
Abstract— This paper is dedicated to bounded error
identification with complex valued non-linear models. Complex
intervals are characterized by using polar forms and a new
inclusion function is given for the addition of sectors. The latter
is expressed as an optimization problem solved analytically. The
new complex interval arithmetic is used for solving constraint
satisfaction problems with complex variables and is used within
algorithms for bracketing the interval hull of  posterior feasible
parameter sets. A case study from dielectric relaxation spectra
analysis, involving a fairly large number of parameters is
investigated from simulation data.

I. INTRODUCTION

ARAMETER estimation problems are usually solved by
probabilistic methods when an explicit characterization

of the errors is assumed available. In practice, this is not
always possible for many reasons (for instance, there is a
modeling error that cannot be characterized by random
variables) and it is more natural to assume that the
perturbations belong to a known set. In such a case,
bounded-error techniques allow the characterization of the
set, known as the posterior feasible set, of all parameter
vectors that are compatible with the measured data, a model
structure and the prior error bounds. Many researchers have
established several techniques for characterizing the
posterior feasible set  (see e.g. [1]; and the references
therein). For linear models for instance, simple-shaped forms
such as ellipsoids, parallelotopes, zonotopes or boxes are
used to give an enclosure of this set [2]-[3] whereas for non-
linear models, techniques based on interval analysis and
constraint satisfaction problems are used ([4]-[5]; and
references therein) for computing inner and outer enclosures
of this set.

In addition, for many real-life engineering problems, it is
more convenient to base the experimental modeling on
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frequency response data : the system is then described by a
complex-valued model. In a bounded error context, all the
uncertainties are thus described by complex sets. As a result,
the derivation of an optimal inclusion function for a
complex-valued non-linear model is a major issue for
ensuring success for the identification procedure.

In this paper, we will investigate bounded-error model
identification for complex-valued non-linear models.

The paper is structured as follows: Section 2 is dedicated
to complex interval analysis and contains the first
contribution of this paper: polar forms are used for
characterizing complex intervals and the smallest polar
complex interval, called sector, containing the sum of two
sectors is given. Section 3 is dedicated to set membership
identification and constraint satisfaction problems. Section 4
contains the application of polar complex intervals to
bounded error identification of the dielectric properties of a
sample material from simulated data, with a model involving
nine parameters. The second contribution of this paper is the
use of an algorithm for bracketing the interval hull of the
posterior feasible set in order to reduce computation time
when the model contains a fairly large number of parameters.

II. COMPLEX INTERVALS ANALYIS

A. Real intervals
Interval analysis was initially developed to take into

account the quantification errors introduced by the rational
representation of real numbers with computers [6] and was
later extended to validated numerics. An interval

,a a a=
- +[ ] [ ]  is a connected and closed subset of R. The set

of all intervals of R is denoted by IR. Real arithmetic

operations are extended to intervals. Let : n m
→f R R ; an

inclusion function of f, denoted by f[ ] , is defined by:

[ ] , ([ ]) [ ]([ ])n
∀ ∈ ⊆a f a f aIR (1)

An inclusion function of f can be obtained by replacing
each occurrence of a point variable by its corresponding
interval variable and by replacing each standard function by
an interval evaluation. Such a function is called the natural
form. In practice the inclusion function is not unique, it
depends on the formal expression of f.
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B. Complex intervals
The simplest complex interval approximation is the

rectangular representation where a complicated shaped set is
approximated by a rectangle; but the circular form, where a
set is approximated by a disc, is more often used.
Unfortunately, both of complex interval representations cited
above are not closed with respect to the arithmetic operations
{ , , , /}+ − ∗ . This is due to the fact that a multiplication of a
set by a complex number is a rotation, thus, for the
rectangular representation, the result of such an operation
must be wrapped in a rectangle, which introduces large
pessimism. The arithmetic operation {*} is then non minimal
and a pessimism is introduced when a multiplication of two
complex intervals, represented as rectangles or discs, is
performed [7]-[11].

In the sequel, we introduce an extension of the polar
representation of complex numbers to the case of intervals.
Indeed, the polar representation can be preferred for non-
linear complex valued models. We prove that both the
multiplication and the division are exact operations, i.e. the
result of the multiplication of two polar complex intervals is
a polar interval. Nevertheless, this property is not satisfied
for addition and subtraction. Consequently, a new algorithm
which allows to compute the minimal polar complex interval
containing the sum of two polar intervals, is derived in [12].
In the sequel, we give main results.

C. Definition of a sector

Consider the intervals [ ] = [ , ]ρ ρ ρ
− + +

⊆ R  and

[ ] = [ , ]θ θ θ
− +

⊆ R ; the set defined by

[ ] [ ]{ }, ,iZ z z e θ
ρ ρ ρ θ θ= ∈ = ∈ ∈C (2)

is called a polar complex interval (or a sector) denoted by
{[ ] ; [ ]}ρ θ . A polar interval can be uniquely characterized

by two real intervals: its magnitude [ ]=[ , ]ρ ρ ρ
− + , and its

angle [ ]=[ , ]θ θ θ
− + ; as illustrated in fig.1. To ensure

uniqueness of the representation, we can always choose the
bounds of the latter interval such that

0 2 ,    0 2 ,    0 4θ θ π θ π θ π
+ − − +

≤ − ≤ ≤ < ≤ < (3)

The set of all polar complex intervals is denoted by
( )S C .

D. Arithmetic operations with sectors

Let 1 1 1={[ ];[ ]}Z ρ θ  and 2 2 2={[ ];[ ]}Z ρ θ  be two sectors ,
the multiplication operation between Z1 and Z2 is defined as
follows:

{ } [ ] [ ] [ ] [ ]{ }1 2 1 2 1 1 2 2 1 2 1 2, ;Z Z z z z Z z Z ρ ρ θ θ⋅ ⋅ ∈ ∈ = ⋅ +� (4)

Since the set of the real intervals is closed with respect to
addition and multiplication, the product of two sectors is also
a sector ; this operation is then minimal. Similar results are
derived for the division operation between Z1 and Z2 and the
power of a complex interval by a real interval. We should
note that the argument bounds of the result (4) may not
verify (3). In such a case, we add 2 ,k kπ ∈ Z , to the
argument of the computed sector until (3) is met.

By contrast, the set

{ }1 2 1 2 1 1 2 2| ,Z Z z z z Z z Z⊕ = + ∈ ∈ (5)

known as the Minkowski sum [13], is not a sector but has a
complex shape; to define addition as an operation in S(C),
one has to determine some element of S(C) which contains
this set. Some degree of pessimism will thus be introduced.
To minimize pessimism, we define Z1+Z2 as the smallest
sector, in the sense of inclusion, containing Z1≈Z2:

( )1 2 1 2, ,Z Z Z Z Z Z Z+ = ∩ ∈ ⊕ = ∩S C (6)

Z1+Z2 defined in this way exists as an element of S(C),
because the intersection of any number of closed boxes is a
closed box in 2

R . Subtraction is defined in the same way.

E. Characterization of the addition of two sectors

Let [ ] [ ]{ }1 1 1;Z ρ θ=  and [ ] [ ]{ }2 2 2;Z ρ θ= be two

sectors and Z their sum; then Z can be uniquely written as
[ ] [ ]{ };Z ρ φ= . Then the bounds ρ- and ρ+ of [ρ] must

verify

{ }
1 2 1 2

min , max
z Z Z z Z Z

z zρ ρ
− +

∈ ⊕ ∈ ⊕

= = (7)

with ( )1 2 2 2
1 2 1 2 1 2 1 22 cosi ie eθ θ

ρ ρ ρ ρ ρ ρ θ θ+ = + + − (8)

and the function square root is monotonously increasing.
Solving the first of problems (7) is equivalent to solving

( )1 2min , ,f ρ ρ θ
Ω

(9)

with the following definitions:

( ) ( )2 2
1 2 1 2 1 2: , , 2 cosf ρ ρ θ ρ ρ ρ ρ θ+ +� (10)

[ ] [ ] [ ] [ ]1 2 0,2ρ ρ θ π+ +

Ω = × × ⊂ × ×� �

where 1 2θ θ θ= − . Thus the problem of finding ρ- is identical

to minimizing a function on a box of R3. The same applies to

ρ
+ by replacing min by max. In the same way, the bounds of
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[φ] are solution of

( ) ( ){ }
1 2 1 2

min , max
z Z Z z Z Z

A z A zφ φ− +

∈ ⊕ ∈ ⊕

= = (11)

where A(z), the angle of a complex z, is defined on Z1+Z2

such that ( ) ,A z φ φ
− +⎡ ⎤∈ ⎣ ⎦ , this is always possible because

1 2Z Z Z⊕ ⊂  and ( )Z ∈S C . Denote 1
1 1

iz e θ
ρ= ,

2
2 2

iz e θ
ρ= , 1 2

1 2
i iiz e e eθ θθ

ρ ρ ρ= = +  and  1 2x ρ ρ= , then

( ) ( )1 2tan , ,g xφ θ θ= (12)

where function g is defined by

( ) 1 2
1 2 1 2

1 2

sin sin, , ,
cos cos

x
g

x
θ θ

ρ ρ θ θ
θ θ

+

=

+

(13)

Since the derivative of function tan is strictly positive, the
extrema of A are also extrema of g. In conclusion, computing
the lower and upper bounds of [ρ] and [φ] are optimization
problems that will be solved analytically, since they are not
very difficult and the number of variables is only 3.

F. Optimality conditions

Let [ ] [ ] [ ] 3
1 2 3u u uΩ = × × ⊂ � and f real function on Ω ,

and consider the problem

max f
Ω

(14)

Ω  is a compact convex set and problem (14) has a
solution ( )1 2 3, ,u u u∗ ∗ ∗ ∗

=u . For any index i, the ith component

iu∗ of u∗  must verify one of the following conditions :

( ) ( )
2

20 and 0
i i

h h
u u

∗ ∗
∂ ∂

= ≤
∂ ∂

u u (15)

( )* and 0i i
i

h
u u

u
− ∗

∂
= <

∂
u (16)

( )* and 0i i
i

h
u u

u
+ ∗

∂
= >

∂
u (17)

In the case of a minimization problem, the same
conditions apply with all inequalities reversed. Observe that
each of these conditions is composed of a first part which is
an equation (first-order condition) and  a second part which
is an inequality (second-order condition). A point of R3

which verifies, for each of its component, one of the first-
order conditions will be termed a candidate. If the
corresponding second-order condition is also met, it will be
termed an acceptable candidate (in fact, a local optimum).

The strategy used by the authors to solve (15) is to determine
analytically all candidates, by examining all possible
combinations of first-order conditions, and to eliminate the
candidates that can never be acceptable by investigating
second-order conditions,. The authors set up a reasonably
efficient algorithm to check the acceptability of remaining
candidates, and to select the optimum, by simple comparison
among acceptable candidates [12].

In the next section, this new inclusion function is used for
performing set inversion via interval analysis.

III. CONSTRAINTS SATISFACTION PROBLEMS

A. Reduction with one constraint
Consider the constraint satisfaction problem

[ ]( )1 :  = ,     H f z ∈x x x 0( ) [ ] (18)

where function : nf →� �  . The solution set for (18) is
given by

( ) [ ]{ } [ ]( )1
1 1 1f z f z−

= ∈ ∈ = ∩x x x xS 0 0[ ] [ ] (19)

The reduction problem for (18) is to find, without any
bisection, a subbox 1 0⊂x x[ ] [ ]  as small as possible which
contains the solution set 1S . A possible approach is based on
the extension of theorem 1 of [14] to complex variables:
Assume it is possible to proceed with an explicit inversion of
(18), which means:

( ) ( )1 1 1 ,i i i
ii g f z x g z∀ ∃ = ⇔ =x x (20)

where ( )
T

1, , nx x=x …  and ( )
T

1 1 1, , , , ,i
i i nx x x x
− +

=x … … .

Denote by i
jg⎡ ⎤⎣ ⎦ , an inclusion function for the solution

function i
jg  and by [ ]ix , a domain for the variable xi. The

projection ( )1iπ S  of the solution set S1 onto the ith axis,

satisfies:

( ) [ ]( ) [ ]1 1 ,i i
i ig z xπ ⎡ ⎤ ⎡ ⎤⊂ ∩⎣ ⎦ ⎣ ⎦xS (21)

The interval hull  [ 1S ] of 1S , i.e. the smallest axis-aligned
box which contains 1S is then easily obtained from (21). This
projection algorithm is used for solving binary or ternary
primitive constraints involving addition or multiplication of
complex variables, or the power of a complex by a real
number.

B. Reduction with m constraints
Consider the constraint satisfaction problem
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[ ]( ):  = ,     j
j

H H∈ =f x z x x ∩0( ) [ ] (22)

( ):  = ,     j j jH f z⎡ ⎤ ∈⎣ ⎦x x x 0( ) [ ] (23)

where function : n
jf →� �  and { }1,2, ,j m∈ … . The

solution set for (23) is given by

( ){ } ( )1
j j j j jf z f z−⎡ ⎤ ⎡ ⎤= ∈ ∈ = ∩⎣ ⎦ ⎣ ⎦x x x xS 0 0[ ] [ ] (24)

and the solution set for (22) is given by

( ){ }
1

, j j j
j m

j f z
=

⎡ ⎤= ∈ ∀ ∈ =⎣ ⎦x x xS S
…

∩0[ ] (25)

Since 
1 1

( ) ( )i j i j
j m j m

π π

= =

⊂S S
… …

∩ ∩ , the algorithm used for

solving the reduction problem with several constraints is to
deal with the constraints in a sequential way in order to build
a nested sequence of subboxes of [x] which contains S [14].

This is a simplified version of the local Waltz filtering
algorithm initially presented in [15] and extended to intervals
in [16] and [17]. The algorithm thus derived is as follows:

Algorithm CS(in: [ ]z , inout: [ ]x )

Repeat
1. [ ] [ ]b

x x= ;

2. for j=1 to m, for i=1 to n do
3. [ ] ( ) [ ],i i

i j j ix g z x⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ∩⎣ ⎦⎣ ⎦ ⎣ ⎦x ;

4. until ( [ ] [ ]( ),
b

r ν<x x )

In algorithm C
S
, all variables are taken complex and all

domains taken as sectors. Line 4 uses a stopping criterion
based on a measure of the relative remoteness of a complex
sectors [u] to a complex sector [v], which is taken as the
maximum of the two relative remoteness of magnitude and
angle of sectors. When the reduction achieved at a given
iteration is smaller than the real number ν, the algorithm
stops.

IV. SET MEMBERSHIP IDENTIFICATION WITH COMPLEX
INTERVAL ANALYSIS

A. Bounded-error context

Denote by ( ) : n m
my p � � � , the non-linear model output

vector, m
∈y� �  the experimental data vector and m

⊂E � a
feasible domain for output error, known prior to the
identification. The feasible domain for model output is then
given by

= +y�Y E (26)

Estimating the parameter vector n
∈p �  in a bounded

error context consists in determining the posterior feasible
set S :

( ){ }| m= ∈ ∈p y p YS P (27)

where P  is some prior search space. The characterization of
the posterior feasible set S  is a set inversion problem; a
guaranteed approximation of such a set can be provided by
using interval analysis. The algorithm set inversion via
interval analysis (SIVIA) [4] uses branch-and-bound
techniques with interval analysis and constraint propagation
in order to bracket S  between two union of boxes with
arbitrary precision. However, as the bisections (subdivision
of a box) have to be performed in all directions of the
parameter space, SIVIA is practicable for problems involving
only few parameters.

Nevertheless, in many estimation problems, one is not
interested in the exact characterization of the posterior
feasible set, but merely in the minimum volume (axis-
aligned) box containing it, called minimum outer box (MOB)
or hull of set S . MOB has quite interesting properties : 1)
The length of each of the axis of MOB along the
corresponding ith coordinate axis gives the maximum range
of possible variation of the solution set, which is indeed an
outer enclosure of the parameter uncertainty interval ; and 2)
The center of MOB enjoys several optimality conditions
[18]. One can also be interested in the maximum volume box
contained in the solution set, mainly to prove the existence of
the solution if the inner box is not empty.

Several techniques have been established for computing
outer and inner enclosures of the posterior feasible set.
Milanese and Vicino [18] introduce an algorithm that derive
MOB for polynomial functions. Jaulin [14], introduces a
modified version of SIVIA, the algorithm HULL, capable of
bracketing the posterior feasible set in between inner and
outer hulls, for any non-linear model.

B. Computing the interval hull
The algorithm HULL given below is taken from [14]. It

computes two boxes [ ]inS  and [ ]outS  that bracket the

interval hull [ ]S of S , as follows: [ ] [ ] [ ]in out⊂ ⊂S S S . At
line 1 of HULL, the algorithm CROSS searches for the largest
enclosure of inner points. u is a punctual interval defined as
the Center([x]), but when called for the first time, u may be
taken as a known feasible point. Such an initialization
reduces significantly the algorithm computation time.

Starting from a feasible point, algorithm CROSS (see
below) attempts to find the largest cross contained in the
solution set. Since, each vertex of the cross is a feasible
point, it can be used to increase [ ]inS . Note also that at the

end of CROSS, the inner enclosure bracketed by [ ]inS  is path-
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connected. In step 1 of CROSS, [ ] [ ] [ ] [ ]( ), , ,iλ=v u z x S  is

the intersection of S  and a line parallel to the ith axis which
contains u. The degenerated box [ ]v  should be contained in
S . In general, the projection theorem introduced above for
solving the reduction problem with one or several constraints
is sufficient. However, since the solution thus obtained is
only locally consistent or if the inclusion function used is not
minimal, a pessimism may be introduced at line 2. Therefore,
we introduced a simple algorithm [λi] for solving such an
issue.

Algorithm HULL(in: [ ]z , inout: [ ]x , [ ]inS , [ ]outS )

1. CROSS( u , [ ]x , [ ]inS , [ ]outS );

2. [ ] [ ] [ ]out out in⎡ ⎤= ∪⎣ ⎦S S S ;

3. [ ] [ ] [ ]( ),C=x z x
S

;

4. if ( [ ] = ∅x ),  return;

5. if ( [ ]( )w η<x  or [ ] [ ]( ), inr ν<x S )

[ ] [ ] [ ]out out⎡ ⎤= ∪⎣ ⎦xS S , return;

6. bisect [ ]x  and get the two boxes [ ]1x  and [ ]2
x ;

7. HULL( [ ]z , [ ]1x , [ ]inS , [ ]outS ),

HULL( [ ]z , [ ]2
x , [ ]inS , [ ]outS )

Algorithm CROSS(in: u , [ ]x , inout: [ ]inS , [ ]outS )
For i = 1 to n

1. [ ] [ ] [ ] [ ]( ), , ,iλ=v u z x S ;

2. if [ ] = ∅v , next i;

3. if [ ]( ), inr κ
−

>v S , [ ] [ ]in in
−⎡ ⎤= ∪⎣ ⎦vS S ,

CROSS( −v , [ ]x , inout: [ ]inS , [ ]outS );

4. if [ ]( ), inr κ
+

>v S , [ ] [ ]in in
+⎡ ⎤= ∪⎣ ⎦vS S ,

CROSS( +v , [ ]x , inout: [ ]inS , [ ]outS );

Algorithm [ ] [ ] [ ] [ ]( ): , , , , out:i inλ u z x vS

1. =v u , [ ] [ ]i i
v x= ;

2. [ ] [ ] [ ]( ),C=v z v
S

;

3. while ( [ ]( ) [ ]⎡ ⎤ ⊄
⎣ ⎦
f v z ) do

4. [ ] (1 ) ,i i i i ii
v u v u v uξ

− +⎡ ⎤= + − ⋅ − −⎣ ⎦ ) ;

5. return ;

In line 4 of algorithm [λi],  the degenerated interval [v] is
reduced, while keeping the feasible point u interior, until it
satisfies the inclusion test. The coefficient ξ  is taken equal
to 0.05.

C. Selection of the subdivision direction
The basic idea of branch-and-bound algorithms such as

SIVIA or HULL is to subdivide the original parameter vector,
evaluate its acceptability, reject unacceptable boxes,
subdivide again ambiguous ones until the desired accuracy is
achieved. Therefore, any improvement of the algorithm
performances that could be achieved by an optimal choice of
the subdivision direction deserve attention. In the context of
global optimization by interval analysis, several rules for
selecting the subdivision direction have been studied in the
literature. A first class of rules relies on the width or the
relative width of the parameter vector [6]. Whereas a second
class uses the width of the inclusion function [19].  In the
sequel, the second type of strategy is used.

V. APPLICATION

The problem under investigation in this paper is the
estimation of the dielectric relaxation spectra of polymeric
materials in a bounded error context. In the frequency range
under analysis, i.e. [10-3 Hz; 107 Hz], dielectric relaxation
spectra can be split into a sum of independent contributions,
the so-called relaxation modes, corresponding to dipoles
motions of the macromolecular chains [20]. They are
approximated using semi-empirical models derived from the
Debye equation, such as Cole-Cole, Cole-Davidson or
Havriliak-Negami laws [20]. In this work, we consider only
the Havriliak-Negami model, given by the following
expression [21]:

( )
( )( )1 1

i
i

n
i

m
i

ij
β

α

ε

ε ω ε

ωτ

∞

=

∆
= +

+

∑ (28)

where εm(ω) is the relative dielectric complex permittivity
measured at a constant temperature and pulsation ω, ε

∞
 is the

high frequency permittivity, τi and ∆εi are respectively the
relaxation time and the dielectric strength associated with
relaxation mode i, αi and βi are shape parameters describing
respectively the symmetric and the asymmetric broadening
of the distribution function of relaxation times and n is the
number of relaxation modes in the dielectric spectrum. In
most practical cases, the number of relaxation processes n is
usually not greater than 3. In addition, the dielectric
parameters usually satisfy the following physical constraints

] ] ] ]1, 0, 0, 0,1 , 0,1i i i iε ε τ α β
∞
> ∆ > > ∈ ∈ (29)

A. Pseudo-Actual data
In this paper, pseudo-actual are derived by running

equation (28) with the actual values given in Table I or II.
The feasible domain for output error is taken constant on
both real and imaginary parts of the complex dielectric
permittivity, as given by the complex domain
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[ ] [ ], ,e e j e e= − + −E (30)

In this paper, we will also evaluate the computing times
induced by the algorithms for two level of uncertainty
bounds, namely e = 0.01 and e = 0.1.

B. The hull of the posterior feasible set
In this study, the algorithm CROSS is initialized with one

feasible punctual interval, assumed known, found for
instance by global optimization with a genetic algorithm.

For κ = 0.001, ν = 0.1 and η = 0.5, the algorithm HULL
computes [ ]inS and  [ ]outS  given in Table I for prior error
bound e = 0.01 in 6 hours on a CeleronD 2.6Ghz. Note that
[ ]inS  is found in less that 4mn. Table II contains the results
derived for prior error bound e = 0.1, in 18 hours, whereas
[ ]inS  is found in less that 15 mn. Computation times are
quite long and further work is needed.

For both error bounds, the accuracy of the bracketing of
the parameter uncertainty intervals is acceptable for most
parameters related to relaxation mode number 2, whereas for
the ones related to relaxation mode number 1, of smaller
magnitude, the accuracy of the bracketing is quite poor and
would benefit from smaller stopping criterion but this would
lead to very long computation time.

VI. CONCLUSION

This paper addresses bounded error parameter
identification for complex-valued non-linear models with
large number of parameters. Complex intervals are
characterized with polar forms and a new inclusion function
is defined for computing the smallest sector containing the
sum of two polar complex intervals. Allied with projection
algorithms, the new complex interval arithmetic makes it
possible to solve efficiently constraint satisfaction problems
with complex variables. Used within a bracketing algorithm,
parameter identification has been achieved in a reasonable
computation time for a non-linear complex-valued model
containing 9 real-valued parameters. The evaluation of the
new inclusion function will be continued and algorithms
studied in order to achieve global consistency for complex
interval constraint satisfaction problems.
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TABLE I
INNER AND OUTER ENCLOSURES OF THE HULL

OF THE POSTERIOR FEASIBLE SET, e = 0.01

Parameters Actual values [ ]inS [ ]outS

ε∝ 3 [2.992,3.009] [2.87,3.04]
τ1 (×10-5s) 1.5915 [1.445,1.780] [0.697,3.904]

α1 0.6 [0.587,0.611] [0.395,0.788]

β1 1 [0.963,1] [0.96,1]

∆ε1 1 [0.981,1.025] [0.671,1.447]
τ2 (s) 0.15915 [0.157,0.162] [0.086,0.223]
α2 0.8 [0.799,0.801] [0.716,0.863]

β2 0.7 [0.697,0.707] [0.545,1]

∆ε2 6 [5.98,6.02] [5.58,6.33]

TABLE II
INNER AND OUTER ENCLOSURES OF THE HULL

OF THE POSTERIOR FEASIBLE SET, e = 0.1

Parameters Actual values [ ]inS [ ]outS

ε∝ 3 [2.86,3.11] [2.78,3.15]
τ1 (×10-5s) 1.5915 [0.749,2.89] [0.1,10]

α1 0.6 [0.571,0.794] [0.57,0.87]

β1 1 [0.941,1] [0.9,1]

∆ε1 1 [0.79,1.25] [0.79,1.52]
τ2 (s) 0.15915 [0.150,0.210] [0.075,0.21]
α2 0.8 [0.782,0.818] [0.77,0.91]

β2 0.7 [0.643,0.732] [0.64,1]

∆ε2 6 [5.83,6.20] [5.22,6.20]
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