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Abstract— Optimal control problems for a class of nonlinear
descriptor systems are considered. It is shown that they possess
a well-defined analytical feedback solution in a neighborhood
of the origin, provided stabilizability and some other regularity
conditions are satisfied. Explicit formulas for the series expan-
sions of the cost function and control law are given.

I. INTRODUCTION

This paper deals with the control problem of nonlinear
descriptor systems. This area has also been studied in for
example [1], [2], [3]. More specificly, we focus on optimal
feedback control and the goal is to find an approximate
solution. For state space systems this problem was first
considered in [4]. There it was shown that the solution to the
optimal control problem could be obtained in form of power
series, the terms of which could be sequentially obtained
through solution of a quadratic optimal control problem for
the linearized system and subsequent solution of a series of
linear partial differential equations. Further, a formal proof
of the convergence of the power series was presented in the
case when the input signal is scalar and the system has the
form ẋ = f(x) + Bu. In [5] these results were extended
to general state space systems, ẋ = f(x, u), and this work
was extended even more in [6]. In the earlier works [4], [5],
the functions involved were required to be analytic functions
around the origin. In [6], this requirement was relaxed to
twice differentiability. For a good overview of more recent
methods to find approximative solutions of the Hamilton-
Jacobi-Bellman equation, see [7] and references therein.

The optimal control problem considered in this paper is
defined in terms of a descriptor system in R

n

Eẋ = F (x, u) (1)

and a performance integral

V (Ex) =
∫ ∞

0

L(x, u) dt (2)

The objective is to find a function, u(x) ∈ R
d, which in a

neighborhood of the origin, (x, u) = (0, 0), stabilizes (1),
i.e., makes

Eẋ = F
(
x, u(x)

)
(3)

locally asymptotically stable and minimizes (2) given some
initial conditions, Ex(0) = Ex0, close enough to the origin.
In the descriptor system case it is also necessary to require
that the system (1) is made impulse free by u(x).

Notation: The notation in this paper is fairly standard. The
Jacobian matrix ∂h

∂x will be denoted hx and (·)(i) will be used
to denote the terms of order i in a power series expansion.
Q � 0 means that Q is a real positive definite matrix. �m�
will denote the integer part of m.

II. BASIC ASSUMPTIONS

Throughout this paper some assumptions are made. The
nonlinear descriptor system is assumed to be partitioned as

ẋ1 = f1(x1, x2, u) (4a)

0 = f2(x1, x2, u) (4b)

where x1 ∈ R
r, x2 ∈ R

n−r and u ∈ R
d. Further, the origin

is assumed to be a stationary point, i.e., F (0, 0) = 0.
The functions F (x, u) and L(x, u) are assumed to be

analytic functions in some neighborhood of the origin, x =
0, u = 0, which implies that they can be expanded in
convergent power series

F (x, u) = Ax + Bu + Fh(x, u) (5a)

L(x, u) = xT Qx + 2xT Su + uT Ru + Lh(x, u) (5b)

where the matrices A, B, Q, S are partitioned as

A =
(

A11 A12

A21 A22

)
, B =

(
B1

B2

)

Q =
(

Q11 Q12

Q21 Q22

)
, S =

(
S1

S2

)

and Fh(x, u) and Lh(x, u) contain higher order terms of at
least degree two and three respectively.

The method described in this paper will require that A22

in (5a) is nonsingular which is equivalent to that

rank
∂f2

∂x2
(0, 0, 0) = n − r (6)

This is implied if the system (1) is of index one [8].
Remark 1: The index one assumption does not need to

restrict the usability of the results in this work too much.
In the paper [9] it has been shown how to locally rewrite
a general, possibly high index, nonlinear descriptor system
to an index one system. Furthermore, in many cases, for
example for mechanical multibody systems, the resulting
system is on semi-explicit form.

The initial conditions will be assumed to be consistent,
i.e., that f2

(
x1(0), x2(0), u(0)

)
= 0.
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For the performance criterion (2) to converge, it is neces-
sary that the state converges towards the origin fast enough
and that the system shows no impulsive behavior in the
solution. In this paper we will rewrite the descriptor system
as a state space system. Therefore, no impulsive behavior will
occur. Under the assumption that the initial conditions are
chosen close enough to the origin, local asymptotic stability
of the linearized closed loop system (3) will yield that the
solution converges exponentially, which is sufficiently fast.
The considered feedback law can be expressed as

u(x) = Dx + uh(x) (7)

where uh(x) consists of terms of degree two or higher. After
rewriting the linearization of the descriptor system as a linear
state space system we obtain

ẋ =
(
Â + B̂D

)
x

where Â, B̂ are some matrices and D is given in (7).
This system has to be asymptotically stable and therefore,
a fundamental assumption is the existence of a feedback law

such that �λ(Â + B̂D) < 0. This is equivalent to (Â, B̂)
being stabilizable. A system matrix for which all eigenvalues
have strictly negative real parts is denoted Hurwitz.

III. REVIEW OF SERIES SOLUTIONS TO THE OPTIMAL

CONTROL PROBLEM

For systems on state space form, i.e., when the E matrix
is an identity matrix, it is well-known (see for example [10])
that the optimal control problem mentioned in Section I is
associated with the Hamilton-Jacobi-Bellman equation (HJB)

0 = min
u(·)

L(x, u) + Vx(x)F (x, u) (8)

The HJB is a partial differential equation, which often is
difficult to solve explicitly even for small systems. Therefore,
[4], [5], [6] derived series solutions of the HJB near the
origin. The idea is that if L(x, u), F (x, u) and u(x) are
analytical near the origin and if u(x) is chosen such that it
stabilizes the closed loop system locally around (x, u) = 0
the cost function V (x) will be analytical in a neighborhood
of the origin [6]. This guarantees that V (x) can be expressed
as a convergent power series

V (x) = xT Px + Vh(x) (9)

where Vh(x) contains the terms of order three and higher.
The HJB is locally around the origin equivalent to two
equations [6], namely

0 = L
(
x, u∗(x)

)
+ Vx(x)F

(
x, u∗(x)

)
0 = Lu

(
x, u∗(x)

)
+ Vx(x)Fu

(
x, u∗(x)

) (10)

where u∗(x) is the optimal feedback law. If (5), (7) and
(9) are inserted into (10), the result is two power series
in x. Equation (10) holds for all x near the origin, which
implies that different orders of x yield separate equations in
the corresponding coefficients. The linear terms of the power
series yield the equations [6]

PÃ + ÃT P − PBR−1BT P + Q − SR−1ST = 0 (11a)

D∗ + R−1
(
ST + BT P

)
= 0 (11b)

where Ã = A−BR−1ST while the higher order terms in x
will be

V (m)
x (x)Acx = −

m−1∑
k=3

V (k)
x (x)Bu

(m−k+1)
∗ (x)

−
m−1∑
k=2

V (k)
x (x)F (m−k+1)

h (x, u∗) − L
(m)
h (x, u∗)

− 2
�m−1

2 �∑
k=2

u
(k)
∗ (x)T Ru

(m−k)
∗ (x) − u

(m/2)
∗ (x)T Ru

(m/2)
∗ (x)

(12a)

where m = 3, 4, . . . and Ac = A − BD∗, and

u
(k)
∗ (x) = −1

2
R−1

{
V (k+1)

x (x)B

+
k−1∑
i=1

V (k−i+1)
x (x)F (i)

h,u(x, u∗) + L
(k)
h,u(x, u∗)

} (12b)

for k = 2, 3, . . .. In (12) the convention that
∑l

k = 0 for

l < k is used and the terms u(m/2) are to be omitted if m
is odd. We see that the first terms of u∗(x) and V (x),

u
(1)
∗ (x) = D∗x, V (2)(x) = xT Px (13)

are given by the solution to an algebraic Riccati equation
(ARE). Hence, the existence of a first order approximative
optimal solution is guaranteed if there exists a unique positive
definite stabilizing solution P to the ARE. A theorem that
tells us when this is fulfilled is given below.

Theorem 1: Consider the ARE (11a). Assume that the

weight matrix satisfies
(

Q S

ST R

)
� 0. Then the following

statements are equivalent:

1) (A,B) is stabilizable.
2) The ARE (11a) has a unique positive definite stabi-

lizing solution, i.e., a solution such that A + BD∗ is
Hurwitz, where D∗ is given by (11b).

Proof: See [11].
In order to obtain higher order approximations of the optimal
feedback law, u∗(x), and the corresponding cost function,
V (x), we need to solve (12). First note that

F
(k)
h (x, u∗) = F

(k)
h (x, u

(1)
∗ + u

(2)
∗ + . . . + u

(k−1)
∗ )

L
(k)
h (x, u∗) = L

(k)
h (x, u

(1)
∗ + u

(2)
∗ + . . . + u

(k−2)
∗ )

since Fh(x, u) and Lh(x, u) are power series beginning with
terms of order two and three respectively. Based on this it
can be seen that the right-hand side of (12a) only depends
on the terms

u
(1)
∗ , . . . , u

(m−2)
∗ , V (2), . . . , V (m−1) (14)

and the right-hand side of (12b) only depends on

u
(1)
∗ , . . . , u

(k−1)
∗ , V (2), . . . , V (k+1) (15)

Since Ac is Hurwitz, it is shown in for example [12], that
the partial differential equation (12a) is uniquely solvable.

Therefore, by starting with u
(1)
∗ (x) = D∗x and V (2)(x) =

xT Px it is possible to consecutively calculate the terms

V (3)(x), u
(2)
∗ (x), V (4)(x), u

(3)
∗ (x), . . .

and thereby generating power series for u∗(x) and V (x).
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IV. THE DESCRIPTOR SYSTEM CASE

In the descriptor case the matrix E in (1) is singular. This
means that the optimal control problem for descriptor sys-
tems is not associated with the ordinary HJB (8). However, in
the case when (6) holds, i.e., when the linearized descriptor
system has index one, it is possible to solve the constraint
equation (4b) for x2 using the implicit function theorem.

Theorem 2: Let F (x, y) : C
m × C

n �→ C
m be an

analytic function of (x, y) = (x1, x2, . . . , xm, y1, y2, . . . , yn)
in a neighborhood of a point, (x0, y0), and assume that
F (x0, y0) = 0 and that the matrix Fx(x0, y0) is nonsingular.
Then the equation F (x, y) = 0 has a uniquely determined
analytic solution

x = ϕ(y)

in a neighborhood of y0, such that ϕ
(
y0

)
= x0.

Proof: See [13].
If the implicit function theorem is applied to f2(x1, x2, u)
in a neighborhood of (x0

1, x
0
2, u

0) = (0, 0, 0) and with the
variables chosen as x = x2 and y = (x1, u), x2 can locally
be expressed as

x2 = ϕ(x1, u) (16)

where ϕ(x1, u) is an analytical function with ϕ(0, 0) = 0.
Using (16) it is possible to reduce the optimal control
problem for the descriptor system to an optimal control
problem for a state space system with some constraints on
the initial conditions

f2

(
x1(0), x2(0), u(0)

)
= 0

The state space system will be given by

ẋ1 = f̂1(x1, u) = f1

(
x1, ϕ(x1, u), u

)
(17a)

and the cost function is reduced to

L̂(x1, u) = L
(
x1, ϕ(x1, u), u

)
(17b)

The optimal control problem is thus transformed to an
ordinary problem in the state variables x1, and the problem
is solved by the HJB (8). Finding approximative solutions in
this case is done by the method described in Section III.

However, a problem is that in many cases it is hard or
even impossible to find an explicit expression for ϕ(x1, u).
However, in order to calculate the approximative solutions of
V (x) and u∗(x), using the method described in Section III,
only the series expansions of the functions involved, i.e.,
F (x, u), L(x, u) and u(x), are needed. Thus, in order
to determine an approximative solution to the descriptor
problem the series expansions around (x1, u) = (0, 0) of

f̂(x1, u) and L̂(x1, u) in (17) are needed. The idea, used
in this paper, is to utilize that the series expansions of the

composite functions f̂1(x1, u) and L̂(x1, u) can be computed
based on the series expansions of f1(x1, x2, u), L(x1, x2, u),
u(x1) and ϕ(x1, u). Therefore, the power series of ϕ(x1, u)
is needed. From Theorem 2 it is known that ϕ(x1, u) is
an analytical function in a neighborhood of origin, and
therefore it has a convergent power series expansion. This
series expansion is possible to compute recursively using
(4b). Assume that

x2 = ϕ(x1, u) = ϕ(1)(x1, u) + ϕh(x1, u) (18)

where ϕh(x1, u) contains terms beginning with degree two.
From (5) we have that the series expansion of (4b) is given
by

0 = f2(x1, x2, u)
= A21x1 + A22x2 + B2u + f2h(x1, x2, u)

(19)

If (18) is combined with (19) the expression obtained is

0 = A21x1 + A22

{
ϕ(1)(x1, u) + ϕh(x1, u)

}
+ B2u

+ f2h

(
x1, ϕ

(1)(x1, u) + ϕh(x1, u), u
) (20)

Since (20) must hold for all (x1, u) close to the origin the
first order term of ϕ(x1, u) will be given by

ϕ(1)(x1, u) = −A−1
22 A21x1 − A−1

22 B2u (21)

since all other terms have degrees higher than one. Further-
more, since the lowest degree of the terms in f2h(x1, x2, u)
is two, we know that

f
(m)
2h

(
x1, ϕ(x1, u), u

)
=

f
(m)
2h

(
x1, ϕ

(1)(x1, u) + . . . + ϕ(m−1)(x1, u), u
)

(22)

This makes it is possible to derive a recursive expression for
a general degree term of ϕ(x1, u) as

ϕ(m)(x1, u) = −A−1
22 f

(m)
2h

(
x1, ϕ(x1, u), u

)
(23)

Since the first term in x2 is given by (21), the first
order approximation will define a change of variables locally
around the origin given by⎛

⎝x1

x2

u

⎞
⎠ = Π

(
x1

u

)
=

⎛
⎝ I 0
−A−1

22 A21 −A−1
22 B2

0 I

⎞
⎠ (

x1

u

)
(24)

If (24) is applied to (5a) the system (17a) becomes

ẋ1 = Âx1 + B̂u + f̂1h(x1, u) (25)

where Â = A11 − A12A
−1
22 A21, B̂ = B1 − A12A

−1
22 B2 and

f̂1h(x1, u) = f1h

(
x1, ϕ(x1, u), u) + A12ϕh(x1, u

)
(26)

We assume that the weight matrix is given in the original
coordinates, i.e., x1, x2 and u, and not in the new coordinates
x1 and u. Therefore, the series expansion for (17b) becomes

L̂(x1, u) =
(

x1

u

)T

ΠT

(
Q S
ST R

)
Π

(
x1

u

)
+ L̂h(x1, u)

=
(

x1

u

)T (
Q̂ Ŝ

ŜT R̂

) (
x1

u

)
+ L̂h(x1, u)

(27)

where

L̂h(x1, u) = Lh(x1, ϕ(x1, u), u) + 2xT
1 Q12ϕh(x1, u)

+ 2ϕ(1)(x1, u)Q22ϕh(x1, u)

+ ϕh(x1, u)T Q22ϕh(x1, u) + 2uT S2ϕh(x1, u) (28)

Using the first order terms of the series expansions (25) and
(27), the ARE (11a) and the expression for the first order

6871



term in the feedback (11b) for the descriptor system will
become

P
˜̂
A + ˜̂

AT P − PB̂R̂−1B̂T P + Q̂ − ŜR̂−1ŜT = 0 (29a)

D∗ + R̂−1
(
ŜT + B̂T P

)
= 0 (29b)

where
˜̂
A = Â − B̂R̂−1ŜT . In Theorem 1 the conditions for

existence of a unique stabilizing positive definite solution to
the ARE were defined. First we have the assumption(

Q̂ Ŝ

ŜT R̂

)
� 0 (30)

However, since the coordinate transformation matrix Π has
full column rank it follows that(

Q S
ST R

)
� 0 ⇒

(
Q̂ Ŝ

ŜT R̂

)
� 0

In some cases it is not desired to penalize x2. In these cases
the weight matrix is given by

(
Q̂ Ŝ

ŜT R̂

)
= ΠT

⎛
⎝Q11 0 S1

0 0 0
ST

1 0 R

⎞
⎠ Π =

(
Q11 S1

ST
1 R

)

which means that if the weight matrix for x1 and u is positive
definite, the weight matrix for the composite system (25) -
(29) will also be so. Given the assumption above, we know
from Theorem 1 that (29) has a unique positive definite
stabilizing solution if and only if(

Â, B̂
)

=
(
A11 − A12A

−1
22 A21, B1 − A12A

−1
22 B2

)
(31)

is stabilizable.

Remark 2: Stabilizability of (31) is equivalent to stabiliz-
ability in descriptor sense [14] of the linearization of the
descriptor system (4) if the system is of index one, which is
assumed in this paper. This can be shown by applying the
stabilizability test given in [14]

rank
{(

sE − A B
)}

= n, ∀s ∈ C
+, s finite

where C
+ denotes the closed right half plane.

The higher order terms of V (x1) and u∗(x1) are obtained
from (12). In (12) only the series expansion coefficients
of the different functions are included and it is therefore
possible to replace these functions with the series expansion

coefficients of f̂1h(x1, u) and L̂h(x1, u), i.e.,

V (m)
x1

(x1)Âcx1 = −
m−1∑
k=3

V (k)
x1

(x1)B̂u
(m−k+1)
∗ (x1)

−
m−1∑
k=2

V (k)
x1

(x1)f̂
(m−k+1)
1h (x1, u∗)

− 2
�m−1

2 �∑
k=2

u
(k)
∗ (x1)T R̂u

(m−k)
∗ (x1)

− u
(m/2)
∗ (x1)T R̂u

(m/2)
∗ (x1) − L̂

(m)
h (x1, u∗)

(32a)

where m = 3, 4, . . ., Âc = Â − B̂D∗, and the terms u(m/2)

are to be omitted if m is odd. The corresponding expression
for the series expansion of the feedback law is

u
(k)
∗ (x1) = −1

2
R̂−1

{
V (k+1)

x1
(x1)B̂

+
k−1∑
i=1

V (k−i+1)
x1

(x1)f̂
(i)
1h,u(x1, u∗) + L̂

(k)
h,u(x1, u∗)

} (32b)

where for k = 2, 3, . . .. In (32a) the terms f̂
(i)
1h (x1, u∗) and

L̂
(i)
h (x1, u∗) are given by the corresponding terms in (26)

and (28) and therefore can be expressed in terms of the series
expansions of the original functions as

f̂
(i)
1h (x1, u∗) = f

(i)
1h (x1, ϕ∗, u∗) + A12ϕ

(i)
h,∗ (33a)

and

L̂
(i)
h (x1, u∗) = L

(i)
h (x1, ϕ∗, u∗) + 2xT

1 Q12ϕ
(i−1)
h,∗

+ 2(ϕ(1)
∗ )T Q22ϕ

(i−1)
h,∗ + 2

[(i−1)/2]∑
k=2

(ϕ(k)
h,∗)

T Q22ϕ
(i−k)
h,∗

+ (ϕ(i/2)
h,∗ )T Q22ϕ

(i/2)
h,∗ + 2

i−2∑
k=1

(u(k)
∗ )T S2ϕ

(i−k)
h,∗

(33b)

where ϕ∗ = ϕ(x1, u∗) and ϕh,∗ = ϕh(x1, u∗). In (32),

the series expansion coefficients of the functions f̂1h and

L̂h were needed. These were easily obtained as (33a) and
(33b) respectively. However, in the expression for the optimal

control signal (32b), the derivatives of f̂1(x1, u) and L̂(x1, u)
with respect to u are needed. These expressions become

f̂
(i)
1h,u(x1, u∗) = f1h,u

(
x1, ϕ∗, u∗

)(i)

+
i∑

j=1

f
(j)
1h,x2

(x1, ϕ∗, u∗)ϕ
(i−j)
u,∗ + A12ϕ

(i)
h,u,∗

(34a)

where ϕ
(i)
h,u,∗ = ϕ

(i)
h,u(x1, u∗), ϕ

(i)
u,∗ = ϕ

(i)
u (x1, u∗) and

L̂
(k)
h,u(x1, u∗) = L

(k)
h,u(x1, ϕ∗, u∗)

+
k∑

j=2

L
(j)
h,x2

(x1, ϕ∗, u∗)ϕ
(k−j)
u,∗ + 2xT

1 Q12ϕ
(k−1)
h,u,∗

+ 2ϕ
(1)
∗ Q22ϕ

(k−1)
h,u,∗ − 2BT

2 AT
22Q22ϕ

(k)
h,∗

+
k−2∑
j=1

(
ϕ

(j)
h,u,∗

)T
Q22ϕ

(k−j)
h,∗ +

k−2∑
j=1

(
ϕ

(k−j)
h,∗

)T
Q22ϕ

(j)
h,u,∗

+ 2S2ϕ
(k)
h,∗ + 2

k−1∑
j=1

u
(j)
∗ S2ϕ

(k−j)
h,u,∗

(34b)

Since f1h(x, u), ϕh(x1, u) and Lh(x, u) are power series of
degree two, two and three respectively, and

ϕ(m)(x1, u∗) = ϕ(x1, u
(1)
∗ + u

(2)
∗ + . . . + u

(m)
∗ )

and as for the state space case, the right-hand side of (32a)
only depends on the sequence (14) while the right-hand
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side of (32b) only depends on (15). So by consecutively
calculating the terms of the series

V (2)(x1), u
(1)
∗ (x1), ϕ(1)(x1, u

(1)
∗ ), . . .

it is possible to generate the power series for V (x1), u∗(x1)
and ϕ

(
x1, u∗(x1)

)
.

In the sequence above, it can be seen that it is unnecessary
to calculate orders of ϕ(x1, u) higher than the desired order
of the approximation of u∗(x1). However, as can be seen
in (21) and (23), it is possible to compute arbitrarily high
orders of ϕ(x1, u) in advance.

V. EXAMPLE

In order to illustrate the method we will study a small
example. The system dynamics is given by the set of
differential and algebraic equations

ẇ1 = w2

ẇ2 = ew3 − 1 +
1
2
u

0 = w1 − arcsin(1 − ew3 +
1
2
u)

(35)

The physical interpretation of (35) is a Phase-Locked Loop
circuit (PLL) which is used to control an oscillator so that
it maintains a constant phase angle relative to a reference
signal. The objective is to find the feedback law (7) which
minimizes the cost function (2) with the cost function chosen
as

L(x1, x2, u)

=
1
2
w2

1 + 2w1w2 + w2
2 + w1(−ew3 + 1 +

1
2
u) +

1
2
u2

(36)

When the variables are grouped according to x1 =
(w1, w2)

T
and x2 = w3, the system is on the form (4),

with

f1(x1, x2, u) =
(

w2

ew3 − 1 + 1
2u

)

f2(x1, x2, u) = w1 − arcsin(1 − ew3 +
1
2
u)

and

E =
(

1 0 0
0 1 0
0 0 0

)
(37)

Expressing the descriptor system on the form (5a) by
computing the power series expansion of f1(x1, x2, u) and
f2(x1, x2, u) around the origin yields the first order terms

A =
(

0 1 0
0 0 1
1 0 1

)
, B =

(
0

1/2
−1/2

)
(38)

and the higher order terms of order up till three as(
f1h

f2h

)
=

(
0

1/2w2
3+1/6w3

3

1/2w2
3+1/3w3

3−1/4uw2
3+1/8u2w3−1/48u3

)
(39)

As can be seen in (38) the matrix A22 = 1, i.e., it is
nonsingular. This guarantees that it is possible to compute
the function ϕ(x1, u) using the implicit function theorem.
From (21) the first order term of ϕ(x1, u) is obtained as

ϕ(1)(x1, u) = −w1 +
1
2
u (40)

and the higher order terms of ϕh(x1, u) to order three are
then recursively computed using (23) as

ϕh(x1, u) = −1/2w2
1 + 1/2w1u − 1/8u2

− 1/6w3
1 + 1/2uw2

1 − 1/4u2w1 + 1/24u3 (41)

Equation (24) together with (40) will then define the local
state variable change as(

w1
w2
w3
u

)
=

(
1 0 0
0 1 0
−1 0 1/2
0 0 1

) (
w1
w2
u

)
(42)

The system matrices for the composite system (25), i.e., Â
and B̂, can then be computed as

Â =
(

0 1−1 0

)
, B̂ = ( 0

1 ) (43)

We also need the power series expansion of the cost func-
tion (36). Around the origin this can be computed to the
fourth order as

L =
(

w1
w2
w3
u

)T ( Q11 Q12 S1

QT
12 Q22 S2

ST
1 ST

2 R

) (
w1
w2
w3
u

)
− 1

2
w1w

2
3 − 1

6
w1w

3
3

(44)
where the cost matrix is( Q11 Q12 S1

QT
12 Q22 S2

ST
1 ST

2 R

)
=

(
1/2 1 −1/2 1/4
1 1 0 0

−1/2 0 0 0
1/4 0 0 1/2

)
(45)

The matrix (45) is not positive definite but indefinite. How-
ever, if (42) is utilized on (45) as described in (27) the cost
matrix for the composite system (17a) will become(

Q̂ Ŝ

ŜT R̂

)
=

(
3/2 1 0
1 1 0
0 0 1/2

)
(46)

which is positive definite.

From Section IV we know that the computations follow
the order defined by the sequence

V (2)(x1), u
(1)
∗ (x1), ϕ

(1)
∗ (x1), V (3)(x1), . . .

Since (Â, B̂) is stabilizable and the cost matrix (46)
is positive definite we know from Theorem 1 that the
ARE (29a) has a unique stabilizing positive definite solution.
The first terms in the approximation can then be computed
as described in (13) whereby we obtain

V (2)(x1) =
(

w1

w2

)T (
1 1/2

1/2 1

) (
w1

w2

)

u
(1)
∗ (x1) =

(−1 −2
) (

w1

w2

) (47)

The corresponding closed loop system matrix will then be

Âc =
(

0 1
−2 −2

)
(48)

which has the eigenvalues λ = −1 ± 1i. Now it is possible

to compute ϕ
(1)
∗ (x1) and ϕ

(2)
∗,h(x1) as

ϕ
(1)
∗ (x1) = −3

2
w1−w2, ϕ

(2)
h,∗(x1) = −9

8
w2

1−
3
2
w1w2−1

2
w2

2
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In order to calculate the third order term in the approximation
of V (x1), (32a) is used. With m = 3 the expression becomes

V (3)
x1

(x1)Âcx1 =

− V (2)
x1

(x1)f̂
(2)
1h (x1, u∗) − L̂

(3)
h (x1, u∗) = 0 (49)

since by using (33) we obtain

f̂
(2)
1h (x1, u

(1)
∗ ) =

(
0
0

)
, L̂

(3)
h (x1, u

(1)
∗ ) = 0 (50)

Solving (49) then results in

V (3)(x1) = 0 (51)

Remark 3: The problem is symmetric in the sense that the
same problem is obtained if w is replaced by −w. Therefore,
it is natural that V (k)(x1) = 0 for odd k.

The next step is to solve for u
(2)
∗ (x1). This is done by letting

k = 2 in (32b) which gives

u
(2)
∗ (x1) = −1

2
R̂−1

·
{

V (3)
x1

(x1)B̂ + V (2)
x1

(x1)f̂
(1)
1h,u(x1, u∗) + L̂

(2)
h,u(x1, u∗)

}
(52)

The unknown terms in (52) are then computed by utiliz-
ing (34) and we obtain

f̂
(1)
1h,u(x1, u

(1)
∗ ) =

(
0
0

)
, L̂

(2)
h (x1, u

(1)
∗ ) = 0 (53)

which together with the fact that V (3)(x1) = 0 yields that

also u
(2)
∗ (x1) = 0.

We will also calculate V (4)(x1). Then ϕ
(2)
∗ (x1) and

ϕ
(3)
h,∗(x1) are needed. Since u

(2)
∗ (x1) = 0 we have that

ϕ
(2)
∗ (x1) will equal ϕ

(2)
h,∗(x1) while

ϕ
(3)
h,∗(x1) = −23

24
w3

1 − 9
4
w2

1w2 − 3
2
w1w

2
2 − 1

3
w3

2

Again using (32a) leads to the expression

V (4)
x1

(x1)Âcx1 = −V (3)
x1

(x1)B̂u
(2)
∗ −V (2)

x1
(x1)f̂

(3)
1h (x1, u∗)

− V (3)
x1

(x1)f̂
(2)
1h (x1, u∗) − L̂

(4)
h (x1, u∗) (54)

where

L̂
(4)
h (x1, u

(1)
∗ + u

(2)
∗ ) = −1

6
w4

1

V (2)
x1

(x1)f̂
(3)
1h (x1, u

(1)
∗ + u

(2)
∗ ) =

1
6
w3

1(w1 + 2w2)2
(55)

and the other terms in (54) equal zero. The solution to (54)
becomes

V (4)(x1) = − 1
12

w4
1 (56)

The details of the calculation of u
(3)
∗ (x1) are omitted, but

the result is u
(3)
∗ (x1) = 0.

In order to validate the solutions of the power series
method we need the series expansions of the explicit solu-
tions u∗(x1) and V (x1). The system (35) can be formulated
on state space form as

ẇ1 = w2

ẇ2 = − sin(w1) + u
(57)

with the cost function (36) given as

L(x1, u) =
1
2
w2

1 + 2w1w2 + w2
2 + w1f(w1) +

1
2
u2

By solving the HJB (8) the explicit expressions are given by

u∗(x1) = −w1 − 2w2 (58)

V (x1) = 2
(
1 − cos(w1)

)
+ w1w2 + w2

2 (59)

For u∗(x1) we need not do any truncation since the exact
solution is a polynomial in x1 of order one. However, for
V (x1) we compute the series expansions of (59) to the fourth
order as

V (x1) = w2
1 + w1w2 + w2

2 − 1
12

w4
1 (60)

A comparison between the power series expansions of the
explicit solutions (58), (60) and the solutions to the power
series method (47), (51), (56) shows that the same expres-
sions are attained.

VI. CONCLUSIONS

In this paper a method has been presented which makes
it possible to calculate a power series solution to the HJB
equation for descriptor systems. The solution is exact as long
as no truncation of the power series is done. The first terms
u(1)(x1) and V (2)(x1) are obtained by solving an algebraic
Riccati equation. The higher order terms of u∗(x1) and
V (x1) are then calculated recursively using systems of linear
equations. The fundamental limits are that the linearization of
the descriptor system around the origin must be stabilizable
and have index one.
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