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Abstract— We consider the problem of controlling a string
of vehicles moving in one dimension so that they all follow a
lead vehicle with a constant spacing between successive vehicles.
We examine the symmetric bidirectional control architecture,
where the control action on a vehicle depends equally on the
spacing errors with respect to its adjacent vehicles. Performance
of this decentralized scheme in terms of spacing error amplifi-
cation and disturbance propagation is investigated. The results
established in this paper show that a symmetric bidirectional
architecture with a linear controller suffers from fundamental
limitations on closed loop performance that cannot be mitigated
by appropriate control design.

I. INTRODUCTION

We consider the problem of controlling a string of vehicles

moving in one dimension so that they all follow a lead

vehicle with a constant spacing between successive vehicles

(c.f. Figure 1). Due to its relevance to developing automated

highway systems, this problem has been studied in several

recent papers [1], [2], [3], [4], [5].

A control architecture investigated in the literature is pre-
decessor following – where the control action on a particular

vehicle depends on its spacing error with the predecessor, i.e.,

the vehicle in front of it. This scheme is decentralized, since

every vehicle can compute its control action based purely on

information it can measure with on-board sensors. In a recent

paper by Seiler et. al. [2] it was shown that if the vehicle

model, denoted by H(s), has a double integrator, then a

predecessor following control architecture will lead to string
instability [6] for any dynamic compensator K(s). That is,

spacing errors will get amplified along the string of vehicles.

They also showed that string stability can be restored if

a predecessor and leader following control architecture is

used, where the control action on a particular vehicle is

based on the predecessor’s position as well as the lead

vehicle’s position. To implement such a scheme, lead vehicle

position needs to be communicated to all the vehicles in the

platoon. Khatir et. al. [5] also considered the predecessor

following control scheme and showed that string stability is

not possible for a certain class of plants and controllers.

Another control architecture investigated in the literature,

and on which we focus in this paper, is bidirectional control.
In this scheme, the control action on a particular vehicle

depends on the spacing errors with respect to its predecessor

and its follower. Most human drivers use information about

preceding and following vehicles to control their own vehi-

cles, so bidirectional control is intuitively appealing. Seiler
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Fig. 1. platoon of vehicles

et. al. [2] considered symmetric bidirectional control, where

symmetric refers to the control effort being equally dependent

on the spacing errors with the preceding vehicle and the

following vehicle. They showed that when the vehicle mode

has two integrators and controller does not have an integrator,

the H∞-norm of Gde – the transfer function from the dis-

turbances acting on the vehicles to the spacing errors – grow

without bound as the platoon size increases. Therefore, such

a control scheme is not scalable for disturbance rejection.

However, the question of whether or not, in the absence of

disturbances, the spacing errors between vehicles will get

amplified along the string was left unanswered.

The question of string stability or error amplification for

the 1-D vehicular platoon control problem has been inves-

tigated in various forms by several researchers. Conclusive

results about error amplification have been established for

predecessor-following and predecessor-and-leader-following

schemes [2], [5]. However, such results were lacking for

the bidirectional scheme, both on spacing error amplification

and disturbance propagation. We fill this gap by establishing

results on error amplification and providing an extension of

the result by Seiler et. al. [2] on disturbance propagation.

The main results of this paper are the following. We

show that with symmetric bidirectional control, if the total

number of integrators between the plant and the controller is

more than two, then the closed loop platoon error dynamics

will be unstable for a sufficiently large number of vehicles

(theorem 1). If H(s)K(s) has two integrators, then the

steady state spacing errors all converge to 0 no matter how

large the platoon is, provided the lead vehicle moves at a

constant velocity (theorem 2). However, if the lead vehicle

trajectory deviates from a constant-velocity one, the L2 norm

of the spacing errors will grow unbounded as the number of

vehicles increases, even if the deviation has bounded L2-

norm (theorem 3). On the other hand, if H(s)K(s) has

only one integrator and the lead vehicle moves at a constant

velocity, the steady state error is finite for a finite platoon
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size, but the norm of this error grows without bound as the

number of vehicles in the platoon increases (theorem 2).

When H(s)K(s) has one integrator, if the deviation of the

lead vehicle’s trajectory from a constant velocity one is L2-

norm bounded, then the spacing errors are L2 norm bounded,

too, irrespective of the number of vehicles.

Moreover, when H(s)K(s) has two integrators, the H∞

norm of the transfer function from the disturbances acting

on the vehicles to the spacing errors will grow without

bound as the number of vehicles increases (theorem 4).

Thus, even if the lead vehicle is moving at constant velocity,

if disturbances are present in the control signal – as they

invariably will – large spacing errors will result.

The case of H(s)K(s) having no integrators is not con-

sidered, since a realistic model of a vehicle for a highway

will have at least one integrator. In fact, vehicle models with

double integrators are quite common in the literature [4], [3],

[2].

Past research on string stability in 1-D vehicular pla-

toon has mostly focused on the predecessor-following

and predecessor-and-leader-following architectures. In those

cases, spacing errors propagate in one direction, from one

vehicle to the next. The question of string stability/error

amplification is usually answered by looking at the transfer

functions that relate the spacing errors between two suc-

cessive vehicle pairs. However, in a bidirectional control,

errors “propagate” in both ways, and hence a different

approach is called for to analyze this situation. Seiler et.
al. [2] used the transfer function from the disturbances to the

spacing errors in a bidirectional control to look at disturbance

propagation. We follow a similar approach in this paper,

but look at the transfer functions relating both lead vehicle

position and disturbances to spacing errors. Our results show

that linear control of a vehicular platoon with a symmetric

bidirectional architecture suffers from limitations that makes

it fundamentally impossible to achieve good closed loop

performance for arbitrarily large platoons.

It is known that the eigenvalues of the Laplacian matrix

of the interconnection graph of a formation play a key role

in the stability of the formation [8]. Our analysis makes use

of the distribution of eigenvalues of a matrix that captures

the interconnection topology of the platoon, though it is not

quite the Laplacian.

We consider all the vehicles to have identical dynam-

ics and identical controllers, as in [2]. Khatir et. al. [5]

showed that this problem can be mitigated somewhat with

non-identical controllers – the spacing errors can now be

uniformly bounded but at the cost of the velocities becoming

unbounded as the number of vehicles increases.

The rest of the paper is organized as follows. In section

II, we formulate the problem and derive the closed loop

transfer functions for symmetric bidirectional control. In

section III, we establish certain necessary conditions for

the closed loop error dynamics to be stable with symmetric

bidirectional control. In IV we examine the performance

of the symmetric bidirectional control when the lead vehicle

moves at a constant velocity. In section V, we investigate

spacing error amplification when the lead vehicle velocity

is not constant. In section VI, we consider the effect of

disturbances in control signals on the spacing errors. The

paper concludes with a summary and discussion of future

research directions.

II. ERROR DYNAMICS IN SYMMETRIC BIDIRECTIONAL

CONTROL

Our problem formulation is essentially the same as that of

[2]. N, R and C denote the set of natural, real and complex

numbers, respectively. We consider a string of N +1 vehicles

moving in one dimension (Fig. 1). Let x0(t) denote the

position of the lead vehicle and xi(t), i ∈ {1, 2, . . . , N},

the position of the ith follower vehicle. The spacing error of

the ith vehicle is defined by

ei(t) = xi−1(t) − xi(t) − δ,

where the desired spacing, δ, is a positive constant. The

control objective is to keep the spacing error for every vehicle

as small as possible while maintaining closed loop stability.

We assume that,

1) All vehicles have the same model, denoted by H(s),
2) H(s) is SISO and has at least one integrator,

3) All vehicles use the same control law, and

4) the string of vehicles start with zero spacing errors,

from rest, and the lead vehicle starts at x0(0) = 0.

Hence, xi(0) = −iδ.

Let X(s) denote the Laplace transform of a time-domain

signal x(t): X(s) := L(x(t)). Applying the assumptions,

each vehicle can be modelled in the Laplace domain as

Xi(s) = H(s)(Ui(s) + Di(s)) +
xi(0)

s
, 1 ≤ i ≤ N, (1)

where xi(0) is the initial position of the ith vehicle, Ui(s)
is the Laplace transform of the control signal and Di(s) =
L(di(t)) is the Laplace transform of the input disturbance

di(t) to the ith vehicle. The ith spacing error in the Laplace

domain is given by

Ei(s) = Xi−1(s) − Xi(s) − δ

s
, 1 ≤ i ≤ N. (2)

Using (2) and (1) and applying the fourth assumption, we

can write the error dynamics of the entire vehicle platoon as

Ē(s) = X0(s)φ1 + P (s)
[
D̄(s) + Ū(s)

]
(3)

where φ1 ∈ RN is the 1st element of the canonical basis of

RN and

Ē(s) := L(ē(t)), ē(t) = [e1(t) . . . eN (t)]
T

,

D̄(s) := L(d̄(t)), d̄(t) = [d1(t) . . . dN (t)]T ,

Ū(s) := [U1(s) . . . UN (s)]
T

,
P (s) := −H(s)MT ,

where M is defined as

M :=

⎡
⎢⎣

1 −1

. . .
. . .
. . . −1

1

⎤
⎥⎦ ∈ R

N×N . (4)
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In a bidirectional control scheme, each vehicle bases its

control action on the error feedback from its predecessor

and follower. The control action is

Ui(s) = K(s) (Ei(s) − Ei+1(s)) , 1 ≤ i ≤ N. (5)

Since the last vehicle in the string does not have a follower,

it uses the controller UN(s) = K(s)EN (s). The vector of

platoon control inputs is given by

Ū(s) = K(s)MĒ(s)

which is a restatement of (5). Eliminating Ū(s) from (3)

we can write the closed-loop error dynamics of the platoon,

which is given by

Ē(s) = Gxoe(s)Xo(s) + Gde(s)D̄(s), (6)

where

Gxoe(s) = [I + H(s)K(s)L]
−1

φ1, (7)

Gde(s) = −H(s) [I + H(s)K(s)L]−1 MT , (8)

and L := MT M ∈ RN×N . The matrix L is given by

L =

⎡
⎢⎣

1 −1 0 ...
−1 2 −1 ...
0 −1 2 −1 ...

. . . −1
−1 2

⎤
⎥⎦ . (9)

The matrix L is similar to the Laplacian matrix of the

undirected graph whose nodes are the vehicles and the edges

are the measurements/communications between neighboring

vehicles. We now establish certain useful properties of L that

will be used later.

Lemma 1. consider the matrix L, as defined in (9). Let
λmin be the smallest eigenvalue of L, and let u1 :=
[u11, u21, ..., uN1]

T be a unit-norm eigenvector of L corre-
sponding to λmin. Then the following are true:

1)

1/N2 < λmin ≤ π2/N2, ∀N.

2) |u11| > N−1/2, ∀N .

Proof: The matrix M is non-singular, since det(M) =
1, from (4). Since L is a product of a square matrix M and

its transpose, and M is non-singular, L is positive definite

[7]. Since L = LT , all eigenvalues of L−1 are positive real.

So the smallest eigenvalue of L is the inverse of the largest

eigenvalue of L−1. Note that L−1 is given by

L−1 =

⎡
⎢⎣

N N−1 ... 2 1
N−1 N−1 ... 2 1

. . .
2 2 ... 2 1
1 1 ... 1 1

⎤
⎥⎦

To prove it, simply multiply the matrix with L and check that

an identity matrix results. From Gerschgorin circle theory, we

know that an upper bound for the largest eigenvalue of L−1

is
∑

(1 + 2 + · · ·+ N) < N2. Therefore, a lower bound for

the smallest eigenvalue of L is 1/N 2. That is, λmin > 1/N2.

To get the upper bound on λmin, let us write L as

L =

[
1 −φT

1(N−1)

φ1(N−1) L1

]
N×N

where φ1(N−1) is the first element of the canonical basis

vector of RN−1 and L1 ∈ RN−1×N−1. It turns out that

L1 is the so-called finite-difference matrix. From Cauchy’s

Interlacing Theorem, we know that λmin ≤ µmin, where

µmin is the smallest eigenvalue of L1. It is known [7] that

µmin = 4 sin2(π/2N). Moreover, for θ > 0, sin θ ≤ θ.

Hence, µmin ≤ π2/N2, which establishes the upper bound

on λmin.

To prove the second statement, note that since u1 is an

eigenvector of L corresponding to the smallest eigenvalue

of L, u1 is also an eigenvector of L−1 corresponding to its

largest eigenvalue. Since L−1 is a positive matrix, Perron-

Frobenius theory tells us that |u1| := {|u11|, . . . , |uN1|}
is also an eigenvector of L−1 corresponding to its largest

eigenvalue and that |u1| is a positive vector. Thus, we can

make the unit-norm eigenvector u1 of L, corresponding to

λmin, consist entirely of positive numbers. Let’s write down

the equation Lu1 = λminu1 in expanded form:⎡
⎢⎢⎣

u11 − u21

−u11 + 2u21 − u31

−u21 + 2u31 − u41

. . .

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

λminu11

λminu21

λminu31

. . .

⎤
⎥⎥⎦

It is easy to check from these equations and the positivity

of ui1’s that ui1’s form a decreasing sequence: u11 > u21 >
. . . uN1 > 0. Since

∑
u2

i1 = 1, it follows that u2
11 > 1/N .

This proves the Lemma.

III. CLOSED LOOP STABILITY WITH SYMMETRIC

BIDIRECTIONAL CONTROL

We have already discussed that for H(s) to be a reasonable

model of a vehicle in a highway, H(s) must have at least one

integrator. In this section we establish that with symmetric

bidirectional control, for closed loop stability of the platoon

with arbitrary N , H(s)K(s) cannot have more than two

integrators. Along with this main result, we also establish

certain other properties that are required for closed loop

stability. These will be used in the subsequent sections.

Theorem 1. Consider the closed loop error dynamics of the
platoon with symmetric bidirectional control, given by (6).

1) For closed loop stability of the platoon with arbitrary
N , H(s)K(s) cannot have more than two integrators.

2) For closed loop stability of the platoon with N vehicles
following the leader, every transfer function Gi(s) =
1/(1 + λiH(s)K(s)), i = {1, 2, . . . , N} must be
stable, where λi is the ith eigenvalue of the matrix
L ∈ RN×N defined in (9), and consequently, K(s)
cannot have zeros at 0.

3) Define H(s)K(s) = C(s)/sk with C(0) finite. Then
for closed loop stability with arbitrary N , C(0) > 0.

Proof: We start by proving the second statement, which

is similar to the results established by Fax et. al. [8] about

the role played by the eigenvalues of the graph Laplacian on

formation stability. It is also easy to see once we simplify

equation (7). Since L is symmetric, ∃U ∈ RN×N with

UT U = UUT = I s.t. L = UΛUT where Λ is a
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real diagonal matrix containing the eigenvalues of L and

U = [u1, u2, . . . , uN ], ui being a unit-norm eigenvector of

L corresponding to the ith eigenvalue. The eigenvalues are

arranged as

λmin ≤ λ2 ≤ · · · ≤ λN−1 ≤ λmax.

Hence,

I + H(s)K(s)L = U(I + H(s)K(s)Λ)UT

⇒ (I + H(s)K(s)L)−1 = U (I + (HK)Λ)−1 UT .

Using the above and (7), we get

Gxoe(s) = U (I + H(s)K(s)Λ)−1 UT φ1

= UΨ(s)UT φ1, (10)

where the matrix Ψ(s) ∈ CN×N is defined as

Ψ(s) := (I + H(s)K(s)Λ)−1

=

⎡
⎢⎣

1
1+λminH(s)K(s)

. . .
1

1+λmaxH(s)K(s)

⎤
⎥⎦ . (11)

This gives us, with (10), that

Gxoe(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∑
i=1

1

1 + λiH(s)K(s)
u2

1i

N∑
i=1

1

1 + λiH(s)K(s)
u1iu2i

. . .
N∑

i=1

1

1 + λiH(s)K(s)
u1iuNi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

It is clear now that for the closed loop to be stable, each of the

transfer functions 1/(1+λiH(s)K(s)) for i ∈ {1, 2, . . . , N}
must be stable. As a consequence, there cannot be any

unstable pole zero cancellation between H(s) and K(s).
Since H(s) has at least one integrator by assumption, K(s)
cannot have any zeros at 0.

To prove (1), we consider the root locus of the system 1+
λminH(s)K(s). Suppose H(s)K(s) has three integrators.

Then, at least one of the branches of the root loci will

depart to the right half plane for an arbitrarily small value

of λmin, even though it may eventually return to the left

half plane for a large enough value. Since λmin can be

arbitrarily small for N arbitrarily large (lemma 1), this means

that 1/(1 + λminH(s)K(s)) will be unstable for a large

enough N . Thus, H(s)K(s) cannot have three integrators.

The extension of these arguments to the case of more than

three integrators is trivial.

To prove (3), let C(s) = Nc(s)/Dc(s) where Nc(s)
and Dc(s) are coprime polynomials. From the above, C(s)
cannot have zeros at the origin. Therefore C(s) does not have

poles or zeros at the origin, so Nc(0) �= 0 and Dc(0) �= 0.

Consider the case when H(s)K(s) has two integrators, so

the characteristic polynomial of 1/(1 + λminH(s)K(s)) is

s2Dc(s) + λminNc(s). If Nc(0) < 0, then λminNc(0) < 0
and the closed loop will have at least one unstable pole.

Thus Nc(0) > 0. The coefficient of s2 in the characteristic

polynomial is Dc(0) + λminc2, where c2 is the coefficient

of s2 in Nc(s). If Dc(0) < 0 the coefficient of s2 will

be negative when λmin is small enough, i.e., for a large

enough N , even when c2 is positive. This will make the

closed loop unstable. Thus, in order to have closed loop

stability for arbitrary N , we must have Dc(0) > 0. Hence,

C(0) > 0. These arguments can be repeated for the case

when H(s)K(s) has one integrator, and we arrive at the

same result. This proves the theorem.

IV. CONTROL PERFORMANCE WHEN LEAD VEHICLE

MOVES WITH A CONSTANT VELOCITY

In an automated highway system, in general the lead

vehicle may be expected to move at a constant velocity. In

that case xref
o (t) = vot, where vo is the desired constant

velocity. In this section we will show that if the lead vehicle

moves at a constant velocity, i.e.,

xo(t) = xref
o (t) = vot, (13)

and H(s)K(s) has two integrators, then all the platoon

spacing errors can be made to converge to 0. If H(s)K(s)
has a single integrator, then the steady state platoon spacing

error vector is non-zero, and the norm of the steady-state

error grows without bound as N increases.

It is reasonable to expect that the lead vehicle will not

be able to move at a constant velocity and there will be

deviations from the nominal value. One thus needs to study

the effects of perturbation to (13). We leave that for the next

section.

Theorem 2. Consider the case when there are no distur-
bances acting on the vehicles, i.e., d̄(t) ≡ 0, and the lead
vehicle moves at a constant velocity, i.e., xo(t) = vot, where
vo > 0 is the desired velocity. Let K(s) be such that it
achieves closed loop stability of the platoon error dynamics
with symmetric bidirectional control. Then the following are
true:

1) If H(s)K(s) has two integrators, then, ∀N ∈ N,

lim
t→∞

ē(t) = 0.

2) If H(s)K(s) has one integrator, then for a platoon of
size N , ∃ e∞ ∈ RN , such that,

lim
t→∞

ē(t) = e∞ �= 0,

and, for every R > 0, ∃No ∈ N such that ||e∞||2 >
R, ∀N > No. �

Proof: The statements about ē(t) tending to 0 or not

can be proven from properties of Type I and II systems that

are available in many standard textbooks on control theory.

That ‖ē∞‖2 grows without bound with increasing N can be

proven using the fact that 1/λmin > N2/π2 (lemma 1). The

interested reader may see [9] for the details of the proof.
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V. EFFECT OF DEVIATION IN THE LEAD VEHICLE

TRAJECTORY FROM THE NOMINAL

From the results in the previous section, one might be

tempted to conclude that for good tracking of a lead vehicle

moving at a constant velocity, H(s)K(s) should be designed

to have two integrators. However, as we will see now, doing

so may lead to other problems. First of all, a constant velocity

may not always be desired. Moreover, even if a constant

velocity is desired, it is reasonable to expect that the leader

trajectory will deviate from the reference trajectory. In this

case, the lead vehicle’s trajectory can be modelled as

xo(t) = vot + ζo(t),

where ζo(t) is the error from the constant-velocity trajectory.

We will now show that when H(s)K(s) has two integrators,

||Gxoe||∞ grows without bound as N increases. Note that we

use ||.||2 to denote the 2-norm of a real or complex vector

and ||.||∞ to denote the H∞-norm of a transfer function.

Since Gxoe(s) is also the transfer function from ζo to ē,

this means that even if ||ζo||L2
is bounded, ||ē||L2

will grow

unbounded as N increases. The only situation when good

tracking performance is achieved with zero steady state error

for all vehicles is when ζo(t) ≡ 0, an unlikely scenario.

We first state the main result of this section. This is

followed by a technical lemma before the proof of the

theorem is presented.

Theorem 3. Assume H(s)K(s) has two poles at the origin,
the closed loop platoon error dynamics under symmetric
bidirectional control is stable for arbitrary N . Let Gxoe(s) ∈
CN×1 be the transfer function from lead vehicle position
Xo(s) to spacing errors Ē(s) defined in (7). Then, for
every R > 0, there exists a positive integer No ∈ N s.t.
||Gxoe||∞ > R, ∀N > No.

The following lemma will be needed for the proof.

Lemma 2. Let C(s) be a SISO transfer function that has
no poles or zeros at the origin and C(0) > 0. Then, ∃β ∈
(0, +∞) and ∃No ∈ N such that ∀N > No,

sup
ω

∣∣∣∣∣ 1

1 − λmin(N)C(jω)
ω2

∣∣∣∣∣ > βN.

where λmin(N) is the smallest eigenvalue of the matrix L ∈
RN×N defined in (9).

Proof: First we will establish that |C(jω)−C(0)| < ωγ
for some positive constant γ when ω is small enough. Let

C(s) = Nc(s)/Dc(s), where Nc(s) and Dc(s) are coprime

polynomials in s (with real coefficients) with degrees m and

n, respectively. We write down

C(s) =
Nc(s)

Dc(s)
=

zmsm + · · · + z1s + zo

pnsn + · · · + p1s + po

where zo and po are non-zero since C(s) does not have

poles or zeros at the origin. Expanding the expression for

C(s) − C(0) and doing a little algebra, we see that

C(s) − C(0) =
skQ(s)

D(s)po
,

where Q(s) is a polynomial in s with a non-zero constant

term and k ≥ 1. Since Q(s) and D(s) both have non-zero

constant terms, limω→0
Q(jω)

D(jω)po

= Q(0)
D(0)po

�= 0. Therefore,

∃ ωo s.t. if |ω| < ωo, then | Q(jω)
D(jω)po

| < | Q(0)
D(0)po

| + 1 =: γ.
Therefore we get that there exist ωo > 0, γ > 0 and an

integer k ≥ 1 s.t., ∀ |ω| < min(1, ωo),

|C(jω) − C(0)| ≤ |ωk|γ ≤ |ω|γ. (14)

Define

f(ω) =

∣∣∣∣∣ 1

1 − λmin(N)C(jω)
ω2

∣∣∣∣∣ .
Pick No such that ω∗ :=

√
λmin(N)C(0) ∈

(0, min(1, ωo)), ∀N > No. Hence,

f(ω∗) =
1

|1 − C(jω∗)
C(0) |

=
C(0)

|C(jω∗) − C(0)| > C(0)/γω∗.

The last inequality follows from (14). Substituting the value

of ω∗, we get

f(ω∗) >
C(0)1/2

γλ
1/2
min

, ∀N > No. (15)

From lemma 1, we know that 1/λmin(N) ≥ N2/π2. Using

this in the inequality (15), we get

f(ω∗) > βN, ∀N > No (16)

where β := (C(0)/γ2π2)1/2 is a positive constant. This

proves the lemma.

Now we are in a position to prove theorem 3.

Proof: [Proof of Theorem 3] Since H(s)K(s) has two

integrators, H(s)K(s) can be written as C(s)/s2. From

theorem 1, it follows that C(s) cannot have poles or zeros

at 0 and C(0) > 0. From (10), we get

||Gxoe(s)||2 =
√

G∗
xoeGxoe =

√
φT

1 UΨ∗(s)Ψ(s)UT φ1.

Since the vector UT φ1 is the first row of U , using (11), this

reduces to

||Gxoe(s)||2 =

(
N∑

i=1

u2
1i

∣∣∣∣ 1

1 + λiH(s)K(s)

∣∣∣∣
2
)1/2

(17)

The H∞ norm of the transfer function vector Gxoe is:

||Gxoe||∞ = sup
ω

||Gxoe(jω)||2. (18)

Thus,

||Gxoe||∞ > sup
ω

(∣∣∣∣ 1

1 + λminH(jω)K(jω)

∣∣∣∣ |u11|
)

, (19)

We can now apply the result established in lemma 2 to claim

that ∃β ∈ (0, +∞) and ∃No ∈ N such that

sup
ω

∣∣∣∣ 1

1 + λmin(N)H(jω)K(jω)

∣∣∣∣ > βN ∀N > No.
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From lemma 1, we know that |u11| > 1/
√

N . Using these

two inequalities in (19), we get

||Gxoe||∞ > βN1/2 ∀N > No.

Since this lower bound grows unbounded as N increases, the

result follows immediately.

Remark 1. A similar result does not hold when H(s)K(s)
has only one integrator. In that case we can show that

||Gxoe||∞ can, in fact, be uniformly bounded w.r.t. N .

Therefore, if the leader trajectory deviation from a constant-

velocity one is L2-norm bounded, the spacing error resulting

from this deviation will be L2-norm bounded, too. However,

in light of poor steady state performance when H(s)K(s)
having one integrator (theorem 2), we refrain from providing

a proof.

VI. DISTURBANCE PROPAGATION

To examine the effect of disturbances acting on the ve-

hicles in the spacing errors, we have to look at the transfer

function matrix from the disturbances to the spacing errors:

Gde(s). The question of disturbance propagation was already

investigated by Seiler et. al. in [2], where it was shown

that for the symmetric bidirectional control scheme, it is not

possible to design a K(s) to achieve an uniform bound on

||Gde||∞ w.r.t. N , when H(s) has two integrators and K(s)
has none. It follows from theorem 1 that if H(s)K(s) has

three integrators, then the closed loop platoon error dynamics

will be unstable for a sufficiently large N . This precludes the

possibility of K(s) having an integrator when H(s) has two

integrators. Combining this with the result established in [2],

we get the following:

Theorem 4. Assume H(s) has two poles at the origin
and the closed loop platoon dynamics is stable with K(s)
for arbitrary N under symmetric bidirectional control. Let
Gde(s) ∈ CN×N be the transfer function matrix from D̄(s)
to Ē(s) defined in (8). Then, given any R > 0, ∃No ∈ N

such that ||Gde||∞ > R, ∀N > No.

This theorem tells us that even if the disturbances acting

on the vehicles are L2-norm bounded, the L2-norm of the

spacing errors due to these disturbances will grow unbounded

as N grows. Therefore a symmetric bidirectional control

scheme is not scalable with respect to disturbance rejection.

This result was established by Seiler et. al. in [2] for vehicle

models with two integrators, with the assumption that K(s)
does not have any integrators. We show that the assumption

requiring K(s) not to have an integrator was an artifact of

their proof technique.

We have seen in previous sections that when H(s)K(s)
has two integrators, then at least in one scenario – when the

lead vehicle moves at a constant velocity – the closed loop

performs well and the spacing errors converge to 0. However,

theorem 4 shows that even in that case, if disturbances enter

vehicle dynamics, as they invariably will, large spacing errors

might result.

VII. SUMMARY AND FUTURE WORK

It was not known if a symmetric bidirectional control

architecture could achieve closed loop stability while keeping

the spacing errors bounded, with bounds that are independent

of the number of vehicles. We have shown that this is

not possible irrespective of the specific controller used. The

symmetric bidirectional scheme amplifies spacing errors and

disturbances in control signals. The results established in this

paper show that the bidirectional control architecture, though

attractively decentralized, suffer from fundamental limita-

tions on closed loop performance that cannot be ameliorated

by appropriate control design.

There are several related questions that merit study. For

instance, we could ask if closed loop performance could be

improved by using more than two vehicles’ position informa-

tion, and if so, what are the fundamental limitations in such a

scheme? This architecture would now require inter-vehicular

communication, but may still be advantageous compared

to a predecessor-and-leader following scheme by keeping

the distances over which information has to be transmitted,

small. Yet another question is, how does the closed loop

perform with an asymmetric bidirectional architecture, where

the control action on a vehicle depends unequally on the

predecessor and the follower? Future research would attempt

to address some of these questions.
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