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Abstract—We introduce two models of controlled infinite
dimensional quantum system whose Hamiltonian operator has
a purely discrete spectrum. For any couple of eigenstates we
construct a path in the space of controls that approximately
steers the system from one eigenstate to the other. To this
purpose we use the adiabatic theory for quantum systems, and
therefore the strategy requires large times.
keywords: Quantum Control, Controllability of PDEs,
Adiabatic Theory, δ-like Interactions

I. INTRODUCTION

The issue of designing an efficient transfer of population

between different energy levels is crucial in atomic and

molecular physics (see e.g.[17]). In the experiments, excita-

tion and ionization are often induced by means of a sequence

of laser pulses. From the point of view of mathematics, the

description of such processes translates into the problem of

controlling the Schrödinger equation.

In recent years, such a problem has attracted increasing

attention, in both communities of control theorist (see for

instance [16]), and experts in quantum dynamics (see for

instance [6]). Many results are available in the case that

the Hilbert space of the states of the system has finite

dimension (see e.g. [5], [12] and references therein). Despite

that, only few controllability properties have been proven for

the Schrödinger equation as a PDE (see for instance [16])

and in particular no satisfactory global controllability results

are available.

In this paper we introduce two toy models and pro-

pose a method to prove approximate controllability of the

Schrödinger equation. More specifically, given two arbitrary

eigenstates of the uncontrolled system, we construct a path in

the space of controls that steers the system from the first to

the second; the target is reached only approximately, but the

accuracy of the approximation can be arbitarily improved

slowing the process down and correspondingly raising its

duration. Our main technical tool is the adiabatic theorem

([4], [10], [14], [19]), which requires slowly varying controls

and gives explicit estimates of the error. It is worth pointing

out that in order to apply our method we need a Hamiltonian

with purely point spectrum that degenerates for some values

of the controls. This seems to be in contradiction with

the claimed use of the the adiabatic theory, which requires

that during the whole time evolution the eigenvalues remain

separated by a non vanishing gap (“gap condition”). The

main idea is that such a difficulty can be overcome by a

decoupling between the levels other than the adiabatic one.

We stress that our strategy can be applied in many situations

in which classical control theory would be too difficult or

cumbersome. Besides, it provides explicit expressions of

controls (motion planning), and most of all is very robust,

in the sense that similar controls produce similar population

transfers (see for instance [8], [20]).

Let us describe our two models. The former is the simplest

generalization to infinite dimension of three-level models

that describe STIRAP processes (see for instance [8], [20]).

As in that cases, it is given in the representation of the

eigenfunction of the uncontrolled Hamiltonian, namely as

an infinite dimensional matrix. The full Hamiltonian reads

H(u, v) = H0 + uB1 + vB2, where the drift (or “free”)
Hamiltonian H0 has discrete spectrum and shows no de-

generacies. The couplings B1 and B2 couple levels Ei and

Ei+1 for i even and odd, respectively. For every value of
the real controls u and v the spectrum of H(u, v) remains
discrete, but degeneracies can occur at isolated points in the

space of the controls. This phenomenon holds generically for

Hamiltonians depending on two parameters, and one refers to

it as to the “conical crossing” of eigenvalues (see e.g. [9]).

Assume that at time zero u = v = 0 and the system lies
in the ground state of the drift H0. The adiabatic theorem

asserts that, employing slow varying controls u(εt) and v(εt)
such that for any t H(u(εt), v(εt)) has no degeneracies,
then at time t the system lies close to the ground state of
H(u(εt), v(εt)). As widely known, the situation becomes
more complicated when the system is driven near eigenvalues

intersections. Nevertheless, we exhibit paths in the control

space that pass exactly through an eigenvalue intersection

and force the system to perform a transition from the old

to a new level. As we explain later, to this task we need

to move controls along a surface, so we must have at our

disposal at least two controls.

The second model consists of the Schrödinger picture of

a quantum particle in a one-dimensional infinite potential

well with some additional controlled external fields. Here,

the main obstacle to be overcome is that in a one dimensional

quantum system the presence of degeneracies in the discrete

spectrum is a highly nonstandard feature. In particular the

non degeneracy of the ground state holds in any dimension

for systems subject to a locally integrable potential ([13]).

Therefore our strategy consists in producing degeneracies by

means of potentials with non integrable singularities. To this
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purpose we use point interaction potentials (Dirac’s δ and
δ′) with a possibly infinite strength.
We consider a particle confined to the interval

(−π/2, π/2), whose Hamiltonian reads

H(u, v, w) := −∂2
x + uδ(x − π/2) + vδ′(x − π/2)

+wθ(x − π/2) (1)

where θ denotes the Heaviside function, and take

H(0, 0, 0) = −∂2
x as the drift Hamiltonian. In contrast with

the previous model, here we exploit an intersection obtained

letting the control u and v diverge. We highlight that, thought
not proven in the present paper, our schema can be be

generalized for any symmetric (coercive) potential replacing

the infinite well. It is worth mentioning that, unlike the first

toy model, in this case it seems extremely difficult to prove

that it is possible to steer the system from two eigenstates

using classical control theory.

A. Definitions of Controllability

Let us introduce the notions of controllability that we need

in the following.

Definition 1.1: Consider a quantum mechanical system
whose evolution is described by a self adjoint Hamiltonian

depending on m real parameters in the form H(u1, ...um) =
H0 + u1B1 + ... + umBm. Assume that for every value of
the parameters u1, ..., um the spectrum of H(u1, ...um) is
discrete. Assume moreover that the drift Hamiltonian H0 =
H(0, ..., 0) has a discrete, non degenerate spectrum E0 <
E1 < E2 < ..., being Φ0,Φ1,Φ2... the corresponding
eigenvectors. We say that such a system is:

• finite–time state to state controllable (f-SSC for short) in

the class K if for every j, l ∈ N there exist open loop

controls u1(.), ..., um(.) ∈ K steering the system from
Φj to Φl in finite time T (j, l).

• approximately state to state controllable (a-SSC for

short) in the class K, if for every j, l ∈ N and ε > 0
there exists a time T (j, l, ε) and open loop controls
u1(.), ..., um(.) ∈ K, steering the system from Φj to a

state Φapp arbitrarily close to the space spanned by Φl.

Namely, there exists ϕ ∈ [0, 2π[ such that

‖e−iϕΦapp − Φl‖L2 ≤ ε. (2)

B. The Adiabatic Theorem

Roughly speaking, the adiabatic theorem states that the

eigenvectors are approximately preserved by time evolution

provided that the time-dependence of the Hamiltonian is

suitably slow. More precisely, let H(εt) be a slowly time-
dependent Hamiltonian with purely discrete spectrum, λj(εt)
its jth eigenvalue and Pj(εt) the orthogonal projection on
the space Hj(εt) of the eigenvectors associated to λj(εt).
Clearly, the time evolution Uε(t, s) generated by H(εt)
preserves Hj(εt) if and only if it fulfils the following
intertwining property (see [19] and references therein)

Pj(εt)Uε(t, s) = Uε(t, s)Pj(εs). (3)

Since d
dt (Uε(s, t)Pj(εt)Uε(t, s)) = εUε(s, t)Ṗj(εt)Uε(t, s),

where the dot denotes the derivative w.r.t. t, then relation
(3) is satisfied at the zero.th order in ε only. In fact, (3) is
exactly satisfied by the evolution U ε

a(t, s) generated by the
so-called “adiabatic Hamiltonian” associated to the jth level,

that reads

Ha(εt) := H(εt) − 2iεPj(εt)Ṗj(εt) + iεṖj(εt) (4)

The adiabatic theorem estimates the difference between the

time evolutions Uε and Uε
a .

Theorem 1.2: Consider a family H(t) of self adjoint op-
erators on a Hilbert spaceH, with t in the possibly unbounded
interval (t1, t2). Suppose that:

1) all H(t)’s have a common dense domain D.
2) H(·) ∈ C2

b ((t1, t2),L(D,H)), where L(D,H) denotes
the space of bounded linear operators from D to H
provided that D is endowed with the norm of the graph
of H(t1):

||T ||L(D,H) := sup
v∈D\{0}

||Tv||H
||v||H + ||H(t1)v||H

3) for every t, the spectrum σ(H(t)) of H(t) is discrete
and non degenerate, i.e. σ(H(t)) = {λj(t), j =
0, . . . , n, . . . , λi(t) < λk(t) if i < k}.

4) Fixed j ∈ N, the following gap condition is satisfied:

g := inf
t∈(t1,t2)

min (λj+1(t) − λj(t), λj(t) − λj−1(t)) > 0

Let Uε and Uε
a be the two-parameter propagators generated by

H(εt) and Ha(εt) defined in (4) respectively. Then, for any t
and t0 in (t1, t2),

‖Uε(t, t0) − Uε
a(t, t0)‖ < Cε (1 + ε|t − t0|) (5)

where the constant C depends on g and possibly diverges as g
vanishes.

Notice that if at time t0 the system lies in an eigenstate
of H(εt0) associated to the eigenvalue λj(t0), then estimate
(5) gives

‖ψε(t) − ψε
a(t)‖ < Cε (1 + ε|t − t0|) (6)

where ψε(t) represents the actual state of the system and
ψε

a(t) is eigenvector of H(εt) relative to the eigenvalue
λj(εt). Furthermore, if the jth level of H(t) is non degen-
erate at any time t, and Φj(t) is the associated eigenvector,
then Ha(εt)Φj(εt) = λj(εt)Φj(εt) − iεṖj(εt)Φj(εt) and

Uε
a(t, t0)Φj(εt0) = exp

(
−i

∫ t

0

ds λj(εs)

)
Φj(εt). (7)

The paper is organized as follows. In Section II we present

the first toy model. After studying the spectrum of the

Hamiltonian, we introduce the concept of climbing path

and prove that the adiabatic theorem can be applied to

climbing paths even if the gap condition is not satisfied (see

Theorem 2.5). As a corollary we get that the system is a-

SSC (see Corollary 2.6). In Section III, we present the second

model. In this case, using locally non integrable controlled

potentials, we prove that the system is a-SSC (see Theorem

3.2).
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II. AN INFINITE DIMENSIONAL TOY MODEL

The model and the spectrum of the Hamiltonian.
Let us consider an infinite dimensional quantum system

endowed with a purely discrete spectrum and suppose that its

energy levels are non degenerate. Let Ej be the energy of the

j.th level with Ej < Ek for j < k and let E0 be the energy

of the ground state. In the basis of the eigenstates of the

energy, the Hamiltonian is represented by an infinite diagonal

matrix, whose jth element equals Ej . In the following we

refer to this Hamiltonian as to the drift or free Hamiltonian.

We have at our disposal two real controls u and v that couple
energy levels by pairs in such a way that the infinite matrix

representing the controlled Hamiltonian reads

H(u, v) =

⎛
⎜⎜⎜⎜⎜⎝

E0 α0u 0 0 0 · · ·
α0u E1 β0v 0 0 · · ·
0 β0v E2 α1u 0 · · ·
0 0 α1u E3 β1v · · ·
...

...
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎠ (8)

Here the coefficients αj’s and βj’s (that we assume to be

greater than zero) implement the fact that different pairs

of levels react in different manners to the presence of the

external fields. The matrix (8) defines a linear operator

Ĥ(u, v) acting on the Hilbert space �2 of all complex

sequences {xj} such that
∑∞

j=0 |xj |
2 < ∞. Moreover, for

technical reasons we assume that the sequence of the Ej’s

diverges, and the quantities αj/|E2j |
µ and βj/|E2j |

µ vanish

as j goes to infinity for some 0 < µ < 1. These hypotheses
yield some remarkable consequences in terms of spectral

properties of Ĥ(u, v), namely:

Proposition 2.1: Under the hypotheses previously stated
on the coefficients Ej , αj , βj , the operator H(u, v) defined
in (8) and acting on �2, satisfies the following:

(i) Ĥ(u, v) is self-adjoint.
(ii) The spectrum of Ĥ(u, v) is purely discrete.
(iii) If both u and v are different from zero, then all

eigenvalues are non degenerate.
(iv) The spectrum of Ĥ(u, v) is equal to the spectrum of

Ĥ(|u|, |v|).
Owing to (i), (ii) and (iii) and using perturbation theory [11],

one can prove that there exists a unique countable set of

continuous functions λj : R
2 → R such that

A. λj(u, v) is an eigenvalue of Ĥ(u, v).
B. λj(u, v) ≤ λj+1(u, v) for any j ∈ N, u, v ∈ R and

λj(u, v) < λj+1(u, v) for any j ∈ N, u, v > 0.

Roughly speaking, the graph of the spectrum of Ĥ(u, v) as
a multi-valued function of u and v can be represented as
a countable family of regular surfaces possibly intersecting

along the axes u = 0 and v = 0 only. In order to steer the
system from two fixed eigenstates using adiabatic theory, it

is essential to classify all possible eigenvalues intersections.

Intersections along the axis u = 0.
The matrix H(0, v) is block diagonal. The first block is 1×1
and consists of the element E0, while the others are 2 × 2

and take the form:

Bj :=

(
E2j+1 βjv
βjv E2j+2

)
, j = 0, 1, 2, ... (9)

The eigenvalues of Bj are given by{
Λ+

j (v) = E2j+2 + ∆j

Λ−
j (v) = E2j+1 − ∆j

(10)

where the quantity ∆j :=

√
ω2

j
+4β2

j
v2

2 − ωj with ωj :=
E2j+2−E2j+1 represents the exchange of energy induced by

the coupling between the two levels. Notice that turning the

presence of the control v enhances the energy gap between
two coupled levels, as shown in Fig.1.

Λ
+

j

v

E2j+2

E2j+1

E2j+1+E2j+2

2

E2j+1+E2j+2

2
+ βjv

E2j+1+E2j+2

2
− βjv

Λ
−

j

Figure 1

Equalities (10) provide some simple rules in order to classify

all crossing of eigenvalues. Set Λ+
−1 := E0 and β−1 := 0.

Consider a pair of indices j and k, with j > k. Then

• There exists a unique v > 0 such that Λ+
j (v) =

Λ−
k (v). Conversely, the equation Λ−

j (v) = Λ+
k (v) has

no solutions.

• If βj < βk, then there exists a unique v > 0 such that
Λ+

j (v) = Λ+
k (v). Conversely, if βj ≥ βk then the graphs

of the functions Λ+
j and Λ+

k do not intersect each other.

• If βj > βk, then there exists a unique v > 0 such
that Λ−

j (v) = Λ−
k (v). Conversely, if βj ≤ βk then the

graphs of the functions Λ−
j and Λ−

k do not intersect.

Intersections along the axis v = 0.
The matrix H(0, v) is block diagonal, each block being 2×2
and taking the form:

Aj :=

(
E2j αju
αju E2j+1

)
, j = 0, 1, 2, ...

The eigenvalues of Aj are given by

Γ−
j (u) = E2j − DjΓ

+
j (u) = E2j+1 + Dj (11)

with Dj :=

√
Ω2

j
+4α2

j
v2

2 − Ωj and Ωj := E2j+1 − E2j .
Like in the previous case, a complete classification of the

eigenvalue intersections can be done.

Remark 2.2: We want to prevent the reader from iden-
tifying functions Λj’s and Γj’s with the λk’s, even for
suitable values of k (for instance, Λ+

j (u) with λ2j+2). Such
identification is correct if the controls are smaller than the
lowest value for which a degeneracy occurs. This is due to

1082



the fact that the λi’s satisfy λi(u, v) ≤ λj(u, v), for i < j
and for every (u, v) ∈ R

2, while the graphs of the functions
Λj’s (resp. the Γj’s) can cross each other.
The results of this Section can be resumed as follows.

Theorem 2.3: The set
S := {(u, v, p) s.t. u, v ∈ R, p eigenvalue of Ĥ(u, v)} (12)

is the union of the graphs of a countable, increasing family

of continuous functions λj(u, v), i.e. S = ∪∞
j=0Sj and Sj =

{(u, v, λj(u, v)) s.t. u, v ∈ R}. Such graphs intersect one
another in a countable set lying in the union of the planes u =
0 and v = 0. Apart from that points, they are smooth.
Fig. 3 gives an idea of the shape of the three first surfaces

belonging to S, for some value of the parameters Ei, αi, and

βi, which could be useful to figure out how to employ the

adiabatic theory (see below).

u

λ2(u, v)

v

λ0(u, v)

λ1(u, v)

E0

E2

E1

Figure 3

Controllability via Adiabatic Theory
The Schrödinger equation for the Hamiltonian (8) reads

i
dψ(t)

dt
= H(u(t), v(t))ψ(t) (13)

where ψ(t) = (ψ0(t), ψ1(t), ....) is a vector in �2. Before

illustrating how to apply the adiabatic theory, let us mention

that the controllability of (13) is already known, since if

u = 0 or v = 0, then the variables ψi are coupled by

pairs only. Therefore, using standard techniques of control

theory on SU(2), one can prove f-SSC. In the following we
prove a-SSF for (13) by using adiabatic theory. Once chosen

a C2 path (u(t)), v((t))) in R
2, the operator H(u(t), v(t))

belongs to C2
b ((t1, t2),L(D,H)) and one can apply Theorem

1.2. Since the constant C supplied by the adiabatic theorem
(cfr. formula (5)) diverges as the gap vanishes, then the ap-

proximation we get in (2) is as good as the path (u(εt), v(εt))
stays far from the singularities.

Consider the set S defined in (12). A point (u, v, p) ∈ S
is called a singularity if p = λi(u, v) = λj(u, v) with i �= j.
From the analysis preceding theorem (2.3), it follows that the

singularities are isolated points and if (u, v, p) is a singularity
then uv = 0. We denote by Z the set of all singularities.

Definition 2.4: Consider a map γ(·) := (u(·), v(·), p(·)) :
[0, τ ] → S ⊂ R

3. We say that this map is a climbing path if:

• it is a C2 map from [0, τ ] toR
3;

• γ(0) = (u(0), v(0), p(0)) = (0, 0, EA) and γ(τ) =
(u(τ), v(τ), p(τ)) = (0, 0, EB) for some A,B ∈ N;

• it passes through a finite number of singularities. i.e.

Supp(γ) ∩ Z is finite.
• if τ1, ..., τn are the values of the parameter at which the

singularities are met, namely γ(τi) ∈ Z for any i, then
there exist intervals [ai, bi] such that τi ∈]ai, bi[ and u or
v constantly vanishes on [ai, bi].

An example of climbing path is represented in Fig. 3. If a

climbing path is slowly gone along, then we can apply the

adiabatic theorem and obtain the following result:

Theorem 2.5: Consider the family of Hamiltonians
H(u, v) and a climbing path γ on the set S defined in (12).
Given ε << 1 consider the following parametrization of γ:
γ(εt) = (u(εt), v(εt), p(εt)), with t ∈ [0, T ] and T :=
ε−1τ . Let Φj(u, v) be the eigenvector corresponding to the
eigenvalue λj(u, v). Let t1, ..., tn be the times at which the
singularities are met, namely γ(εti) ∈ Z for any i. Let ji be

defined by p(εt) = λji
(u(εt), v(εt)), t ∈]ti, ti+1]. Then, for

every t ∈]ti, ti+1], we have

‖ exp

(
i

∫ εt

0

ds λji
(u(s), v(s))

)
Φji

(u(εt), v(εt)) − ψ(εt)‖

< Cε(1 + ε|t|) ≤ Cε(1 + τ)

where ψ(t) is the solution of the Schrödinger equation
i∂tψ(t) = H(u(εt), v(εt))ψ(t) with initial data ψ(0) =
Φji

(0, 0).
Roughly speaking this theorem states that if the singularities

are crossed keeping to zero one of the two controls, then

the adiabatic theorem holds true and the system jumps at the

singularities from a level to another one. Notice that estimate

given in theorem 2.5 holds for t = T = ε−1τ also, with the
system passed to the level of energy EB . Therefore, we have

the following

Corollary 2.6: The quantum mechanical system de-

scribed by the Hamiltonian (8) is a-SSC in the class C2
b .

Remark 2.7: We conjecture that the result given by The-
orem 2.5, can be generalized to any Hamiltonian having

conical intersections. (see for instance [9]).

III. CONTROLLABILITY VIA SINGULAR POTENTIALS

Consider the evolution problem given on the space

L2(0, π) by

i∂tψ(x, t) = H(u(εt), v(εt), w(εt))ψ(x, t), where

H(u, v, w) := −∂2
x + uδ(x − π/2) + vδ′(x − π/2)

+wθ(x − π/2). (14)
Here ∂2

x is the second partial derivative w.r.t. x with Dirichlet
boundary conditions (i.e. ψ(0, t) = ψ(π, t) = 0). The term
u(εt)δ(x− π

2 ) is a Dirac’s delta potential whose effect results
in the boundary condition

lim
x→π

2
+

∂xψ(x, t) − lim
x→π

2
−

∂xψ(x, t) = u(εt)ψ(π/2, t). (15)

Analogously, the term v(εt)δ′(x − π
2 ) corresponds to the

boundary conditions
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A(t) := lim
x→π

2
−

∂xψ(x, t) = lim
x→π

2
+

∂xψ(x, t) (16)

lim
x→π

2
+

ψ(x, t) − lim
x→π

2
−

ψ(x, t) = v(εt)A(t) (17)

Finally, the symbol θ(x− π/2) denotes the Heaviside func-
tion which equals 1 for x ≥ π/2 and 0 otherwise.
It is well known that the drift Hamiltonian H0 = −∂2

x,
with Dirichlet boundary conditions, is a self-adjoint

operator whose spectrum is purely discrete and reads

En = (n + 1)2, n = 0, 1, 2, .... All levels are non
degenerate and the corresponding normalized eigenvectors

are φn(x) =
√

2
π sin((n + 1)x). As in the previous model,

we control the system switching u and v separately on.
Therefore we must study the spectra of the operators

H(u, 0, 0) and H(0, v, 0).

The spectra of H(u, 0, 0) and H(0, v, 0).
The eigenvalues Fn(u) and the eigenvectors ξu

n satisfy the

stationary Schrödinger equation with the boundary condition

given by the delta potential, namely

−
d2

dx2
ξu
n(x) = Fn(u)ξu

n(x), x ∈ (0, π/2) ∪ (π/2, π)

ξu
n(0) = ξu

n(π) = 0, (18)

lim
x→π

2
+

d

dx
ξu
n(x) − lim

x→π
2

−

d

dx
ξu
n(x) = u ξu

n(π/2).

Notice that for n odd one has ξu
n(π/2) = 0, thus equations

(18) reduce to the equations for the odd levels of the drift

Hamiltonian. Therefore, for any k ∈ N,

F2k+1(u) = E2k+1 = 4(k + 1)2,

ξu
2k+1(x) = φ2k+1(x) =

√
2

π
sin[2(k + 1)x]. (19)

If n is even then the condition induced by the delta is
effective and reads

{F2k(u), k ∈ N} = {z2, tan(π/2 z) = −2zu−1},

ξu
2k(x) = N

[
cos(

√
F2k(u)(x − π/2))

+
u

2
√

F2k(u)
sin(

√
F2k(u)|x − π/2|)

]
. (20)

where N is a normalization factor. As one can expect, the
presence of a δ interaction does not affect the subspace of the
even functions. Moreover, it appears from identity (20) that

such potential produces a discontinuity in the first derivative

of ξu
2k, embodied in the second term at the r.h.s. Obviously,

such term overwhelms the first one as u grows. We stress that
H(∞, 0, 0) is still a well defined self-adjoint Hamiltonian.
It translates into the condition ψ(t, π/2) = 0, to be satisfied
at any time t. The related eigenvalue problem reads

−
d2

dx2
ξ∞n (x) = Fn(∞)ξ∞n (x), x ∈ (0.π/2) ∪ (π/2, π),

ξ∞n (0) = ξ∞n (π/2) = ξ∞n (π) = 0. (21)

Notice that the boundary condition (21) splits the prob-

lem into two independent parts associated to the intervals

(0, π/2) and (π/2, π). The physical picture related to this

condition corresponds to an infinite potential barrier located

at the point π/2. In such a way the non degeneracy for the
ground state (as far as for the other levels) is broken. In

such a case the eigenfunction associate to the nth eigenvalue

Fn(∞) = 4(n + 1)2 reads

ξ∞n (α, β;x) =
[
αχ[0,π/2](x) + βχ[π/2,π](x)

]
sin(2nx), (22)

with α2 + β2 = 4/π. The eigenvalues Gn(v) and the
eigenvectors ηv

n of H(0, v, 0) fulfil the system

−
d2

dx2
ηv

n(x) = Gn(v)ηv
n(x), x ∈ (0, π/2) ∪ (π/2, π),

ηv
n(0) = ηv

n(π) = 0, (23)

lim
x→π

2
+

d

dx
ηv

n(x) = lim
x→π

2
−

d

dx
ηv

n(x) =: A,

lim
x→π

2
+

ηv
n(x) − lim

x→π
2

−

ηv
n(x) = vA.

Notice that the even levels of the drift Hamiltonian are

preserved, i.e.
G2k(v) = E2k = (2k + 1)2,

ηv
2k(x) = φ2k(x) =

√
2

π
sin[(2k + 1)x]. (24)

If n is odd then the condition induced by the delta prime is
effective and reads

{G2k+1(v), k ∈ N} = {z2, tan(π/2 z) = −zv/2},

ηv
2k+1(x) = N

[
sin(

√
G2k+1(v)(x − π/2))

+sgn(x − π/2)
v
√

G2k+1(u)

2

cos(
√

G2k+1(v)|x − π/2|)
]
. (25)

whereN is a normalization factor. Notice that the delta prime
interaction gives rise to a discontinuity at the point x =
π/2. Again, the Hamiltonian H(0,∞, 0) is well defined and
imposes the condition d

dxψ(t, π/2) = 0, to be satisfied at
any time t. The related eigenvalue problem reads

−
d2

dx2
η∞

n (x) = Gn(v)η∞
n (x), x ∈ (0.π/2) ∪ (π/2, π),

η∞
n (0) = η∞

n (π) = 0,
d

dx
η∞

n (π/2) = 0. (26)

The problem splits in two free (i.e. without potential)

problems with mixed boundary conditions: Dirichlet in one

boundary point, Neumann in the other. The solution reads

η∞
n (γ, σ;x) =

[
γχ[0,π/2](x) + σχ[π/2,π](x)

]
sin(2nx), with

γ2 + σ2 = 4/π.
Application of the adiabatic theory
Our strategy can be resumed in the following three steps.

First step.
At time zero the controls are not active and the system lies

in the ground state ψ(0) := φ0. We choose a continuous,

increasing, non negative, unbounded function u and switch
a delta interaction with strength u(εt) on. We consider the
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splitting of the Hilbert space L2(0, π) into “even” and “odd”
components He and Ho where

He = {ψ ∈ L2(0, π), ψ(x) = ψ(π − x)}

Ho = {ψ ∈ L2(0, π), ψ(x) = −ψ(π − x)}

and notice that on Ho the evolution is free. Moreover, due

to invariance of the Dirac’s delta interaction under parity

w.r.t. x = π/2, ψ(t) belongs at any time to He, and we

can restrict ourselves to consider the time evolution in such

space. Here there are no crossings of eigenvalues, so the

spectral gap up to a time T can be computed as g(T ) :=
sup0≤t≤T (F2(u(εt)) − F0(u(εt))) ≥ E2 − F0(∞) ≥ 5
Remark 3.1: The domain of H(u(εt), 0, 0) involves the
boundary conditions (15) and hence is time dependent. It

follows that one cannot apply the adiabatic Theorem 1.2

directly since hypothesis 1) is not fulfilled. However one can

prove that the conclusions of the adiabatic Theorem 1.2 holds

also in our case. To this purpose, one has first to show that

the Schrödinger equation i∂tψ(x, t) = H(u(εt), 0, 0)ψ(x, t),
has a strong solution. This can be done using an argument

similar to those of [18]. Afterwards a version of the adiabatic

theorem adapted to the presence of a δ-like potential can be
carried out.

Therefore, applying such result to the time evolution of

He, we obtain

‖ exp

(
−i

∫ εt

0

dsF0(u(s))

)
ξ

u(εt)
0 − ψ(t)‖

< Cε(1 + ε|t|) (27)

where C is a constant not depending on T .
Formula (27) cannot be naively extended to infinite time,

for which y = ∞, since the adiabatic theorem ceases to
hold. Therefore we stop at a conveniently large time T1 =
ε−1τ1. Notice that the reached energy depends on the product

τ1 only, therefore it is important to fix such a value as the

“target” for this first step. Once fixed it, observe that the

more ε is small (and consequently T1 is large), the more the

error in replacing the true evolution ψ(t) with ξ
u(εt)
0 is small,

vanishing in the limit ε → 0.
Second step.
As a second step, we put u(t) = ∞ for ε−1T1 ≤ t ≤ T2 and

approximate the true wave function with the unique even

eigenfunction of the ground state of H(∞, 0, 0), which is
obtained from definition (22) putting α = 1 and β = −1,

namely ξ∞0 (1,−1, x) =
√

2
π | sin(2x)|. It is easily seen

that the error done in replacing the true evolution with

ξ∞0 (1,−1, ·) can be arbitrarily reduced if we choose a
suitably small ε ad a suitably large εT1.

Third step.
Finally we introduce the Heaviside potential endowed with

the control w as coupling constant. The role of such potential
is to turn the wave function, which is still even, to an odd

one, turning its component in [0, π/2] upside down. This
is easily carried out by letting the control u fixed at ∞
and setting w(t) = 4, t ∈ [T2, T2 + π/4] and turn it off
outside such interval. To see that, one has to remember

that the evolution in [0, π/2] is decoupled from the one in
[π/2, π], and that in the first half interval such evolution is
given by the multiplication by the phase factor ei4t while

in the second it is given by the multiplication by the phase

factor ei8t. In a time interval lasting π/4, in the first half
interval a half period is accomplished, while in the second

the system performs a complete period. Notice that this step

does not increase the error in the estimates. Now, turning

all controls off, we have reached the first excited level for

the drift Hamiltonian. Following the same strategy, one can

jump at any energy level. In particular, to reach an odd level

one uses delta interaction, to reach an even one one uses the

delta prime. As a consequence we have the following:

Theorem 3.2: Let K be the class of piecewise continuous
functions from R to [0,∞]. The quantum mechanical system
described by the Hamiltonian (14) is a-SSC in the class K.
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