= P | Q1 ∨ Q2 | ¬Q1 | E (Q1 U Q2) | A (Q1 U Q2) |
EFQ1 | AFQ1 | EGQ1 | AGQ1

We avoid using the next operator, since it requires the
introduction of a temporized semantics (see, e.g., [18]), thus
taking us out of the scope of this paper.

In the case of O-minimal hybrid automata, reachability as
well as other temporal logic proprieties are checked through
bisimulation (see [3]) as follows: first, a finite discrete au-
tomaton A bisimilar to the hybrid automaton H is computed;
next, the property is checked on A. Since bisimulation
strongly preserves both reachability and temporal formulæ,
the results obtained on A are correct, by definition. This
technique can be applied whenever we consider a class C of
hybrid automata, which has the finite bisimulation property,
i.e., each automaton in C has a finite bisimulation quotient.
Unfortunately, the class of SACoRe does not possess the
finite bisimulation property, as we will say in Section IV.

Our approach will instead exploit both Tarski’s decidabil-
ity result [4] for first-order formulæ over (IR, 0, 1, +, ∗,
=, <) and Michael’s selection theorem for set-valued maps.
More specifically, Michael’s selection theorem will guarantee
the correctness of a translation into appropriate first-order
formulæ of our reachability and model checking problems,
whereas Tarski’s result will provide us the decidability.

IV. REACHABILITY

In this section, we demonstrate how the reachability prob-
lem over SACoRe automata can be reduced to a first-order
satisfiability problem. We start characterizing the sets Iv

p .
Lemma 2: Let H be a SACoRe automaton. Consider the

first-order formula

Tp(v)[Z, T ] def= ∀0 ≤ T ′ ≤ T∃Z ′(Dyn(v)[Z, Z ′, T ′]∧
Inv(v)[Z ′]).

Assume r to be such that Inv(v)[r] holds. It follows that:

t ∈ Iv
r iff Tp(v)[r, t] is true.

Using the previous result and exploiting Michael’s selec-
tion theorem [5] we can prove the following theorem.

Theorem 1: Let H be a SACoRe automaton, consider the
first-order formula below:

Reach(v)[Z,Z ′] def= Inv(v)[Z] ∧ Inv(v)[Z ′]
∃T ≥ 0(Dyn(v)[Z, Z ′, T ] ∧ Tp(v)[Z, T ]).

Then following holds:

〈v, r〉 →C 〈v, s〉 iff Reach(v)[r, s] is true.

One may observe that for any edge 〈v, u〉 ∈ E the discrete
reachability is characterized by the first-order formula

Reach(〈v, u〉)[Z,Z ′] def= Act(〈v, u〉)[Z]∧Reset(〈v, u〉)[Z ′].

Given a point r ∈ IRk, we see that the first-order formula
Reach(v)[r, Z ′], as defined in Theorem 1, and with free
variables in Z ′, characterizes the set of points reachable from
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r in the node v using only continuous dynamics. Similarly,
the first-order formula Reach(e)[r, Z ′] defines the set of
points reachable from r using the discrete transition e.

Now suppose that a point r reaches a point s through
a trace tr, whose corresponding path is ph = v, u. Since,
by Definition 1, Dyn(v)[r, r, 0] and Dyn(u)[s, s, 0] hold, we
see that 〈v, r〉 →C 〈v, r〉 and 〈u, s〉 →C 〈u, s〉. Hence,
tr is equivalent to tr′ of the form 〈v, r〉 →C 〈v, r1〉 →D

〈u, s1〉 →C 〈u, s〉. Thus, the reachability can always be
expressed through a trace whose corresponding path is ph
and results in the following first-order formula:

Reach(v, u)[Z,Z1, Z2, Z ′] def=
Reach(v)[Z, Z1] ∧ Reach(〈v, u〉)[Z1, Z2]

∧ Reach(u)[Z2, Z ′].

If we have a path ph = v0, v1, . . ., vh in the graph 〈V, E〉,
then following two cases are possible: either it corresponds to
a trace of H or it does not. In both cases, we can express the
desired reachability relation with a first-order formula, which
characterizes all the pairs of IRk that can be connected in H
through a trace corresponding to path ph:

Reach(ph)[Z, Z1, . . . , Z2h, Z ′] def=
Reach(v0)[Z, Z1] ∧ Reach(〈v0, v1〉)[Z1, Z2] ∧ . . .

∧ Reach(vh)[Z2h, Z ′].

In Reach(ph)[Z,Z1, . . . , Z2h, Z ′], we have 2h free vari-
ables, and no quantifiers. The following lemma proves that
Reach(ph)[Z,Z1, . . . , Z2h, Z ′] is correct and complete.

Lemma 3: Let H be a SACoRe automaton, let ph = v0,
v1, . . ., vh be a path in 〈V, E〉. It holds that r reaches
s through a trace tr whose corresponding path is ph iff
Reach(ph)[r, Z1, . . . , Z2h, s] is satisfiable.

Hence, r reaches s if and only if there exists a path ph of
〈V, E〉 and has a formula Reach(ph)[Z, Z1, . . . , Z2h, Z ′] as
a witness to this fact. So, if we just considered the disjunction
of all the formulæ for all the paths of 〈V, E〉, we would
characterize reachability. Unfortunately, if 〈V, E〉 has a cycle,
then it has an infinite number of paths. However, we can
exploit the fact that SACoRe have constant resets and ignore
all the paths of 〈V, E〉 whose length exceeds |E|.

Definition 10: Let H be a SACoRe automaton. Let P be
the set of paths of 〈V, E〉 of length at most m = |E|. Define
the first-order formula R[Z,Z1, . . ., Z2m, Z ′] as follows:

R[Z, Z1, . . ., Z2m, Z ′] def=∨
ph∈P Reach(ph)[Z, Z1, . . . , Z2m, Z ′].

Theorem 2: Let H be a SACoRe automaton. It holds that
s ∈ ReachSet (r) iff R[r, Z1, . . ., Z2m, s] is satisfiable.

We can now characterize the set of points reachable from
a first-order definable set R ⊆ IRk.

Corollary 1: Let R ⊆ IRk be the set of points which
satisfies the first-order formula ρ[Z]. The set ReachSet (R)
is characterized by the first-order formula

R(R)[Z ′] def=
∃Z(ρ[Z] ∧ ∃Z1, . . ., Z2m R[Z, Z1, . . ., Z2m, Z ′]).

Thus we have reduced our reachability problem to that of
deciding the satisfiability of an existential semi-algebraic for-
mula involving v = O((|V|+|E|)k)+N(ρ)) variables in total
degree d = max[deg(Inv),deg(Act),deg(Dyn),deg(ρ)]
and involving s = O(|P | + |ρ|) polynomial equations,
inequations and inequalities, where N and deg denote the
number of variables and total degree, respectively used in
the semi-algebraic description of Inv, Act, Dyn, ρ, etc. In
addition, if we assume that the coefficients of the poly-
nomials can be stored with at most L bits, then the total
time complexity (bit-complexity) [19] of the decision pro-
cedure is (L log L log log L)(s/v)vdO(v). This exponential
complexity has its origin in Collins’ double-exponential
complexity algorithm and its relatives, all to some degree
based upon a cylindrical algebraic decomposition algorithm
[20]. Later Hoon Hong, using many useful and practical
heuristics, created the first practical quantifier elimination
software Qepcad. Alternative CAD-based methods have
been proposed Grigoriev [21] and Renegar [22] that are
doubly exponential in the number of quantifier alternations
rather than the number of variables. New quantifier elimi-
nation approaches have been proposed by Basu [23]. More
importantly, symbolic algebraic geometry holds many other
powerful tools such as Groebner bases and characteristic sets
in its arsenal, whose utility is just beginning to be examined.

V. CTL MODEL CHECKING

Despite their simplicity, SACoRe automata do not admit
finite bisimulation quotient in general. As a matter of fact,
the following result holds.

Theorem 3: There exist SACoRe automata that do not
admit finite bisimulation.

Nevertheless, we can still show that a substantial and
interesting fragment of CTL−X can be decided over SACoRe
automata, building upon the decidability of reachability.
Since this fragment, to be introduced shortly, is not included
in LTL, it is not possible to use simulation equivalence to
reduce the model.

Given a SACoRe automaton H of dimension k, we con-
sider a set P = {P1[Z], . . ., Pm[Z]} of atomic propositions
whose elements are first-order formulæ over the reals with
k free-variables. The labeling functions associates to each
proposition P [Z] of P the set of states of H in which P [Z]
holds, i.e., Label(P [Z]) = {〈v, r〉 | P [r] holds}.

Next, consider the set Ψ of formulæ defined by the
following grammar.

Q ::= P [Z] | ¬P [Z] | Q1 ∨ Q2 | EFQ1 | AGQ1

Notice that the formula in EFAGP [Z] which belongs to
Ψ distinguishes models which are simulation equivalent (see
[13]).

Given a SACoRe automaton H and a formula Q ∈ Ψ
we can decide 〈v, r〉 |= Q by reducing the problem to a
first-order formula validity problem as follows.

Definition 11: Given Q ∈ Ψ, and a state v of H , let
Ph(v) be the set of paths of 〈V, E〉 starting from v of length
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at most m = |E|. We define the formula M(Q, v)[Z] by
induction on Q as follows:

• M(P [Z], v)[Z] is Inv(v)[Z] ∧ P [Z];
• M(¬P [Z], v)[Z] is Inv(v)[Z] ∧ ¬P [Z];
• M(Q1 ∨ Q2, v)[Z] is M(Q1, v)[Z] ∨M(Q2, v)[Z];
• M(EFQ1, v)[Z] is∨

ph∈Ph(v)(∃Z∗Z ′(Reach(ph)[Z,Z∗, Z ′]∧
M(Q1, uph)[Z ′]));

• M(AGQ1, v)[Z] is∧
ph∈Ph(v)(∀Z∗Z ′(Reach(ph)[Z,Z∗, Z ′] →

M(Q1, uph)[Z ′]));

where we use Z∗ for the sequence Z1, . . ., Z2m, while for
each ph ∈ Ph(v) we use uph ∈ V for the last node of ph.

Since an existential formula EFQ1 of Ψ requires only
that Q1 be true in one reachable point, whereas a universal
formula AGQ1 of Ψ requires that Q1 be true at all reachable
points, we convince ourselves that our translations into first
order formulæ are correct.

Theorem 4: Let Q ∈ Ψ. It holds that:

〈v, r〉 |= Q iff M(Q, v)[r] is true.

VI. CONCLUSIONS

Here, we have presented a new class of hybrid automata,
and named it SACoRe (Semi-Algebraic Constant Reset).
This class has many attractive properties, even though it
lacks the finite bisimulation property. For instance, we dis-
covered that reachability and a limited fragment of CTL are
decidable over SACoRe automata. Our decidability results
are novel as they exploit Tarski’s decidability result over
the reals [4] and Michael’s selection theorem [5]. SACoRe
automata properly extend O-minimal automata allowing non-
autonomous differential inclusions instead of autonomous
differential equations. We can easily extend our class of
automata exploiting other selection theorems (see, e.g., [24]).

SACoRe automata provide a very general framework and
yet allow one to verify properties in many fields of natural
and engineered systems. In particular, they are useful when,
as is often the case, lack of measurements for kinetic
parameters of the underlying system of differential equations
forces one to describe the flows, replacing the equations by
differential inclusions. Many examples, illustrating the power
of this approach, may be found in the study of stability and
robustness of non-autonomous parametric systems. Instead
of using simulations and perturbation analysis, our method
allows one to automatically analyze these properties by
checking formulæ of the form EF AGQ1 for an appropriate
Q1, whose choice depends on the system. In the future
we intend to deeply investigate the applications of SACoRe
automata in the study of both natural and engineered systems.
We also plan to analyze possible extensions with non-
constant resets.
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