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Abstract— It is well-known that a time-varying controllable
ordinary differential linear system is flat outside some singulari-
ties. In this paper, we prove that every time-varying controllable
linear system is a projection of a flat system. We give an
explicit description of a flat system which projects onto a given
controllable one. This phenomenon is similar to a classical one
largely studied in algebraic geometry and called the blowing-
up of a singularity. These results simplify the ones obtained in
[6] and generalize them to MIMO multidimensional systems.
Finally, we prove that every controllable multi-input ordinary
differential linear system with polynomial coefficients is flat.

Index Terms— Multidimensional linear systems with varying
coefficients, controllability, flatness, singularity, behaviours.

I. INTRODUCTION AND MOTIVATIONS

A classical question in algebraic geometry is to recognize
when it is possible to parametrize the points of a curve by
means of rational functions. For instance, it is well-known
that the unit circle x2 + y2 − 1 = 0 can be parametrized by:

x(t) = (1 − t2)/(1 + t2), y(t) = 2 t/(1 + t2), ∀ t ∈ R.
(1)

Such a parametrization may parametrize all but a finite
number of points of the curve (x = −1). We also note that
the parameter t can be obtained as a rational function of
the coordinates of the curve. For the unit circle, we have
t = y/(1 + x), x �= −1.

Two historical problems were leading the study of such
curves:

1) Study of Diophantine equations, i.e., finding the ra-
tional solutions of curves. For instance, all rational
solutions of x2 + y2 = 1 are obtained by substituting
t ∈ Q into (1).

2) Integral calculus, i.e., integrating rational functions on
a curve. For instance, the integration of the differential
form ω = (y/(1 + x)) dx on the unit circle gives:∫ 1

0

√
1 − x2

(1 + x)
dx = −

∫ 0

1

4 t2

(1 + t2)2
dt =

π

2
− 1.

A natural question is to understand if a class of systems
could play a similar role in control theory as the one played
by rational curves in algebraic geometry. Indeed, a curve
defines an underdetermined system (e.g., one equation in
two unknowns). In the nineties, the concept of flat systems
was introduced in [4] for non-linear control systems de-
fined by means of ordinary differential equations (ODEs).
This concept has been extended since to different classes

of systems (e.g., systems of differential time-delay equa-
tions/multidimensional discrete equations/partial differential
equations (PDEs)) and is related to the Monge problem
which consists in deciding whether or not it is possible to
parametrize all solutions of an underdetermined (nonlinear)
system of ODEs or PDEs by means of free functions. See
[16] for more details and historical developments obtained
by J. Hadamard, D. Hilbert, E. Cartan, E. Goursat. When
the free functions can in turn be expressed in terms of the
system variables, then the system is called flat [4].

An analogon of the first problem in control theory is the
controllability problem [9], [10]: Is it possible to patch two
sets of trajectories? The main application of flat systems is
the motion planning problem [4]: Is it possible to design
an input which gives a desired output in open-loop? In
both cases, the problem is to find a free parameter of the
parametrization so that the corresponding trajectory satisfies
certain imposed conditions [4], [9], [10].

A control-theoretic version of Problem 2 is the optimal
control problem. Let us suppose that we want to minimize a
quadratic cost under the differential constraint formed by the
control system. Then, by substituting the parametrization of
the system into the Lagrangian, we obtain an optimization
problem without differential constraint whose solutions can
be obtained by integrating the corresponding Euler-Lagrange
equations and by substituting the result into the parametriza-
tion of the system. We refer to [1], [13] for more details.

In algebraic geometry, some curves are singular in the
sense that their gradient vanishes at some particular points.
For instance, the curve defined by F (x, y) = y2 −x3, called
cusp, is singular at the origin (0, 0) as its gradient defined
by �∇F = (−3 x2, 2 y) vanishes at (0, 0). We plot the graph
of this curve (we are going to see why we use a 3D plot;
the cusp lies in the x-y-plane).
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The blowing-up problem is roughly related to finding a
non-singular curve in a bigger space which projects onto
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the given singular curve. For the cusp, we consider the
relation y = t x with a new parameter t. By substituting
into F (x, y) = 0, we obtain x = t2, and thus, y = t3. If we
consider the curve in R3 defined by (x, y, t) = (t2, t3, t),
we easily show that it is non-singular and its projection onto
the x-y-plane is the cusp:
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We consider now the behaviour B [2], [10] of a (OD,
PD, differential time-delay. . . ) linear system with variable
coefficients, namely, the set of solutions of a linear system
over an Ore algebra D [2] in a signal space F having a left
D-module structure.

Problem A: Is it possible to find a flat linear system over
D whose behaviour projects onto the behaviour B?

If we ask the projections to be of the form
π((η1, . . . , ηp, . . . , ηr)) = (η1, . . . , ηp), then we can
consider the following new problem:

Problem B: Is it possible to find r, s ∈ Z+ such that we
have

B ⊕ Fs ∼= Fr, (2)

where ∼= (resp., ⊕) denotes the isomorphism (resp., direct
sum) of abelian groups?

In order to motivate Problems A and B, we consider
the analytic time-varying OD system ẋ(t) = t u(t). As the
controllability matrix C(t) = (B(t) = t, A(t) B(t)−Ḃ(t) =
−1) has rank 1 at t = 0, we know that the system is
controllable at t = 0 [15]. But, we shall prove in Example 3
that it is not flat. This result is non-trivial as we must show
that there exists no injective parametrization of the system.
Intuitively, this result can be understood if we examine the
following parametrization:

x(t) = ξ(t), u(t) = ξ̇(t)/t, ∀ ξ ∈ F .

But, t = 0 is a singularity of this parametrization, showing
that we cannot deduce the flatness of the system in the
neighbourhood of 0. We have the following parametrization
of all the system trajectories without singularities{

x(t) = t2 ξ1(t) + t ξ̇2(t) − ξ2(t),

u(t) = t ξ̇1(t) + 2 ξ1(t) + ξ̈2(t),
(3)

where ξ1 and ξ2 are two arbitrary smooth functions [1], [2],
[11]. However, we cannot obtain ξ1 and ξ2 in terms of x, u
and their derivatives as it would imply that the rank of the
system, which is equal to the number of inputs, is 2, i.e., (3)
is not injective.

It was shown in [6] that a dynamic compensator of the
form v̇(t) = −u(t) can be used in order to obtain the

following flat system{
ẋ(t) − t u(t) = 0,

v̇(t) + u(t) = 0,
⇔

⎧⎪⎨⎪⎩
x(t) = −t ξ̇(t) + ξ(t),

u(t) = −ξ̈(t),

v(t) = ξ̇(t),

where ξ(t) = x(t) + t v(t) is a flat output of the system.
For analytic time-varying single-input controllable linear
systems, a general algorithm is given in [6] in order to
construct the dynamic compensator which allows to obtain
a flat system.

Solving Problem B, we show that we can get rid of
the dynamic compensator used in [6] by giving a new
interpretation of controllability: a controllable time-varying
linear system is a projection of a flat system. Then, we give
a simple formula to compute a flat system that projects onto
the controllable one.

Moreover, we generalize the previous result to multidi-
mensional linear systems over Ore algebras with variable
coefficients [2] such as differential time-delay systems, mul-
tidimensional discrete systems or PD systems.

Finally, K. B. Datta proposes in [3] that an interesting
problem is to extend the results of [6] to analytic time-
varying controllable linear systems having multi-inputs. In
the case of polynomial coefficients, we prove that this
problem is theoretically solved as such linear systems are
shown to be flat.

II. A MODULE-THEORETIC APPROACH

Reformulating Problem B within module theory, we show
how we can solve it in the different situations we are
interested in.

We recall that a ring D is said to be a domain if the
product of non-zero elements of D is non-zero [14].

Definition 1: 1) D is called a left noetherian ring if
every left ideal of D is finitely generated, namely,
generated by a finite number of elements of D.

2) A domain D has the left Ore property if for every pair
(a1, a2) in D2, there exists a non-trivial pair (b1, b2)
in D2 satisfying b1 a1 = b2 a2.

In what follows, we shall only consider a left noetherian
domain D. Then, D has the left Ore property [8].

Let us now consider a matrix R ∈ Dq×p and the left
D-morphism (i.e., left D-linear map) defined by

.R : D1×q −→ D1×p, (a1, . . . , aq) 
−→ (a1, . . . , aq) R.

Then, we define the cokernel of the left D-morphism .R as
the left D-module M = D1×p/(D1×q R).

In terms of generators and relations, the left D-module
M is generated by z1, . . . , zp, where zi denotes the class
in M of the row vector ei defined by 1 in the ith entry
and 0 elsewhere, and z = (z1, . . . , zp)T satisfies the system
R z = 0 and all left D-linear combinations of these equations
[2], [12]. As the left D-module M is defined by means of
a finite linear system over D, we say that M is a finitely
presented left D-module [14].

If F is a left D-module and homD(M,F) denotes the
abelian group of left D-morphisms (i.e., left D-linear maps)
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from M to F , then we have the following standard isomor-
phism of abelian groups:

B = kerF (R.) = {η ∈ Fp | R η = 0} ∼= homD(M,F).

In other words, if η = (η1, . . . , ηp)T is an element of the
behaviour B, then we can define a unique left D-morphism
f of homD(M,F) by f(zi) = ηi for i = 1, . . . , p [2], [12].

Now, using the following trivial isomorphisms [14]{
homD(M ⊕ P,F) ∼= homD(M,F) ⊕ homD(P,F),
homD(D1×r,F) ∼= Fr,

we can write (2) as:

homD(M⊕D1×s,F)∼=homD(D1×r,F).

Therefore, it is natural to consider the following problem:
Problem C: Is it possible to find r, s ∈ Z+ such that:

M ⊕ D1×s ∼= D1×r. (4)

Let us recall a few definitions of module theory [14].
Definition 2: Let M be a finitely generated left module

over a left noetherian domain D. Then, M is said to be:

• free if there exists r ∈ Z+ such that M ∼= D1×r,
• stably free if there exist two integers r, s ∈ Z+ such

that we have M ⊕ D1×s ∼= D1×r,
• projective if there exist r ∈ Z+ and a left D-module P

such that M ⊕ P ∼= D1×r,
• torsion-free if the left D-submodule t(M) = {m ∈ M |

∃ 0 �= a ∈ D, am = 0} of M is the zero module.
• torsion if t(M) = M .
Therefore, we obtain the following lemma.
Lemma 1: Problem C is solvable iff the left D-module

M = D1×p/(D1×q R) is stably free.
It is clear that a free module is stably free (take s = 0)

and a stably free module is projective (take P = D1×s).
Moreover, we can prove that a projective module is torsion-
free [14].

Theorem 1: 1) [14] If D = k[x1, . . . , xn] is a com-
mutative polynomial ring over a field k, then every
projective D-module is free.

2) [8] If D is a (left) principal ideal domain, namely,
every (left) ideal of D can be generated by means of
one element, (e.g., D = R

[
d
dt

]
, R(t)

[
d
dt

]
), then every

torsion-free (left) D-module M is free.
3) [8] If D is a (left) hereditary ring, namely, every left

ideal of D is a projective (left) D-module, (e.g., D =
k[t]

[
d
dt

]
), then every torsion-free (left) D-module is

projective.
A sequence of left D-modules and left D-morphisms of

the form

. . .
di+2−−−→ Pi+1

di+1−−−→ Pi
di−→ Pi−1

di−1−−−→ Pi−2
di−2−−−→ . . . (5)

is called exact at Pi if the defect of exactness at Pi defined
by H(Pi) = ker di/im di+1 vanishes, i.e., ker di = im di+1.
By extension, we say that (5) is exact if it is exact at every
Pi. See [14] for more details.

A short exact sequence is an exact sequence of the form

0 −→ M ′ f−→ M
g−→ M ′′ −→ 0, (6)

i.e., f is injective, ker g = im f and g is surjective.
Definition 3: [14] The short exact sequence (6) splits if

one of the following equivalent conditions holds:
1) There is a left D-morphism h : M ′′ −→ M such that

g ◦ h = idM ′′ .
2) There is a left D-morphism k : M −→ M ′ such that

k ◦ f = idM ′ .
3) There are two left D-morphisms h : M ′′ −→ M and

k : M −→ M ′ such that f ◦ k + h ◦ g = idM .
4) M is isomorphic to M ′ ⊕ M ′′, i.e., M ∼= M ′ ⊕ M ′′.
Using a classical result in homological algebra saying that

the functor homD(·,F) transforms split exact sequences of
left D-modules into split exact sequences of abelian groups
[14], we find the following relationship between Problems B
and C.

Lemma 2: Problem C implies Problem B, i.e., if the left
D-module M = D1×p/(D1×q R) is stably free, then there
exist r, s ∈ Z+ such that we have (2).

If M = D1×p/(D1×q R) is stably free, then we shall
say that B = kerF (R.) is a stably free behaviour. We can
constructively parametrize [2], [11] all solutions of a stably
free behaviour in any signal space F which has a left D-
module structure (see Example 5).

The free left D-module D1×m defines a flat behaviour as
we have B ∼= homD(D1×m,F) ∼= Fm and Fm is a flat
behaviour (the identity map is an injective parametrization
of Fm). Conversely, let us consider a behaviour defined by
R ∈ Dq×p. If B ∼= homD(M,F) is flat, then there exist
Q ∈ Dp×m and T ∈ Dm×p such that we have the following
exact sequence

Fq R.←− Fp Q.←− Fm ←− 0,
R η ←− � η

Q ξ ←− � ξ

and T Q = Im. Then, we obtain B = kerF (R.) = QFm ∼=
Fm, showing that a flat behaviour is isomorphic to Fm.

Proposition 1: [4], [11] A behaviour B ∼= homD(M,F)
is flat iff the left D-module M = D1×p/(D1×q R) is free.

Then, we have the following corollary.
Corollary 1: The condition that M is a free left D-module

of the form D1×m is a sufficient condition for the existence
of a solution to Problem B of the form r = m and s = 0.
Then, the projection π can be chosen to be id.

By Lemma 2, it is important to check whether or not the
left D-module M = D1×p/(D1×q R) is stably free.

Proposition 2: [2], [11], [12] Let us consider R ∈ Dq×p

and the left D-module M = D1×p/(D1×q R).
1) M is free iff there exist Q ∈ Dp×m and T ∈ Dm×p

such that T Q = Im and:

kerD(.Q) = {λ ∈ D1×p |λ Q = 0} = D1×q R.

2) M is stably free iff there exist A ∈ Ds×r, B ∈ Dr×s

such that M = D1×r/(D1×s A) and A B = Is.
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We recall that a matrix R ∈ Dq×p has full row rank
matrices if its rows are left D-linearly independent.

Proposition 3: [11] If R has full row rank, then we have:

1) M = D1×p/(D1×q R) is a free left D-module iff there
exist S ∈ Dp×q, Q ∈ Dp×(p−q) and T ∈ D(p−q)×p

such that we have the following Bézout identities:(
R
T

)
(S, Q) = Ip, (S, Q)

(
R
T

)
= Ip.

2) M = D1×p/(D1×q R) is a stably free left D-module
iff there exists S ∈ Dp×q such that R S = Iq.

Without loss of generality, we can assume in what follows
that every stably free left D-module M is defined by a matrix
R which admits a right-inverse S, i.e., we have R S = Iq.

A left D-module F is called injective cogenerator if the
functor homD(·,F) transforms exact sequences of left D-
modules into exact sequences of abelian groups [14] and
homD(M,F) = 0 implies M = 0 for all left D-modules F
[2], [9], [12].

Proposition 4: If F is an injective cogenerator, then Prob-
lem B is equivalent to Problem C. Therefore, Problem B is
solvable iff M = D1×p/(D1×q R) is a stably free left D-
module.

Example 1: Let us consider the ring D = R[d1, . . . , dn]
of partial differential operators in di = ∂/∂xi with constant
coefficients and the D-module F = C∞(Ω) (resp., F =
D′(Ω)) of smooth functions (resp., distributions) in an open
convex subset Ω of Rn. It is known that F is an injective
cogenerator [9]. Therefore, by Proposition 4, we obtain that
Problems B and C are equivalent. Hence, there exist r and
s ∈ Z+ such that we have (2) iff the D-module M is
stably free. But, by the Quillen-Suslin theorem (see 1 of
Theorem 1), every stably free module over a commutative
polynomial ring k[x1, . . . , xn] with coefficients in k is free.
Hence, we have M ∼= D1×r for a certain r ∈ Z+ equal to
the rank of M . We recall that rankD(M) is the dimension
over the field of rational functions R(d1, . . . , dn) of the
R(d1, . . . , dn)-vector space generated by M . Therefore, B ∼=
Fr is a flat behaviour and Corollary 1 holds with s = 0 and
r = rankD(M), which solves Problem B with π = id.

Example 2: If we consider an open interval Ω of R, the
ring D = K(Ω)

[
d
dt

]
of OD operators with coefficients in

K(Ω) = {n/d ∈ C(t) | 0 �= d, n ∈ C[t], ∀ s ∈ Ω, d(s) �= 0}
and the left D-module F = B(Ω) of hyperfunctions in Ω
[5], then we know that F is an injective cogenerator [5].
By Proposition 4, this shows that Problems B and C are
equivalent. But, contrary to what happened for R[d1, . . . , dn],
stably free left D-modules are not necessarily free ones [5].

An Ore algebra of OD/PD, time-delay or shift operators,
with polynomial or rational coefficients, satisfies that finitely
generated projective left D-modules are stably free [2], [8].

Proposition 5: If D is any Ore algebra defined in Propo-
sition 4.8 of [2] and F is an injective cogenerator left D-
module, then Problem B is also equivalent to the problem of
finding r ∈ Z+ and a behaviour B′ such that B ⊕B′ ∼= Fr.

Let ẋ(t) = A(t) x(t) + B(t) u(t) be an analytic linear
system on an open interval Ω of R. Then, it is shown in
[15] that the system is controllable on every non-trivial
subinterval of Ω iff, for any fixed t0 in Ω, there exists k ∈ Z+

such that the rank of the controllability matrix C(k, t0) at
t0, defined by

C(k, t0) = (B0(t0), B1(t0), . . . , Bk(t0)),

where Bi+1 = A Bi− d
dt Bi, B0 = B, is equal to the number

of states n in the system. We have the following result.
Proposition 6: The analytic ordinary differential linear

system ẋ(t) = A(t) x(t) + B(t) u(t) is controllable on an
open interval Ω of R iff the left D = H(Ω)

[
d
dt

]
-module

M = D1×(n+m)/

(
D1×n

(
d

dt
In − A(t), −B(t)

))
is stably free, where H(Ω) denotes the ring of analytic
functions in Ω.

Proof: It is shown in [11] that the left D-module M is
stably free iff the left D-module Ñ = D1×n/(D1×(m+n) R̃),
where the matrix R̃ is defined by (m is the number of inputs)

R̃ =
(
− d

dt
In − AT (t), BT (t)

)T

∈ D(n+m)×n,

is the zero module. As we have previously seen, Ñ is defined
by the OD linear system{

λ̇ = −AT (t) λ,

BT (t) λ = 0,
(7)

where λ̇ denotes the time-derivative of λ. Hence, we obtain
that Ñ = 0 iff (7) implies λ = 0. Differentiating the zero-
order equation of (7) and substituting the result into the first
equation of (7), we find the new zero-order equation defined
by (BT (t) AT (t)− Ḃ(t)T ) λ = 0. Repeating recursively the
same procedure with the last zero-order equation obtained,
we get:

∀ k ∈ Z+,

{
λ̇ = −AT (t) λ,

C(k, t)T λ = 0.

Therefore, (7) implies λ = 0 on every non-trivial subinterval
of Ω iff, for any fixed t0 in Ω, there exists k ∈ Z+ such that
rankC(k, t0) = n.

Using 2 of Theorem 1 and Proposition 6, we obtain that a
time-invariant Kalman system is controllable iff the R

[
d
dt

]
-

module M is torsion-free [2], [4], [11]. More generally,
controllability of multidimensional systems with constant
coefficients (see Example 1) in terms of the possibility to
patch two solutions on open subsets of Rn with disjoint
closures was proved to be equivalent to the torsion-freeness
of the D-module M [9].

We now prove that ẋ(t) = t u(t) is not a flat system.
Example 3: Let D = k[t]

[
d
dt

]
be the Weyl algebra and

R = ( d
dt , −t) ∈ D1×2. Then, M = D1×2/(D R) corre-

sponds to ẋ(t) = t u(t). If we denote by S = (t, d
dt )

T ,
then we check that we have R S = 1. Hence, the left D-
morphism .S : D1×2 −→ D defined by (.S)(λ) = λ S
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satisfies the relation (.S) ◦ (.R) = idD. Thus, the following
exact sequence

0 −→ D
.R−→ D1×2 −→ M −→ 0

splits (see Definition 3) and we obtain M ⊕ D ∼= D1×2,
showing that M is a stably-free left D-module by Defini-
tion 2.

We can check that we have the following exact sequence

0 −→ D
.R−→ D1×2 .P−→ D −→ L −→ 0,

where P =
(
t2, t d

dt + 2
)T

and L = D/(D1×2 P ) is a
torsion left D-module, i.e., P is a minimal parametrization
of M . See [1], [2] for more details. Thus, we have

M = cokerD(.R) ∼= D1×2 P = D t2 +D

(
t

d

dt
+ 2

)
⊆ D.

Only principal left ideals of D are free left D-submodules.
Hence, M is a free left D-module iff the left ideal of D
defined by J = D t2 + D

(
t d

dt + 2
)

is principal. Let us
study whether or not J is a principal left ideal of D.

We define by L(a) = am(t) �= 0 (resp., ord(a) = m) the
leading term (resp., order) of a =

∑m
i=0 ai(t) di

dti ∈ D and
we denote by Jm the family of ideals of k[t] given by:

Jm = {L(a) | a ∈ J, ord(a) = m} ∪ {0}.
We easily check that Jm ⊆ Jm+1. Now, if J were principal,
then we would obtain Jm = Jm+1 for all m ≥ 0 as we have
L( d

dt a) = L(a) and L(t a) = t L(a). But we easily check
that J0 = (t2) � J1 = (t2, t) = (t), which proves that J is
not principal, and thus, M is a stably free but not a free left
D-module. In particular, D is a left hereditary but not a left
principal ideal domain. Therefore, by Propositions 1 and 6,
we obtain that ẋ(t) = t u(t) is a controllable but not a flat
system.

III. MAIN RESULTS

We now give an explicit construction of a free left
D-module which projects onto the stably free left D-
module M = D1×p/(D1×q R), and thus, a construc-
tion of a flat behaviour which projects onto the stably
free behaviour kerF (R.) for the projection defined by
π((η1, . . . , ηp, . . . , ηp+q)) = (η1, . . . , ηp).

Proposition 7: Let R ∈ Dq×p be a full row rank matrix
which admits a right-inverse S ∈ Dp×q and let us define
the matrix R′ = (R 0) ∈ Dq×(p+q). Then, we have the
following split short exact sequence

0 −→ D1×q .R′
−→ D1×(p+q) .Q′

−→ D1×p −→ 0,
.S′
←− .T ′

←−
(8)

with the following notations:⎧⎪⎪⎪⎨⎪⎪⎪⎩
S′ =

(
S
−Iq

)
∈ D(p+q)×q, T ′ = (Ip, S) ∈ Dp×(p+q),

Q′ =
(

Ip − S R
R

)
∈ D(p+q)×p.

(9)

Equivalently, we have the following Bézout identities:(
R′

T ′

)
(S′, Q′) = Ip+q, (S′, Q′)

(
R′

T ′

)
= Ip+q.

(10)
Proof: We easily check that we have R′ S′ = R S = Iq,

T ′ Q′ = Ip − S R + S R = Ip, R′ Q′ = R (Ip − S R) =
R − R S R = 0 and computing S′ R′ + Q′ T ′, we obtain(

S R + Ip − S R (Ip − S R) S
−R + R R S

)
= Ip+q,

which prove the Bézout identities (10).
Now, if (8) splits, then we trivially obtain (10). Conversely,

suppose that we have (10). In particular, R′ Q′ = 0 implies
(D1×q R′) ⊆ kerD(.Q′). Moreover, if λ ∈ kerD(.Q′), we
then obtain λ = λ (S′ R′+Q′ T ′) = (λ S′) R′, which proves
that kerD(.Q′) ⊆ (D1×q R′), and thus, the exactness of (8).
The other identities show that (8) is a split exact sequence.

We easily check that we have:

M ′ = D1×(p+q)/(D1×q R′) = D1×(p+q)/((D1×q R 0))
= D1×p/(D1×q R) ⊕ D1×q = M ⊕ D1×q.

Using Proposition 7 and 1 of Proposition 3, we obtain that
M ′ is a free left D-module isomorphic to D1×p.

Theorem 2: Let F be a left D-module, R ∈ Dq×p admit-
ting a right-inverse S ∈ Dp×q and let us define the stably
free behaviour B = kerF (R.). Then, the behaviour B ⊕ Fq

is flat and we have the following injective parametrization:{
R η = 0,

η ∈ Fp, ζ ∈ Fq
⇔

{
η = (Ip − S R) ξ,

ζ = R ξ,
(11)

where ξ is any arbitrary element of Fp. Moreover, a flat
output of the behaviour B ⊕ Fq is defined by ξ = η + S ζ.

In particular, the behaviour B = π(B ⊕ Fq) is the
projection of the flat behaviour (11), where π : Fp+q −→ Fp

is defined by π((η1, . . . , ηp, ζ1, . . . , ζq)) = (η1, . . . , ηp).
Proof: Applying homD(·,F) to the split exact se-

quence (8), we obtain the following split exact sequence:

0 ←− Fq R′.←− Fp+q Q′.←− Fp ←− 0.
S′.−→ T ′.−→

Therefore, we have kerF (R′.) = {Q′ ξ | ξ ∈ Fp}. But, since
R′ (ηT , ζT )T = (R, 0) (ηT , ζT )T = R η and ζ is an
arbitrary element of Fq, we have kerF (R′.) = B ⊕ Fq.
Then, using (9), we obtain (11). Now, applying the matrix
T ′ on the left of (ηT , ζT )T = Q′ ξ, we then obtain
T ′ (ηT , ζT )T = T ′ Q′ ξ and, using the identity T ′ Q′ = Ip,
we get ξ = (Ip, S) (ηT , ζT )T = η + S ζ.

Let us illustrate Theorem 2 on two examples.
Example 4: We consider again Example 3 with F =

C∞(R). The embedding of B = kerF (R.) into F3 allows
us to “blow-up” the singularity at t = 0 as we have{

ẋ − t u = 0,

v ∈ F ,
⇔

⎧⎪⎨⎪⎩
x(t) = −t ξ̇1(t) + ξ1(t) + t2 ξ2(t),

u(t) = −ξ̈1(t) + t ξ̇2(t) + 2 ξ2(t),

v(t) = ξ̇1(t) − t ξ2(t),
(12)
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where ξ1 and ξ2 are two arbitrary functions in F and we
have ξ1(t) = x(t) + t v(t) and ξ2(t) = u(t) + v̇(t). Then,
the behaviour B = π(B ⊕ F) is the projection of the
flat behaviour (12), where π : F3 −→ F2 is defined by
π((x, u, v)) = (x, u).

Example 5: Consider the differential time-delay system:

ẋ(t) = t u(t) + u(t − 1). (13)

We introduce D = R[t]
[

d
dt , δ

]
, R = ( d

dt , −(t + δ)) ∈
D1×2 and the left D-module M = D1×2/(D R). We can
check that the matrix S = (δ + t, d

dt )
T is a right-inverse

of R. Therefore, the finite free resolution of M defined by

0 −→ D
.R−→ D1×2 −→ M −→ 0,

splits and we obtain M ⊕ D ∼= D1×2, i.e., M is a stably-
free left D-module. Using an algorithm developed in [2], we
obtain the following long split exact sequence

0 −→ D
.R−→ D1×2 .Q−→ D1×2 .P−→ D −→ 0, (14)

where P =
(
δ + t, d

dt

)T ∈ D2 and Q is defined by:

Q =

( −δ d
dt − t d

dt + 1 δ2 + (2 t − 1) δ + t2

− d2

dt2 t d
dt + δ d

dt + 2

)
∈ D2×2.

Let F be a left D-module (e.g., F = C∞(R)). As
(14) is a long split exact sequence, by applying the functor
homD(·,F), we then obtain the following exact sequence:

0 ←− F R.←− F2 Q.←− F2 P.←− F ←− 0.

Thus, we obtain B = kerF (R.) = QF2, i.e., we have the
following explicit parametrization of all F-solutions of (13)⎧⎪⎨⎪⎩

x(t) = −t ξ̇1(t) − ξ̇1(t − 1) + ξ1(t) + ξ2(t − 2)
+(2 t − 1) ξ2(t − 1) + t2 ξ2(t),

u(t) = −ξ̈1(t) + t ξ̇2(t) + ξ̇2(t − 1) + 2 ξ2(t),
(15)

where ξ1 and ξ2 are two arbitrary functions in F .
Parametrization (15) is not injective since we have:

Qξ = 0 ⇔ ξ = P φ.

Therefore, it is not possible to obtain ξ(t) as a D-linear
combination of x(t) and u(t). However, if we embed the
behaviour

B =
{
(x, u)T ∈ F2 | ẋ(t) = t u(t) + u(t − 1)

}
into F3, then, by Theorem 2, we obtain the following
injective parametrization of all F-solutions of (13)⎧⎪⎪⎪⎨⎪⎪⎪⎩

x(t) = −t ξ̇1(t) − ξ̇1(t − 1) + ξ1(t) + ξ2(t − 2)
+(2 t − 1) ξ2(t − 1) + t2 ξ2(t),

u(t) = −ξ̈1(t) + t ξ̇2(t) + ξ̇2(t − 1) + 2 ξ2(t),

v(t) = ξ̇1(t) − t ξ2(t) − ξ2(t − 1),

where ξ1(t) = x(t)+t v(t)+v(t−1) and ξ2(t) = u(t)+v̇(t).
Hence, B is a projection onto F2 of the flat behaviour:

B ⊕ F = {(x, u, v)T ∈ F3 | ẋ(t) − t u(t) − u(t − 1) = 0}.

In his review [3] of the paper [6], K. B. Datta says “For
future research, one may extend the results given here to the
multi-input case”. Let us recall a result of algebra.

Theorem 3: [8] If k is a field containing Q, then any
stably free left An(k) = k[x1, . . . , xn][d1, . . . , dn]-module
M satisfying rankAn(k)(M) ≥ 2 is free.

We recall that the number of differentially independent
inputs of a linear system is given by the rank of the left
D-module M .

Corollary 2: Every controllable multi-input ordinary dif-
ferential linear system with polynomial coefficients is flat.

IV. CONCLUSION

It is interesting to notice that the authors of [6] acknowl-
edge B. Malgrange for motivating discussions [7] and for
pointing out to them that [6] is related to the concept of stably
free modules over the Weyl algebra A1(k). We hope that we
have made it clear to the reader by giving a new blowing-up
interpretation for controllable time-varying linear systems.
Using such a geometric interpretation, we were able to
generalize the results of [6] to MIMO multidimensional
linear systems with varying coefficients. Finally, we proved
that every controllable multi-input OD linear system with
polynomial coefficients is flat. The extension of this result
to the analytic case will be studied in the future as well as
the developments of effective algorithms for the computation
of bases of finitely generated modules over the Weyl algebra
An(k) and their implementations in OREMODULES.

REFERENCES

[1] F. Chyzak, A. Quadrat, D. Robertz, OREMODULES project,
http://wwwb.math.rwth-aachen.de/OreModules.

[2] F. Chyzak, A. Quadrat, D. Robertz, “Effective algorithms for
parametrizing linear control systems over Ore algebras”, to appear
in Appl. Algebra Engrg. Comm. Comput..

[3] K. B. Datta, “MathSciNet review of [6]”, MathSciNet.
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